Metabolism of sulfur compounds in homocystinurias
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30341787
PubMed Central
PMC6346072
DOI
10.1111/bph.14523
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- homocystinurie krev metabolismus moč MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- sloučeniny síry krev metabolismus moč MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sloučeniny síry MeSH
BACKGROUND AND PURPOSE: Homocystinurias are rare genetic defects characterized by altered fluxes of sulfur compounds including homocysteine and cysteine. We explored whether the severely perturbed sulfur amino acid metabolism in patients with homocystinurias affects the metabolism of hydrogen sulfide. EXPERIMENTAL APPROACH: We studied 10 treated patients with a block in the conversion of homocysteine to cysteine due to cystathionine β-synthase deficiency (CBSD) and six treated patients with remethylation defects (RMD) and an enhanced flux of sulfur metabolites via transsulfuration. Control groups for CBSD and RMD patients consisted of 22 patients with phenylketonuria on a low-protein diet and of 12 healthy controls respectively. Plasma and urine concentrations of selected sulfur compounds were analysed by HPLC and LC-MS/MS. KEY RESULTS: Patients with CBSD exhibited plasma concentrations of monobromobimane-detected sulfide similar to appropriate controls. Urinary homolanthionine and thiosulfate in CBSD were increased significantly 1.9 and 3 times suggesting higher hydrogen sulfide synthesis by γ-cystathionase and detoxification respectively. Surprisingly, patients with RMD had significantly lower plasma sulfide levels (53 and 64% of controls) with lower sulfite concentrations, and higher taurine and thiosulfate levels suggesting enhanced cysteine oxidation and hydrogen sulfide catabolism respectively. CONCLUSION AND IMPLICATIONS: The results from this study suggest that severe inherited defects in sulfur amino acid metabolism may be accompanied by only moderately perturbed hydrogen sulfide metabolism and lends support to the hypothesis that enzymes in the transsulfuration pathway may not be the major contributors to the endogenous hydrogen sulfide pool. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Zobrazit více v PubMed
Akaike T, Ida T, Wei FY, Nishida M, Kumagai Y, Alam MM PubMed PMC
Alexander SP, Fabbro D, Kelly E, Marrion NV, Peters JA, Faccenda E PubMed PMC
Augustyn KD, Jackson MR, Jorns MS (2017). Use of tissue metabolite analysis and enzyme kinetics to discriminate between alternate pathways for hydrogen sulfide metabolism. Biochemistry 56: 986–996. PubMed PMC
Awwad HM, Geisel J, Obeid R (2016). Determination of trimethylamine, trimethylamine N‐oxide, and taurine in human plasma and urine by UHPLC‐MS/MS technique. J Chromatogr B Analyt Technol Biomed Life Sci 1038: 12–18. PubMed
Bogdándi V, Ida T, Sutton TR, Bianco C, Ditrói T, Koster G PubMed PMC
Carter RN, Morton NM (2016). Cysteine and hydrogen sulphide in the regulation of metabolism: insights from genetics and pharmacology. J Pathol 238: 321–332. PubMed PMC
Doka E, Pader I, Biro A, Johansson K, Cheng Q, Ballago K PubMed PMC
Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S PubMed PMC
Hargreaves IP, Lee PJ, Briddon A (2002). Homocysteine and cysteine – albumin binding in homocystinuria: assessment of cysteine status and implications for glutathione synthesis? Amino Acids 22: 109–118. PubMed
Huemer M, Diodato D, Schwahn B, Schiff M, Bandeira A, Benoist JF PubMed PMC
Ji AJ, Savon SR, Jacobsen DW (1995). Determination of total serum sulfite by HPLC with fluorescence detection. Clin Chem 41: 897–903. PubMed
Kabil O, Banerjee R (2014). Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 20: 770–782. PubMed PMC
Kasinath BS, Feliers D, Lee HJ (2018). Hydrogen sulfide as a regulatory factor in kidney health and disease. Biochem Pharmacol 149: 29–41. PubMed
Kohl JB, Mellis AT, Schwarz G (2019). Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. Br J Pharmacol 176: 554–570. PubMed PMC
Kozich V, Krijt J, Sokolova J, Melenovska P, Jesina P, Vozdek R PubMed
Kožich V, Morris AAM, Blom HJ (2016). Disorders of sulfur amino acid metabolism In: Saudubray J‐M, Baumgartner MR, Walter J. (eds). Inborn Metabolic Diseases: Diagnosis and Treatment. Springer Berlin Heidelberg: Berlin, Heidelberg.
Krijt J, Vackova M, Kozich V (2001). Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2‐carboxyethyl) phosphine as reductant compared with tri‐n‐butylphosphine. Clin Chem 47: 1821–1828. PubMed
Libiad M, Motl N, Akey DL, Sakamoto N, Fearon ER, Smith JL PubMed PMC
Maclean KN, Sikora J, Kozich V, Jiang H, Greiner LS, Kraus E PubMed PMC
Majors AK, Pyeritz RE (2000). A deficiency of cysteine impairs fibrillin‐1 deposition: implications for the pathogenesis of cystathionine beta‐synthase deficiency. Mol Genet Metab 70: 252–260. PubMed
Majtan T, Krijt J, Sokolova J, Krizkova M, Ralat MA, Kent J PubMed
Mansoor MA, Ueland PM, Svardal AM (1994). Redox status and protein binding of plasma homocysteine and other aminothiols in patients with hyperhomocysteinemia due to cobalamin deficiency. Am J Clin Nutr 59: 631–635. PubMed
Melideo SL, Jackson MR, Jorns MS (2014). Biosynthesis of a central intermediate in hydrogen sulfide metabolism by a novel human sulfurtransferase and its yeast ortholog. Biochemistry 53: 4739–4753. PubMed PMC
Morava E, Rahman S, Peters V, Baumgartner MR, Patterson M, Zschocke J (2015). Quo vadis: the re‐definition of ‘inborn metabolic diseases’. J Inherit Metab Dis 38: 1003–1006. PubMed
Morris AA, Kozich V, Santra S, Andria G, Ben‐Omran TI, Chakrapani AB PubMed PMC
Nagy P, Palinkas Z, Nagy A, Budai B, Toth I, Vasas A (2014). Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta 1840: 876–891. PubMed
Nimni ME, Han B, Cordoba F (2007). Are we getting enough sulfur in our diet? Nutr Metab (Lond) 4: 24. PubMed PMC
Olson KR (2018). H2S and polysulfide metabolism: conventional and unconventional pathways. Biochem Pharmacol 149: 77–90. PubMed
Olson KR, Deleon ER, Liu F (2014). Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide 41: 11–26. PubMed
Pan LL, Qin M, Liu XH, Zhu YZ (2017). The role of hydrogen sulfide on cardiovascular homeostasis: an overview with update on immunomodulation. Front Pharmacol 8: 686. PubMed PMC
Paul BD, Snyder SH (2018). Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol 149: 101–109. PubMed PMC
Pol A, Renkema GH, Tangerman A, Winkel EG, Engelke UF, de Brouwer APM PubMed PMC
Shen X, Peter EA, Bir S, Wang R, Kevil CG (2012). Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radic Biol Med 52: 2276–2283. PubMed PMC
Szabo C (2016). Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov 15: 185–203. PubMed PMC
Szabo C (2018). A timeline of hydrogen sulfide (H2S) research: from environmental toxin to biological mediator. Biochem Pharmacol 149: 5–19. PubMed PMC
Wallace JL, Motta JP, Buret AG (2018). Hydrogen sulfide: an agent of stability at the microbiome‐mucosa interface. Am J Physiol Gastrointest Liver Physiol 314: G143–G149. PubMed PMC
Wallace JL, Wang R (2015). Hydrogen sulfide‐based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov 14: 329–345. PubMed
Wintner EA, Deckwerth TL, Langston W, Bengtsson A, Leviten D, Hill P PubMed PMC
Yang CT, Chen L, Xu S, Day JJ, Li X, Xian M (2017). Recent development of hydrogen sulfide releasing/stimulating reagents and their potential applications in cancer and glycometabolic disorders. Front Pharmacol 8: 664. PubMed PMC
Zschocke J (2016). SSIEM classification of inborn errors of metabolism In: Blau N, Duran M, Blaskovics ME, Gibson KM. (eds). Physician's Guide to the Diagnosis, Treatment, and Follow‐up of Inherited Metabolic Diseases. Springer: Berlin‐Heidelberg.
Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H2S homeostasis
High cysteine diet reduces insulin resistance in SHR-CRP rats