Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H2S homeostasis
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36306676
PubMed Central
PMC9615310
DOI
10.1016/j.redox.2022.102517
PII: S2213-2317(22)00289-0
Knihovny.cz E-zdroje
- Klíčová slova
- Cystathionine β-synthase, Cystathionine γ-lyase, Molybdenum cofactor, Persulfide dioxygenase, Sulfide:quinone oxidoreductase, Sulfite oxidase,
- MeSH
- cystein MeSH
- homeostáza MeSH
- homocystein MeSH
- lidé MeSH
- síra MeSH
- sulfan * metabolismus MeSH
- sulfidy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystein MeSH
- homocystein MeSH
- síra MeSH
- sulfan * MeSH
- sulfidy MeSH
Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis.
Department of Analytical Chemistry Faculty of Science Charles University Prague Czech Republic
Department of Pediatrics University Medical Centre Eppendorf Hamburg Germany
Division of Metabolism Bambino Gesù Children's Hospital IRCCS Rome Italy
Genetics and Genomic Medicine Department UCL GOS Institute of Child Health London UK
Institute of Biochemistry Department of Chemistry University of Cologne Cologne Germany
Institute of Medical Genetics and Applied Genomics University of Tübingen Tübingen Germany
Kinder und Jugendklinik Universitätsklinikum Erlangen Erlangen Germany
Zobrazit více v PubMed
Olson K.R., DeLeon E.R., Liu F. Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide. 2014;41:11–26. PubMed
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 2012;92(2):791–896. PubMed
Cirino G., Szabo C., Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol. Rev. 2022 PubMed
Szabo C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat. Rev. Drug Discov. 2016;15(3):185–203. PubMed PMC
Wallace J.L., Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 2015;14(5):329–345. PubMed
Ditroi T., et al. Comprehensive analysis of how experimental parameters affect H2S measurements by the monobromobimane method. Free Radic. Biol. Med. 2019;136:146–158. PubMed
Bogdandi V., et al. Speciation of reactive sulfur species and their reactions with alkylating agents: do we have any clue about what is present inside the cell? Br. J. Pharmacol. 2019;176(4):646–670. PubMed PMC
Nagy P., et al. Measuring reactive sulfur species and thiol oxidation states: challenges and cautions in relation to alkylation-based protocols. Antioxidants Redox Signal. 2020;33(16):1174–1189. PubMed
Kabil O., Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxidants Redox Signal. 2014;20(5):770–782. PubMed PMC
Mellis A.T., et al. The role of glutamate oxaloacetate transaminases in sulfite biosynthesis and H2S metabolism. Redox Biol. 2021;38 PubMed PMC
Pol A., et al. Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat. Genet. 2018;50(1):120–129. PubMed PMC
Akaike T., et al. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat. Commun. 2017;8(1):1177. PubMed PMC
Ida T., et al. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc. Natl. Acad. Sci. U. S. A. 2014;111(21):7606–7611. PubMed PMC
Banerjee R. Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Curr. Opin. Chem. Biol. 2017;37:115–121. PubMed PMC
Olson K.R. H2S and polysulfide metabolism: conventional and unconventional pathways. Biochem. Pharmacol. 2018;149:77–90. PubMed
Singh S., et al. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem. 2009;284(33):22457–22466. PubMed PMC
Kohl J.B., Mellis A.T., Schwarz G. Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. Br. J. Pharmacol. 2019;176(4):554–570. PubMed PMC
Kimura Y., Goto Y.I., Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxidants Redox Signal. 2010;12(1):1–13. PubMed
Hildebrandt T.M., Grieshaber M.K. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 2008;275(13):3352–3361. PubMed
Fu M., et al. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc. Natl. Acad. Sci. U.S.A. 2012;109(8):2943–2948. PubMed PMC
Rose P., Moore P.K., Zhu Y.Z. H2S biosynthesis and catabolism: new insights from molecular studies. Cell. Mol. Life Sci. 2017;74(8):1391–1412. PubMed PMC
Akahoshi N., et al. Increased urinary 3-mercaptolactate excretion and enhanced passive systemic anaphylaxis in mice lacking mercaptopyruvate sulfurtransferase, a model of mercaptolactate-cysteine disulfiduria. Int. J. Mol. Sci. 2020;21(3) PubMed PMC
Giordano C., et al. Morphologic evidence of diffuse vascular damage in human and in the experimental model of ethylmalonic encephalopathy. J. Inherit. Metab. Dis. 2012;35(3):451–458. PubMed
Gupta S., et al. Mouse models of cystathionine beta-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia. Faseb. J. 2009;23(3):883–893. PubMed PMC
Lee H.J., et al. Molybdenum cofactor-deficient mice resemble the phenotype of human patients. Hum. Mol. Genet. 2002;11(26):3309–3317. PubMed
Maclean K.N., et al. Cystathionine beta-synthase null homocystinuric mice fail to exhibit altered hemostasis or lowering of plasma homocysteine in response to betaine treatment. Mol. Genet. Metabol. 2010;101(2–3):163–171. PubMed PMC
Mellis A.T., et al. Sulfite alters the mitochondrial network in molybdenum cofactor deficiency. Front. Genet. 2020;11 PubMed PMC
Morton N.M., et al. Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. Nat. Med. 2016;22(7):771–779. PubMed PMC
Roman H.B., et al. The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS(-) production and evidence of pancreatic and lung toxicity. Antioxidants Redox Signal. 2013;19(12):1321–1336. PubMed PMC
Wang L., et al. Expression of mutant human cystathionine beta-synthase rescues neonatal lethality but not homocystinuria in a mouse model. Hum. Mol. Genet. 2005;14(15):2201–2208. PubMed PMC
Yang G., et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322(5901):587–590. PubMed PMC
Ishii I., et al. Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J. Biol. Chem. 2010;285(34):26358–26368. PubMed PMC
Jia J., et al. SQR mediates therapeutic effects of H2S by targeting mitochondrial electron transport to induce mitochondrial uncoupling. Sci. Adv. 2020;6(35) PubMed PMC
Marutani E., et al. Sulfide catabolism ameliorates hypoxic brain injury. Nat. Commun. 2021;12(1):3108. PubMed PMC
Shirozu K., et al. Cystathionine gamma-lyase deficiency protects mice from galactosamine/lipopolysaccharide-induced acute liver failure. Antioxidants Redox Signal. 2014;20(2):204–216. PubMed PMC
Kozich V., Stabler S. Lessons learned from inherited metabolic disorders of sulfur-containing amino acids metabolism. J. Nutr. 2020;150(Suppl 1):2506S–2517S. PubMed
Barić I., Kožich V., Fowler B. In: Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Blau N., et al., editors. Springer International Publishing; Cham: 2022. Disorders of sulfur amino acid and hydrogen sulfide metabolism; pp. 365–390.
Kožich V., Morris A.A.M., Blom H.J. In: Inborn Metabolic Diseases: Diagnosis and Treatment. Saudubray J.-M., et al., editors. Springer Berlin Heidelberg; Berlin, Heidelberg: 2022. Disorders of sulfur amino acid metabolism; pp. 407–422.
Morris A.A.M., et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J. Inherit. Metab. Dis. 2017;40(1):49–74. PubMed PMC
Friederich M.W., et al. Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease. J. Inherit. Metab. Dis. 2020 PubMed PMC
Kozich V., et al. Metabolism of sulfur compounds in homocystinurias. Br. J. Pharmacol. 2019;176(4):594–606. PubMed PMC
Singh S., Banerjee R. PLP-dependent H2S biogenesis. Biochim. Biophys. Acta. 2011;1814(11):1518–1527. PubMed PMC
Kozich V., et al. Thioethers as markers of hydrogen sulfide production in homocystinurias. Biochimie. 2016;126:14–20. PubMed
Mansoor M.A., Ueland P.M., Svardal A.M. Redox status and protein binding of plasma homocysteine and other aminothiols in patients with hyperhomocysteinemia due to cobalamin deficiency. Am. J. Clin. Nutr. 1994;59(3):631–635. PubMed
Svardal A.M., Mansoor M.A., Ueland P.M. Determination of reduced, oxidized, and protein-bound glutathione in human plasma with precolumn derivatization with monobromobimane and liquid chromatography. Anal. Biochem. 1990;184(2):338–346. PubMed
Refsum H., et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin. Chem. 2004;50(1):3–32. PubMed
Ueland P.M., et al. Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiol status--a possible element of the extracellular antioxidant defense system. J. Nutr. 1996;126(4 Suppl) 1281S-4S. PubMed
Mansoor M.A., et al. Redox status and protein binding of plasma homocysteine and other aminothiols in patients with homocystinuria. Metabolism. 1993;42(11):1481–1485. PubMed
Majtan T., et al. Biogenesis of hydrogen sulfide and thioethers by cystathionine beta-synthase. Antioxidants Redox Signal. 2018;28(4):311–323. PubMed
Mudd S.H., et al. Homocystinuria due to cystathionine synthase deficiency: the effect of pyridoxine. J. Clin. Invest. 1970;49(9):1762–1773. PubMed PMC
Blom W., Huijmans J.G. Differential diagnosis of (inherited) amino acid metabolism or transport disorders. Amino Acids. 1992;2(1–2):25–67. PubMed
Volkl H., Silbernagl S. Mutual inhibition of L-cystine/L-cysteine and other neutral amino acids during tubular reabsorption. A microperfusion study in rat kidney. Pflügers Archiv. 1982;395(3):190–195. PubMed
Kobayashi S., et al. Cystathionine is a novel substrate of cystine/glutamate transporter: implications for immune function. J. Biol. Chem. 2015;290(14):8778–8788. PubMed PMC
Suzuki K., et al. Clinical implication of plasma hydrogen sulfide levels in Japanese patients with type 2 diabetes. Intern. Med. 2017;56(1):17–21. PubMed PMC
Xiong J.W., et al. Decreased plasma levels of gasotransmitter hydrogen sulfide in patients with schizophrenia: correlation with psychopathology and cognition. Psychopharmacology (Berl) 2018;235(8):2267–2274. PubMed
Florin T.H.J., et al. The sulfate content of foods and beverages. J. Food Compos. Anal. 1993;6(2):140–151.
Kumar A., et al. S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. J. Clin. Invest. 2017;127(12):4365–4378. PubMed PMC
Mills P.B., et al. Urinary AASA excretion is elevated in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency. J. Inherit. Metab. Dis. 2012;35(6):1031–1036. PubMed
Struys E.A., et al. Pyridoxine-dependent epilepsy with elevated urinary alpha-amino adipic semialdehyde in molybdenum cofactor deficiency. Pediatrics. 2012;130(6):e1716–e1719. PubMed
Footitt E.J., et al. Pyridoxal 5'-phosphate in cerebrospinal fluid; factors affecting concentration. J. Inherit. Metab. Dis. 2011;34(2):529–538. PubMed
Kücükgöze G., et al. Direct comparison of the enzymatic characteristics and superoxide production of the four aldehyde oxidase enzymes present in mouse. Drug Metabol. Dispos. 2017;45(8):947–955. PubMed
Kraus J.P., et al. Cystathionine gamma-lyase: clinical, metabolic, genetic, and structural studies. Mol. Genet. Metabol. 2009;97(4):250–259. PubMed PMC
Landry A.P., Ballou D.P., Banerjee R. Hydrogen sulfide oxidation by sulfide quinone oxidoreductase. Chembiochem. 2021;22(6):949–960. PubMed PMC
Tiranti V., et al. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am. J. Hum. Genet. 2004;74(2):239–252. PubMed PMC
Tiranti V., et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat. Med. 2009;15(2):200–205. PubMed
Doka E., et al. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci. Adv. 2016;2(1) PubMed PMC
Atwal P.S., Scaglia F. Molybdenum cofactor deficiency. Mol. Genet. Metabol. 2016;117(1):1–4. PubMed
Claerhout H., et al. Isolated sulfite oxidase deficiency. J. Inherit. Metab. Dis. 2018;41(1):101–108. PubMed
Ueland P.M., et al. Direct and functional biomarkers of vitamin B6 status. Annu. Rev. Nutr. 2015;35:33–70. PubMed PMC
Dionisi-Vici C., et al. Liver transplant in ethylmalonic encephalopathy: a new treatment for an otherwise fatal disease. Brain. 2016;139(Pt 4):1045–1051. PubMed
Tam A., et al. Improved clinical outcome following liver transplant in patients with ethylmalonic encephalopathy. Am. J. Med. Genet. 2019;179(6):1015–1019. PubMed PMC
Schwahn B.C., et al. Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: a prospective cohort study. Lancet. 2015;386(10007):1955–1963. PubMed
Glanzel N.M., et al. The mitochondrial-targeted reactive species scavenger JP4-039 prevents sulfite-induced alterations in antioxidant defenses, energy transfer, and cell death signaling in striatum of rats. J. Inherit. Metab. Dis. 2021;44(2):481–491. PubMed PMC
Assessment of urinary 6-oxo-pipecolic acid as a biomarker for ALDH7A1 deficiency
Recent therapeutic approaches to cystathionine beta-synthase-deficient homocystinuria