Dietary sulfur amino acid restriction in humans with overweight and obesity: Evidence of an altered plasma and urine sulfurome, and a novel metabolic signature that correlates with loss of fat mass and adipose tissue gene expression
Language English Country Netherlands Media print-electronic
Document type Journal Article, Randomized Controlled Trial
PubMed
38776754
PubMed Central
PMC11163171
DOI
10.1016/j.redox.2024.103192
PII: S2213-2317(24)00170-8
Knihovny.cz E-resources
- Keywords
- Adipose tissue, Cysteine, Gene expression, Hydrogen sulfide, Methionine, Randomized controlled trial, Sulfur amino acid restriction, Transsulfuration,
- MeSH
- Amino Acids, Sulfur * metabolism blood MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Metabolome MeSH
- Overweight * metabolism genetics MeSH
- Obesity * metabolism genetics MeSH
- Gene Expression Regulation MeSH
- Adipose Tissue * metabolism MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Amino Acids, Sulfur * MeSH
BACKGROUND: In animals, dietary sulfur amino acid restriction (SAAR) improves metabolic health, possibly mediated by altering sulfur amino acid metabolism and enhanced anti-obesogenic processes in adipose tissue. AIM: To assess the effects of SAAR over time on the plasma and urine SAA-related metabolites (sulfurome) in humans with overweight and obesity, and explore whether such changes were associated with body weight, body fat and adipose tissue gene expression. METHODS: Fifty-nine subjects were randomly allocated to SAAR (∼2 g SAA, n = 31) or a control diet (∼5.6 g SAA, n = 28) consisting of plant-based whole-foods and supplemented with capsules to titrate contents of SAA. Sulfurome metabolites in plasma and urine at baseline, 4 and 8 weeks were measured using HPLC and LC-MS/MS. mRNA-sequencing of subcutaneous white adipose tissue (scWAT) was performed to assess changes in gene expression. Data were analyzed with mixed model regression. Principal component analyses (PCA) were performed on the sulfurome data to identify potential signatures characterizing the response to SAAR. RESULTS: SAAR led to marked decrease of the main urinary excretion product sulfate (p < 0.001) and plasma and/or 24-h urine concentrations of cystathionine, sulfite, thiosulfate, H2S, hypotaurine and taurine. PCA revealed a distinct metabolic signature related to decreased transsulfuration and H2S catabolism that predicted greater weight loss and android fat mass loss in SAAR vs. controls (all pinteraction < 0.05). This signature correlated positively with scWAT expression of genes in the tricarboxylic acid cycle, electron transport and β-oxidation (FDR = 0.02). CONCLUSION: SAAR leads to distinct alterations of the plasma and urine sulfurome in humans, and predicted increased loss of weight and android fat mass, and adipose tissue lipolytic gene expression in scWAT. Our data suggest that SAA are linked to obesogenic processes and that SAAR may be useful for obesity and related disorders. TRIAL IDENTIFIER: https://clinicaltrials.gov/study/NCT04701346.
See more in PubMed
Brosnan J.T., Brosnan M.E. The sulfur-containing amino acids: an overview. J. Nutr. 2006;136:1636S. doi: 10.1093/jn/136.6.1636S. 40S. PubMed DOI
WHO/FAO/UNU Joint WHO/FAO/UNU Expert Consultation: protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser. 2007:1–265. PubMed
IOM Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and. Amino Acids (Macronutrients) 2005;1:1331. doi: 10.17226/10490. PubMed DOI
Dong Z., Gao X., Chinchilli V.M., Sinha R., Muscat J., Winkels R., et al. Association of dietary sulfur amino acid intake with mortality from diabetes and other causes. Eur. J. Nutr. 2022;61:289–298. doi: 10.1007/s00394-021-02641-w. PubMed DOI
Dong Z., Gao X., Chinchilli V.M., Sinha R., Muscat J., Winkels R.M., et al. Association of sulfur amino acid consumption with cardiometabolic risk factors: cross-sectional findings from NHANES III. EClinicalMedicine. 2020;19 doi: 10.1016/j.eclinm.2019.100248. PubMed DOI PMC
Dong Z., Richie J.P., Gao X., Al-Shaar L., Nichenametla S.N., Shen B., et al. Cumulative consumption of sulfur amino acids and risk of diabetes: a prospective cohort study. J. Nutr. 2022 doi: 10.1093/JN/NXAC172. PubMed DOI
Berryman C.E., Cheung S.N., Collette E.M., Pasiakos S.M., Lieberman H.R., Fulgoni V.L. Amino acid intake and conformance with the dietary reference intakes in the United States: analysis of the national health and nutrition examination Survey, 2001–2018. J. Nutr. 2023 doi: 10.1016/J.TJNUT.2023.01.012. PubMed DOI
Tore E.C., Eussen S.J.P.M., Bastani N.E., Dagnelie P.C., Elshorbagy A.K., Grootswagers P., et al. The associations of habitual intake of sulfur amino acids, proteins and diet quality with plasma sulfur amino acid concentrations: the maastricht study. J. Nutr. 2023 doi: 10.1016/J.TJNUT.2023.05.008. PubMed DOI
Elshorbagy A.K., Smith A.D., Kozich V., Refsum H. Cysteine and obesity. Obesity. 2012;20:473–481. doi: 10.1038/oby.2011.93. PubMed DOI
Elshorbagy A.K., Valdivia-Garcia M., Graham I.M., Palma Reis R., Sales Luis A., Smith A.D., et al. The association of fasting plasma sulfur-containing compounds with BMI, serum lipids and apolipoproteins. Nutr. Metabol. Cardiovasc. Dis. 2012;22:1031–1038. doi: 10.1016/J.NUMECD.2011.01.008. PubMed DOI
Elshorbagy A.K., Nurk E., Gjesdal C.G., Tell G.S., Ueland P.M., Nygård O., et al. Homocysteine, cysteine, and body composition in the Hordaland Homocysteine Study: does cysteine link amino acid and lipid metabolism? Am. J. Clin. Nutr. 2008;88:738–746. doi: 10.1093/ajcn/88.3.738. PubMed DOI
Elshorbagy A., Bastani N.E., Lee-Odegard S., Ovrebo B., Haj-Yasein N., Svendsen K., et al. The association of fasting plasma thiol fractions with body fat compartments, biomarker profile, and adipose tissue gene expression. Amino Acids. 2023;55:313–323. doi: 10.1007/s00726-022-03229-2. PubMed DOI PMC
Tore E.C., Elshorbagy A.K., Bakers F.C.H., Brouwers M.C.G.J., Dagnelie P.C., Eussen S.J.P.M., et al. Associations between plasma sulfur amino acids and specific fat depots in two independent cohorts: CODAM and the Maastricht Study. Eur. J. Nutr. 2022 doi: 10.1007/s00394-022-03041-4. PubMed DOI PMC
Elshorbagy A.K., Turner C., Bastani N., Refsum H., Kwok T. The association of serum sulfur amino acids and related metabolites with incident diabetes: a prospective cohort study. Eur. J. Nutr. 2022:1–13. doi: 10.1007/S00394-022-02872-5. PubMed DOI
Elshorbagy A.K., Valdivia-Garcia M., Refsum H., Butte N. The association of cysteine with obesity, inflammatory cytokines and insulin resistance in Hispanic children and adolescents. PLoS One. 2012;7 doi: 10.1371/journal.pone.0044166. PubMed DOI PMC
Orentreich N., Matias J.R., DeFelice A., Zimmerman J.A. Low methionine ingestion by rats extends life span. J. Nutr. 1993;123:269–274. doi: 10.1093/jn/123.2.269. PubMed DOI
Malloy V.L., Krajcik R.A., Bailey S.J., Hristopoulos G., Plummer J.D., Orentreich N. Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell. 2006;5:305–314. doi: 10.1111/j.1474-9726.2006.00220.x. PubMed DOI
Malloy V.L., Perrone C.E., Mattocks D.A.L., Ables G.P., Caliendo N.S., Orentreich D.S., et al. Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice. Metab. Clin. Exp. 2013;62:1651–1661. doi: 10.1016/j.metabol.2013.06.012. PubMed DOI
Ren B., Wang L., Shi L., Jin X., Liu Y., Liu R.H., et al. Methionine restriction alleviates age-associated cognitive decline via fibroblast growth factor 21. Redox Biol. 2021;41 doi: 10.1016/J.REDOX.2021.101940. PubMed DOI PMC
Gao X., Sanderson S.M., Dai Z., Reid M.A., Cooper D.E., Lu M., et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572:397–401. doi: 10.1038/s41586-019-1437-3. PubMed DOI PMC
Elshorbagy A.K. Body composition in gene knockouts of sulfur amino acid-metabolizing enzymes. Mamm. Genome. 2014 doi: 10.1007/s00335-014-9527-x. PubMed DOI
Yang Y., Wang Y., Sun J., Zhang J., Guo H., Shi Y., et al. Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H2S production. Food Funct. 2019;10:61–77. doi: 10.1039/C8FO01629A. PubMed DOI
Hine C., Mitchell J.R. Calorie restriction and methionine restriction in control of endogenous hydrogen sulfide production by the transsulfuration pathway. Exp. Gerontol. 2015;68:26–32. doi: 10.1016/J.EXGER.2014.12.010. PubMed DOI PMC
Haj-Yasein N.N., Berg O., Jerneren F., Refsum H., Nebb H.I., Dalen K.T. Cysteine deprivation prevents induction of peroxisome proliferator-activated receptor gamma-2 and adipose differentiation of 3T3-L1 cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:623–635. doi: 10.1016/j.bbalip.2017.02.009. PubMed DOI
Hine C., Harputlugil E., Zhang Y., Ruckenstuhl C., Lee Byung C., Brace L., et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell. 2015;160:132–144. doi: 10.1016/J.CELL.2014.11.048. PubMed DOI PMC
Niewiadomski J., Zhou J.Q., Roman H.B., Liu X., Hirschberger L.L., Locasale J.W., et al. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice. Ann. N. Y. Acad. Sci. 2016;1363:99–115. doi: 10.1111/nyas.13021. PubMed DOI PMC
Roman H.B., Hirschberger L.L., Krijt J., Valli A., Kožich V., Stipanuk M.H. The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS− production and evidence of pancreatic and lung toxicity. Antioxidants Redox Signal. 2013;19:1321. doi: 10.1089/ARS.2012.5010. PubMed DOI PMC
Krijt J., Sokolová J., Šilhavý J., Mlejnek P., Kubovčiak J., Liška F., et al. High cysteine diet reduces insulin resistance in SHR-CRP rats. Physiol. Res. 2021;70:687–700. doi: 10.33549/PHYSIOLRES.934736. PubMed DOI PMC
Olsen T., Stolt E., Ovrebo B., Elshorbagy A., Tore E.C., Lee-Odegard S., et al. Dietary sulfur amino acid restriction in humans with overweight and obesity: a translational randomized controlled trial. J. Transl. Med. 2024;22:40. doi: 10.1186/s12967-023-04833-w. PubMed DOI PMC
Stolt E., Olsen T., Elshorbagy A., Kožich V., van Greevenbroek M., Øvrebø B., et al. Sulfur amino acid restriction, energy metabolism and obesity: a study protocol of an 8-week randomized controlled dietary intervention with whole foods and amino acid supplements. J. Transl. Med. 2021;19:153. doi: 10.1186/s12967-021-02824-3. PubMed DOI PMC
Recommendations N.N. Nordic Council of Ministers; Copenhagen, Denmark: 2014. Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity; p. 627.
Kozich V., Ditroi T., Sokolova J., Krizkova M., Krijt J., Jesina P., et al. Metabolism of sulfur compounds in homocystinurias. Br. J. Pharmacol. 2019;176:594–606. doi: 10.1111/bph.14523. PubMed DOI PMC
Krijt J., Vackova M., Kozich V. Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2-carboxyethyl)phosphine as reductant compared with tri-n-butylphosphine. Clin. Chem. 2001;47:1821–1828. PubMed
Kozich V., Krijt J., Sokolova J., Melenovska P., Jesina P., Vozdek R., et al. Thioethers as markers of hydrogen sulfide production in homocystinurias. Biochimie. 2016;126:14–20. doi: 10.1016/j.biochi.2016.01.001. PubMed DOI
Krijt J., Duta A., Kozich V. Determination of S-Adenosylmethionine and S-Adenosylhomocysteine by LC-MS/MS and evaluation of their stability in mice tissues. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2009;877:2061–2066. doi: 10.1016/j.jchromb.2009.05.039. PubMed DOI PMC
Sulfate in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality. 2004.
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Altman D.G. Chapman & Hall/CRC; Boca Raton, Fla: 1999. Practical Statistics for Medical Research.
Twisk J.W.R. In: Analysis of Data from Randomized Controlled Trials: A Practical Guide. Twisk J.W.R., editor. Springer International Publishing; 2021. Analysis of RCT data with more than one follow-up measurement; pp. 15–47.
Stipanuk M.H. Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J. Nutr. 2020;150:2494S. doi: 10.1093/jn/nxaa094. 505S. PubMed DOI
Stipanuk M.H., Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metab. Dis. 2011;34:17–32. doi: 10.1007/s10545-009-9006-9. PubMed DOI PMC
Stipanuk M.H., Dominy J.E., Lee J.I., Coloso R.M. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J. Nutr. 2006;136 doi: 10.1093/JN/136.6.1652S. PubMed DOI
Simmons C.R., Hirschberger L.L., Machi M.S., Stipanuk M.H. Expression, purification, and kinetic characterization of recombinant rat cysteine dioxygenase, a non-heme metalloenzyme necessary for regulation of cellular cysteine levels. Protein Expr. Purif. 2006;47:74–81. doi: 10.1016/J.PEP.2005.10.025. PubMed DOI
Laidlaw S.A., Shultz T.D., Cecchino J.T., Kopple J.D. Plasma and urine taurine levels in vegans. Am. J. Clin. Nutr. 1988;47:660–663. doi: 10.1093/AJCN/47.4.660. PubMed DOI
Olsen T., Øvrebø B., Turner C., Bastani N.E., Refsum H., Vinknes K.J. Combining dietary sulfur amino acid restriction with polyunsaturated fatty acid intake in humans: a randomized controlled pilot trial. Nutrients. 2018;10 doi: 10.3390/nu10121822. PubMed DOI PMC
Olsen T., Ovrebo B., Haj-Yasein N., Lee S., Svendsen K., Hjorth M., et al. Effects of dietary methionine and cysteine restriction on plasma biomarkers, serum fibroblast growth factor 21, and adipose tissue gene expression in women with overweight or obesity: a double-blind randomized controlled pilot study. J. Transl. Med. 2020;18:122. doi: 10.1186/s12967-020-02288-x. PubMed DOI PMC
Plummer J.D., Johnson J.E. Extension of cellular lifespan by methionine restriction involves alterations in central carbon metabolism and is mitophagy-dependent. Front. Cell Dev. Biol. 2019;7 doi: 10.3389/FCELL.2019.00301/FULL. PubMed DOI PMC
Jouandin P., Marelja Z., Shih Y.H., Parkhitko A.A., Dambowsky M., Asara J.M., et al. Lysosomal cystine mobilization shapes the response of TORC1 and tissue growth to fasting. Science. 2022;375 doi: 10.1126/science.abc4203. PubMed DOI PMC
Elshorbagy A.K., Valdivia-Garcia M., Refsum H., Smith A.D., Mattocks D.A.L., Perrone C.E. Sulfur amino acids in methionine-restricted rats: hyperhomocysteinemia. Nutrition. 2010;26:1201–1204. doi: 10.1016/J.NUT.2009.09.017. PubMed DOI
Ables G.P., Ouattara A., Hampton T.G., Cooke D., Perodin F., Augie I., et al. Dietary methionine restriction in mice elicits an adaptive cardiovascular response to hyperhomocysteinemia. Sci. Rep. 2015;5:1–10. doi: 10.1038/srep08886. PubMed DOI PMC
Fang H., Stone K.P., Wanders D., Forney L.A., Gettys T.W. The origins, evolution, and future of dietary methionine restriction. Annu. Rev. Nutr. 2022;42 doi: 10.1146/ANNUREV-NUTR-062320-111849. PubMed DOI PMC
Ables G.P., Hens J.R., Nichenametla S.N. Methionine restriction beyond life-span extension. Ann. N. Y. Acad. Sci. 2016;1363:68–79. doi: 10.1111/nyas.13014. PubMed DOI
Dong Z., Sinha R., Richie Jr. JP. Disease prevention and delayed aging by dietary sulfur amino acid restriction: translational implications. Ann. N. Y. Acad. Sci. 2018;1418:44–55. doi: 10.1111/nyas.13584. PubMed DOI
Ables G.P., Johnson J.E. Pleiotropic responses to methionine restriction. Exp. Gerontol. 2017;94:83–88. doi: 10.1016/j.exger.2017.01.012. PubMed DOI
Tamanna N., Mayengbam S., House J.D., Treberg J.R. Methionine restriction leads to hyperhomocysteinemia and alters hepatic H2S production capacity in Fischer-344 rats. Mech. Ageing Dev. 2018;176:9–18. doi: 10.1016/J.MAD.2018.10.004. PubMed DOI
Jeitner T.M., Azcona J.A., Ables G.P., Cooke D., Horowitz M.C., Singh P., et al. Cystine rather than cysteine is the preferred substrate for β - elimination by cystathionine γ - lyase : implications for dietary methionine restriction. GeroScience. 2023 doi: 10.1007/s11357-023-00788-4. PubMed DOI PMC
Ditroi T., Nagy A., Martinelli D., Rosta A., Kozich V., Nagy P. Comprehensive analysis of how experimental parameters affect H(2)S measurements by the monobromobimane method. Free Radic. Biol. Med. 2019;136:146–158. doi: 10.1016/j.freeradbiomed.2019.04.006. PubMed DOI
Olson K.R., DeLeon E.R., Liu F. Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide. 2014;41:11–26. doi: 10.1016/j.niox.2014.05.012. PubMed DOI
Nagy P., Palinkas Z., Nagy A., Budai B., Toth I., Vasas A. Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim. Biophys. Acta. 2014;1840:876–891. doi: 10.1016/j.bbagen.2013.05.037. PubMed DOI
Tsai C.Y., Peh M.T., Feng W., Dymock B.W., Moore P.K. Hydrogen sulfide promotes adipogenesis in 3T3L1 cells. PLoS One. 2015;10 doi: 10.1371/journal.pone.0119511. PubMed DOI PMC
Comas F., Latorre J., Ortega F., Arnoriaga Rodríguez M., Lluch A., Sabater M., et al. Morbidly obese subjects show increased serum sulfide in proportion to fat mass. Int. J. Obes. 2020;45:415–426. doi: 10.1038/s41366-020-00696-z. PubMed DOI
Bełtowski J., Jamroz-Wiśniewska A. Hydrogen sulfide in the adipose tissue—physiology, pathology and a target for pharmacotherapy. Molecules. 2016;22:63. doi: 10.3390/molecules22010063. PubMed DOI PMC
Flori L., Piragine E., Calderone V., Testai L. Role of hydrogen sulfide in the regulation of lipid metabolism: implications on cardiovascular health. Life Sci. 2024;341 doi: 10.1016/j.lfs.2024.122491. PubMed DOI
Elshorbagy A.K., Refsum H., Smith A.D., Graham I.M. The association of plasma cysteine and gamma-glutamyltransferase with BMI and obesity. Obesity. 2009;17:1435–1440. doi: 10.1038/oby.2008.671. oby2008671 [pii] PubMed DOI
Elkafrawy H., Mehanna R., Ali F., Barghash A., Dessouky I., Jernerén F., et al. Extracellular cystine influences human preadipocyte differentiation and correlates with fat mass in healthy adults. Amino Acids. 2021:1–12. doi: 10.1007/s00726-021-03071-y. PubMed DOI PMC
Elshorbagy A., Bastani N.E., Lee-Ødegård S., Øvrebø B., Haj-Yasein N., Svendsen K., et al. The association of fasting plasma thiol fractions with body fat compartments, biomarker profile, and adipose tissue gene expression. Amino Acids. 2022 doi: 10.1007/s00726-022-03229-2. PubMed DOI PMC
Piro M.C., Tesauro M., Lena A.M., Gentileschi P., Sica G., Rodia G., et al. Free-amino acid metabolic profiling of visceral adipose tissue from obese subjects. Amino Acids. 2020;52:1125–1137. doi: 10.1007/s00726-020-02877-6. PubMed DOI
Hasek B.E., Boudreau A., Shin J., Feng D., Hulver M., Van N.T., et al. Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes. 2013;62:3362–3372. doi: 10.2337/db13-0501. PubMed DOI PMC
ClinicalTrials.gov
NCT04701346