Assessment of urinary 6-oxo-pipecolic acid as a biomarker for ALDH7A1 deficiency
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R21HD104952
Eunice Kennedy Shriver National Institute of Child Health & Human Development
R21 HD104952
NICHD NIH HHS - United States
AZV NU23-07-00383
Ministry of Health of the Czech Republic
RVO-VFN64165
Ministry of Health of the Czech Republic
Charles University
PubMed
39038845
PubMed Central
PMC11670438
DOI
10.1002/jimd.12783
Knihovny.cz E-zdroje
- Klíčová slova
- 6‐oxo‐pipecolic acid, ALDH7A1 deficiency, aminoadipic semialdehyde, piperideine‐6‐carboxylate, pyridoxine‐dependent epilepsy,
- MeSH
- aldehyddehydrogenasa nedostatek genetika MeSH
- biologické markery * moč MeSH
- dítě MeSH
- epilepsie moč MeSH
- kojenec MeSH
- kyselina 2-aminoadipová moč analogy a deriváty MeSH
- kyseliny pipekolové * moč MeSH
- lidé MeSH
- lysin nedostatek moč MeSH
- mitochondriální aldehyddehydrogenasa nedostatek genetika MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- pyridoxin nedostatek moč terapeutické užití MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- aldehyddehydrogenasa MeSH
- ALDH7A1 protein, human MeSH Prohlížeč
- biologické markery * MeSH
- kyselina 2-aminoadipová MeSH
- kyseliny pipekolové * MeSH
- lysin MeSH
- mitochondriální aldehyddehydrogenasa MeSH
- pipecolic acid MeSH Prohlížeč
- pyridoxin MeSH
ALDH7A1 deficiency is an epileptic encephalopathy whose seizures respond to treatment with supraphysiological doses of pyridoxine. It arises as a result of damaging variants in ALDH7A1, a gene in the lysine catabolism pathway. α-Aminoadipic semialdehyde (α-AASA) and Δ1-piperideine-6-carboxylate (P6C), which accumulate because of the block in the lysine pathway, are diagnostic biomarkers for this disorder. Recently, it has been reported that 6-oxo-pipecolic acid (6-oxo-PIP) also accumulates in the urine, CSF and plasma of ALDH7A1-deficient individuals and that, given its improved stability, it may be a more suitable biomarker for this disorder. This study measured 6-oxo-PIP in urine from a cohort of 30 patients where α-AASA was elevated and showed that it was above the normal range in all those above 6 months of age. However, 6-oxo-PIP levels were within the normal range in 33% of the patients below 6 months of age. Levels increased with age and correlated with a decrease in α-AASA levels. Longitudinal analysis of urine samples from ALDH7A1-deficient patients who were on a lysine restricted diet whilst receiving supraphysiological doses of pyridoxine showed that levels of 6-oxo-PIP remained elevated whilst α-AASA decreased. Similar to α-AASA, we found that elevated urinary excretion of 6-oxo-PIP can also occur in individuals with molybdenum cofactor deficiency. This study demonstrates that urinary 6-oxo-PIP may not be a suitable biomarker for ALDH7A1 deficiency in neonates. However, further studies are needed to understand the biochemistry leading to its accumulation and its potential long-term side effects.
Department of Metabolic Paediatrics Great Ormond Street Hospital London UK
Laboratory for Molecular Diagnosis Center for Human Genetics KU Leuven Leuven Belgium
School of Pharmacy Department of Pharmaceutical Sciences University of Colorado Aurora Colorado USA
Zobrazit více v PubMed
Mills PB, Struys E, Jakobs C, et al. Mutations in antiquitin in individuals with pyridoxine‐dependent seizures. Nat Med. 2006;12(3):307‐309. PubMed
Bok LA, Halbertsma FJ, Houterman S, et al. Long‐term outcome in pyridoxine‐dependent epilepsy. Dev Med Child Neurol. 2012;54(9):849‐854. PubMed
Coughlin CR II, Tseng LA, Abdenur JE, et al. Consensus guidelines for the diagnosis and management of pyridoxine‐dependent epilepsy due to alpha‐aminoadipic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis. 2021;44(1):178‐192. PubMed
Mills PB, Footitt EJ, Ceyhan S, et al. Urinary AASA excretion is elevated in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency. J Inherit Metab Dis. 2012;35(6):1031‐1036. PubMed
Struys EA, Nota B, Bakkali A, Al Shahwan S, Salomons GS, Tabarki B. Pyridoxine‐dependent epilepsy with elevated urinary alpha‐amino adipic semialdehyde in molybdenum cofactor deficiency. Pediatrics. 2012;130(6):e1716‐e1719. PubMed
Kozich V, Schwahn BC, Sokolova J, et al. Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H(2)S homeostasis. Redox Biol. 2022;58:102517. PubMed PMC
Struys EA, Bok LA, Emal D, Houterman S, Willemsen MA, Jakobs C. The measurement of urinary delta(1)‐piperideine‐6‐carboxylate, the alter ego of alpha‐aminoadipic semialdehyde, in antiquitin deficiency. J Inherit Metab Dis. 2012;35(5):909‐916. PubMed PMC
Plecko B, Paul K, Paschke E, et al. Biochemical and molecular characterization of 18 patients with pyridoxine‐dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene. Hum Mutat. 2007;28(1):19‐26. PubMed
Jung S, Tran NTB, Gospe SM, Hahn SH. Preliminary investigation of the use of newborn dried blood spots for screening pyridoxine‐dependent epilepsy by LC‐MS/MS. Mol Genet Metab. 2013;110(3):237‐240. PubMed
Xue J, Wang J, Gong P, et al. Simultaneous quantification of alpha‐aminoadipic semialdehyde, piperideine‐6‐carboxylate, pipecolic acid and alpha‐aminoadipic acid in pyridoxine‐dependent epilepsy. Sci Rep. 2019;9(1):11371. PubMed PMC
Kuhara T, Akiyama T, Ohse M, et al. Identification of new biomarkers of pyridoxine‐dependent epilepsy by GC/MS‐based urine metabolomics. Anal Biochem. 2020;604:113739. PubMed
Wempe MF, Kumar A, Kumar V, et al. Identification of a novel biomarker for pyridoxine‐dependent epilepsy: implications for newborn screening. J Inherit Metab Dis. 2019;42(3):565‐574. PubMed
Engelke UF, van Outersterp RE, Merx J, et al. Untargeted metabolomics and infrared ion spectroscopy identify biomarkers for pyridoxine‐dependent epilepsy. J Clin Invest. 2021;131(15):e148272. PubMed PMC
Bohm HO, Yazdani M, Sandas EM, et al. Global metabolomics discovers two novel biomarkers in pyridoxine‐dependent epilepsy caused by ALDH7A1 deficiency. Int J Mol Sci. 2022;23(24):16061. PubMed PMC
Mills PB, Footitt EJ, Mills KA, et al. Genotypic and phenotypic spectrum of pyridoxine‐dependent epilepsy (ALDH7A1 deficiency). Brain. 2010;133(7):2148‐2159. PubMed PMC
Henriksen CM, Nielsen J, Villadsen J. Cyclization of alpha‐aminoadipic acid into the the delta‐lactam 6‐oxo‐piperidine‐2‐carboxylic acid by Penicillium chrysogenum . J Antibiot (Tokyo). 1998;51(2):99‐106. PubMed
Estevez M, Luna C. Dietary protein oxidation: a silent threat to human health? Crit Rev Food Sci Nutr. 2017;57(17):3781‐3793. PubMed
Li KJ, Borresen EC, Jenkins‐Puccetti N, Luckasen G, Ryan EP. Navy bean and rice bran intake alters the plasma metabolome of children at risk for cardiovascular disease. Front Nutr. 2017;4:71. PubMed PMC
Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe. 2022;3(12):e969‐e983. PubMed
Brundidge SP, Gaeta FC, Hook DJ, Sapino C Jr, Elander RP, Morin RB. Association of 6‐oxo‐piperidine‐2‐carboxylic acid with penicillin V. Production on Penicillium chrysogenum fermentations. J Antibiot (Tokyo). 1980;33(11):1348‐1351. PubMed
Bonham JR, Rattenbury JM, Meeks A, Pollitt RJ. Pyroglutamicaciduria from vigabatrin. Lancet. 1989;1(8652):1452‐1453. PubMed
Myall K, Sidney J, Marsh A. Mind the gap! An unusual metabolic acidosis. Lancet. 2011;377(9764):526. PubMed
van der Werf P, Griffith OW, Meister A. 5‐oxo‐L‐prolinase (L‐pyroglutamate hydrolase). Purification and catalytic properties. J Biol Chem. 1975;250(17):6686‐6692. PubMed
Danhauser K, Sauer SW, Haack TB, et al. DHTKD1 mutations cause 2‐aminoadipic and 2‐oxoadipic aciduria. Am J Hum Genet. 2012;91(6):1082‐1087. PubMed PMC
Wang C, Calcutt MW, Ferguson JF. Knock‐out of DHTKD1 alters mitochondrial respiration and function, and may represent a novel pathway in cardiometabolic disease risk. Front Endocrinol. 2021;12:710698. PubMed PMC
Devi S, Nongkhlaw B, Limesh M, et al. Acyl ethanolamides in diabetes and diabetic nephropathy: novel targets from untargeted plasma metabolomic profiles of south Asian Indian men. Sci Rep. 2019;9(1):18117. PubMed PMC
Bhatt DK, Gaedigk A, Pearce RE, Leeder JS, Prasad B. Age‐dependent protein abundance of cytosolic alcohol and aldehyde dehydrogenases in human liver. Drug Metab Dispos. 2017;45(9):1044‐1048. PubMed PMC
Schmidt Z, Murthy G, Ennis M, Stockler‐Ipsiroglu S, Elango R. Impact of enteral arginine supplementation on lysine metabolism in humans: a proof‐of‐concept for lysine‐related inborn errors of metabolism. J Inherit Metab Dis. 2020;43(5):952‐959. PubMed
Crowther LM, Poms M, Zandl‐Lang M, et al. Metabolomics analysis of antiquitin deficiency in cultured human cells and plasma: relevance to pyridoxine‐dependent epilepsy. J Inherit Metab Dis. 2023;46(1):129‐142. PubMed PMC
Yazdani M, Elgstoen KBP. Is oxidative stress an overlooked player in pyridoxine‐dependent epilepsy? A focused review. Seizure. 2021;91:369‐373. PubMed
Brocker C, Cantore M, Failli P, Vasiliou V. Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity. Chem Biol Interact. 2011;191(1–3):269‐277. PubMed PMC
Al‐Shekaili HH, Petkau TL, Pena I, et al. A novel mouse model for pyridoxine‐dependent epilepsy due to antiquitin deficiency. Hum Mol Genet. 2020;29(19):3266‐3284. PubMed PMC