High cysteine diet reduces insulin resistance in SHR-CRP rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34505526
PubMed Central
PMC8820534
DOI
10.33549/physiolres.934736
PII: 934736
Knihovny.cz E-zdroje
- MeSH
- adipozita * MeSH
- cystein metabolismus farmakologie MeSH
- inzulinová rezistence * MeSH
- krysa rodu Rattus MeSH
- metabolismus lipidů MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystein MeSH
Increased plasma total cysteine (tCys) has been associated with obesity and metabolic syndrome in human and some animal studies but the underlying mechanisms remain unclear. In this study, we aimed at evaluating the effects of high cysteine diet administered to SHR-CRP transgenic rats, a model of metabolic syndrome and inflammation. SHR-CRP rats were fed either standard (3.2 g cystine/kg diet) or high cysteine diet (HCD, enriched with additional 4 g L-cysteine/kg diet). After 4 weeks, urine, plasma and tissue samples were collected and parameters of metabolic syndrome, sulfur metabolites and hepatic gene expression were evaluated. Rats on HCD exhibited similar body weights and weights of fat depots, reduced levels of serum insulin, and reduced oxidative stress in the liver. The HCD did not change concentrations of tCys in tissues and body fluids while taurine in tissues and body fluids, and urinary sulfate were significantly increased. In contrast, betaine levels were significantly reduced possibly compensating for taurine elevation. In summary, increased Cys intake did not induce obesity while it ameliorated insulin resistance in the SHR-CRP rats, possibly due to beneficial effects of accumulating taurine.
Zobrazit více v PubMed
BELLA DL, HAHN C, STIPANUK MH. Effects of nonsulfur and sulfur amino acids on the regulation of hepatic enzymes of cysteine metabolism. Am J Physiol. 1999;277:E144–E153. doi: 10.1152/ajpendo.1999.277.1.E144. PubMed DOI
BLOUET C, MARIOTTI F, AZZOUT-MARNICHE D, MATHE V, MIKOGAMI T, TOME D, HUNEAU JF. Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic Biol Med. 2007;42:1089–1097. doi: 10.1016/j.freeradbiomed.2007.01.006. PubMed DOI
BROSNAN JT, BROSNAN ME. The sulfur-containing amino acids: an overview. J Nutr. 2006;136:1636S–1640S. doi: 10.1093/jn/136.6.1636S. PubMed DOI
DITROI T, NAGY A, MARTINELLI D, ROSTA A, KOŽICH V, NAGY P. Comprehensive analysis of how experimental parameters affect H2S measurements by the monobromobimane method. Free Radic Biol Med. 2019;136:146–158. doi: 10.1016/j.freeradbiomed.2019.04.006. PubMed DOI
DOMINY JE, JR, HIRSCHBERGER LL, COLOSO RM, STIPANUK MH. In vivo regulation of cysteine dioxygenase via the ubiquitin-26S proteasome system. Adv Exp Med Biol. 2006;583:37–47. doi: 10.1007/978-0-387-33504-9_4. PubMed DOI
EL-KHAIRY L, UELAND PM, NYGARD O, REFSUM H, VOLLSET SE. Lifestyle and cardiovascular disease risk factors as determinants of total cysteine in plasma: The Hordaland homocysteine study. Am J Clin Nutr. 1999;70:1016–1024. doi: 10.1093/ajcn/70.6.1016. PubMed DOI
ELSHORBAGY AK, CHURCH C, VALDIVIA-GARCIA M, SMITH AD, REFSUM H, COX R. Dietary cystine level affects metabolic rate and glycaemic control in adult mice. J Nutr Biochem. 2012a;23:332–340. doi: 10.1016/j.jnutbio.2010.12.009. PubMed DOI PMC
ELSHORBAGY AK, KOŽICH V, SMITH AD, REFSUM H. Cysteine and obesity: consistency of the evidence across epidemiologic, animal and cellular studies. Curr Opin Clin Nutr Metab Care. 2012b;15:49–57. doi: 10.1097/MCO.0b013e32834d199f. PubMed DOI
ELSHORBAGY AK, NURK E, GJESDAL CG, TELL GS, UELAND PM, NYGARD O, TVERDAL A, VOLLSET SE, REFSUM H. Homocysteine, cysteine, and body composition in the Hordaland Homocysteine Study: does cysteine link amino acid and lipid metabolism? Am J Clin Nutr. 2008;88:738–746. doi: 10.1093/ajcn/88.3.738. PubMed DOI
ELSHORBAGY AK, SMITH AD, KOŽICH V, REFSUM H. Cysteine and obesity. Obesity (Silver Spring) 2012c;20:473–481. doi: 10.1038/oby.2011.93. PubMed DOI
ELSHORBAGY AK, VALDIVIA-GARCIA M, REFSUM H, BUTTE N. The association of cysteine with obesity, inflammatory cytokines and insulin resistance in Hispanic children and adolescents. PLoS One. 2012d;7:e44166. doi: 10.1371/journal.pone.0044166. PubMed DOI PMC
HOU X, WANG Z, DING F, HE Y, WANG P, LIU X, XU F, WANG J, YANG Y. Taurine transporter regulates adipogenic differentiation of human adipose-derived stem cells through affecting Wnt/beta-catenin signaling pathway. Int J Biol Sci. 2019;15:1104–1112. doi: 10.7150/ijbs.31794. PubMed DOI PMC
IMAE M, ASANO T, MURAKAMI S. Potential role of taurine in the prevention of diabetes and metabolic syndrome. Amino Acids. 2014;46:81–88. doi: 10.1007/s00726-012-1434-4. PubMed DOI
ITO T, YOSHIKAWA N, ITO H, SCHAFFER SW. Impact of taurine depletion on glucose control and insulin secretion in mice. J Pharmacol Sci. 2015;129:59–64. doi: 10.1016/j.jphs.2015.08.007. PubMed DOI
JAIN SK, VELUSAMY T, CROAD JL, RAINS JL, BULL R. L-cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, and oxidative stress and inhibits NF-kappaB activation in the livers of Zucker diabetic rats. Free Radic Biol Med. 2009;46:1633–1638. doi: 10.1016/j.freeradbiomed.2009.03.014. PubMed DOI PMC
JURKOWSKA H, NIEWIADOMSKI J, HIRSCHBERGER LL, ROMAN HB, MAZOR KM, LIU X, LOCASALE JW, PARK E, STIPANUK MH. Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo. Amino Acids. 2016;48:665–676. doi: 10.1007/s00726-015-2108-9. PubMed DOI PMC
KIM KS, OH DH, KIM JY, LEE BG, YOU JS, CHANG KJ, CHUNG HJ, YOO MC, YANG HI, KANG JH, HWANG YC, AHN KJ, CHUNG HY, JEONG IK. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Exp Mol Med. 2012;44:665–673. doi: 10.3858/emm.2012.44.11.075. PubMed DOI PMC
KOŽICH V, DITROI T, SOKOLOVÁ J, KŘÍŽKOVÁ M, KRIJT J, JEŠINA P, NAGY P. Metabolism of sulfur compounds in homocystinurias. Br J Pharmacol. 2019;176:594–606. doi: 10.1111/bph.14523. PubMed DOI PMC
KRIJT J, VACKOVÁ M, KOŽICH V. Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2-carboxyethyl)phosphine as reductant compared with tri-n-butylphosphine. Clin Chem. 2001;47:1821–1828. doi: 10.1093/clinchem/47.10.1821. PubMed DOI
LUNOVA M, KUBOVČIAK J, SMOLKOVÁ B, UZHYTCHAK M, MICHALOVÁ| K, DEJNEKA A, STRNAD P, LUNOV O, JIRSA M. Expression of interferons lambda 3 and 4 induces identical response in human liver cell lines depending exclusively on canonical signaling. Int J Mol Sci. 2021;22 doi: 10.3390/ijms22052560. PubMed DOI PMC
MALINSKÁ H, HÜTTL M, OLIYARNYK O, BRATOVÁ M, KAZDOVÁ L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI
NA H, LEE H, LEE MH, LIM HJ, KIM HJ, JEON Y, KANG HL, LEE MO. Deletion of exons 3 and 4 in the mouse Nr1d1 gene worsens high-fat diet-induced hepatic steatosis. Life Sci. 2016;166:13–19. doi: 10.1016/j.lfs.2016.10.003. PubMed DOI
NIEWIADOMSKI J, ZHOU JQ, ROMAN HB, LIU X, HIRSCHBERGER LL, LOCASALE JW, STIPANUK MH. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice. Ann N Y Acad Sci. 2016;1363:99–115. doi: 10.1111/nyas.13021. PubMed DOI PMC
OLSEN T, OVREBO B, HAJ-YASEIN N, LEE S, SVENDSEN K, HJORTH M, BASTANI NE, NORHEIM F, DREVON CA, REFSUM H, VINKNES KJ. Effects of dietary methionine and cysteine restriction on plasma biomarkers, serum fibroblast growth factor 21, and adipose tissue gene expression in women with overweight or obesity: a double-blind randomized controlled pilot study. J Transl Med. 2020;18:122. doi: 10.1186/s12967-020-02288-x. PubMed DOI PMC
OLSEN T, OVREBO B, TURNER C, BASTANI NE, REFSUM H, VINKNES KJ. Combining dietary sulfur amino acid restriction with polyunsaturated fatty acid intake in humans: a randomized controlled pilot trial. Nutrients. 2018;10 doi: 10.3390/nu10121822. PubMed DOI PMC
PINA-ZENTELLA G, De la ROSA-CUEVAS G, VAZQUEZ-MEZA H, PINA E, De PINA MZ. Taurine in adipocytes prevents insulin-mediated H2O2 generation and activates Pka and lipolysis. Amino Acids. 2012;42:1927–1935. doi: 10.1007/s00726-011-0919-x. PubMed DOI
PRAVENEC M, KAJIYA T, ZÍDEK V, LANDA V, MLEJNEK P, ŠIMÁKOVÁ M, ŠILHAVÝ J, MALINSKÁ H, OLIYARNYK O, KAZDOVÁ L, FAN J, WANG J, KURTZ TW. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension. 2011;57:731–737. doi: 10.1161/HYPERTENSIONAHA.110.164350. PubMed DOI PMC
STIPANUK MH. Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J Nutr. 2020;150:2494S–2505S. doi: 10.1093/jn/nxaa094. PubMed DOI
STIPANUK MH, DOMINY JE, JR, LEE JI, COLOSO RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr. 2006;136:1652S–1659S. doi: 10.1093/jn/136.6.1652S. PubMed DOI
STIPANUK MH, UEKI I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis. 2011;34:17–32. doi: 10.1007/s10545-009-9006-9. PubMed DOI PMC
STIPANUK MH, UEKI I, DOMINY JE, JR, SIMMONS CR, HIRSCHBERGER LL. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids. 2009;37:55–63. doi: 10.1007/s00726-008-0202-y. PubMed DOI PMC
TSUBOYAMA-KASAOKA N, SHOZAWA C, SANO K, KAMEI Y, KASAOKA S, HOSOKAWA Y, EZAKI O. Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology. 2006;147:3276–3284. doi: 10.1210/en.2005-1007. PubMed DOI
VIDAL K, BREUILLE D, SERRANT P, DENIS P, GLOMOT F, BECHEREAU F, PAPET I. Long-term cysteine fortification impacts cysteine/glutathione homeostasis and food intake in ageing rats. Eur J Nutr. 2014;53:963–971. doi: 10.1007/s00394-013-0600-0. PubMed DOI
WELCH RD, BILLON C, KAMERIC A, BURRIS TP, FLAVENY CA. Rev-erbα heterozygosity produces a dose-dependent phenotypic advantage in mice. PLoS One. 2020;15:e0227720. doi: 10.1371/journal.pone.0227720. PubMed DOI PMC
YE J, COULOURIS G, ZARETSKAYA I, CUTCUTACHE I, ROZEN S, MADDEN TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC