• This record comes from PubMed

Dietary sulfur amino acid restriction in humans with overweight and obesity: Evidence of an altered plasma and urine sulfurome, and a novel metabolic signature that correlates with loss of fat mass and adipose tissue gene expression

. 2024 Jul ; 73 () : 103192. [epub] 20240517

Language English Country Netherlands Media print-electronic

Document type Journal Article, Randomized Controlled Trial

Links

PubMed 38776754
PubMed Central PMC11163171
DOI 10.1016/j.redox.2024.103192
PII: S2213-2317(24)00170-8
Knihovny.cz E-resources

BACKGROUND: In animals, dietary sulfur amino acid restriction (SAAR) improves metabolic health, possibly mediated by altering sulfur amino acid metabolism and enhanced anti-obesogenic processes in adipose tissue. AIM: To assess the effects of SAAR over time on the plasma and urine SAA-related metabolites (sulfurome) in humans with overweight and obesity, and explore whether such changes were associated with body weight, body fat and adipose tissue gene expression. METHODS: Fifty-nine subjects were randomly allocated to SAAR (∼2 g SAA, n = 31) or a control diet (∼5.6 g SAA, n = 28) consisting of plant-based whole-foods and supplemented with capsules to titrate contents of SAA. Sulfurome metabolites in plasma and urine at baseline, 4 and 8 weeks were measured using HPLC and LC-MS/MS. mRNA-sequencing of subcutaneous white adipose tissue (scWAT) was performed to assess changes in gene expression. Data were analyzed with mixed model regression. Principal component analyses (PCA) were performed on the sulfurome data to identify potential signatures characterizing the response to SAAR. RESULTS: SAAR led to marked decrease of the main urinary excretion product sulfate (p < 0.001) and plasma and/or 24-h urine concentrations of cystathionine, sulfite, thiosulfate, H2S, hypotaurine and taurine. PCA revealed a distinct metabolic signature related to decreased transsulfuration and H2S catabolism that predicted greater weight loss and android fat mass loss in SAAR vs. controls (all pinteraction < 0.05). This signature correlated positively with scWAT expression of genes in the tricarboxylic acid cycle, electron transport and β-oxidation (FDR = 0.02). CONCLUSION: SAAR leads to distinct alterations of the plasma and urine sulfurome in humans, and predicted increased loss of weight and android fat mass, and adipose tissue lipolytic gene expression in scWAT. Our data suggest that SAA are linked to obesogenic processes and that SAAR may be useful for obesity and related disorders. TRIAL IDENTIFIER: https://clinicaltrials.gov/study/NCT04701346.

Department of Biostatistics Institute of Basic Medical Sciences University of Oslo Postboks 1122 Blindern 0317 Oslo Norway

Department of Endocrinology Morbid Obesity and Preventive Medicine Institute of Clinical Medicine Faculty of Medicine University of Oslo Postboks 4959 Nydalen OUS HF Aker sykehus 0424 Oslo Norway

Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory National Institute of Oncology Ráth György u 7 9 1122 Budapest Hungary

Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory National Institute of Oncology Ráth György u 7 9 1122 Budapest Hungary; Department of Anatomy and Histology HUN REN UVMB Laboratory of Redox Biology Research Group University of Veterinary Medicine 1078 Budapest Hungary; Chemistry Institute University of Debrecen 4012 Debrecen Hungary

Department of Nutrition Institute of Basic Medical Sciences Faculty of Medicine University of Oslo Postboks 1046 Blindern 0317 Oslo Norway

Department of Nutrition Institute of Basic Medical Sciences Faculty of Medicine University of Oslo Postboks 1046 Blindern 0317 Oslo Norway; Department of Food Safety Norwegian Institute of Public Health Postboks 222 Skøyen 0213 Oslo Norway

Department of Nutrition Institute of Basic Medical Sciences Faculty of Medicine University of Oslo Postboks 1046 Blindern 0317 Oslo Norway; Department of Pharmacology University of Oxford Mansfield Rd Oxford OX1 3QT UK

Department of Nutrition Institute of Basic Medical Sciences Faculty of Medicine University of Oslo Postboks 1046 Blindern 0317 Oslo Norway; The Lipid Clinic Department of Endocrinology Morbid Obesity and Preventive Medicine Oslo University Hospital Postboks 4959 Nydalen OUS HF Aker sykehus 0424 Oslo Norway

Department of Pathology Oslo University Hospital Rikshospitalet Postboks 45980 Nydalen OUS HF Rikshospitalet 0424 Oslo Norway

Department of Pediatrics and Inherited Metabolic Disorders Charles University 1st Faculty of Medicine and General University Hospital Ke Karlovu 2 128 00 Prague Czech Republic

Department of Physiology Faculty of Medicine University of Alexandria Chamblion street Qesm Al Attarin Alexandria 5372066 Egypt; Department of Pharmacology University of Oxford Mansfield Rd Oxford OX1 3QT UK

See more in PubMed

Brosnan J.T., Brosnan M.E. The sulfur-containing amino acids: an overview. J. Nutr. 2006;136:1636S. doi: 10.1093/jn/136.6.1636S. 40S. PubMed DOI

WHO/FAO/UNU Joint WHO/FAO/UNU Expert Consultation: protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser. 2007:1–265. PubMed

IOM Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and. Amino Acids (Macronutrients) 2005;1:1331. doi: 10.17226/10490. PubMed DOI

Dong Z., Gao X., Chinchilli V.M., Sinha R., Muscat J., Winkels R., et al. Association of dietary sulfur amino acid intake with mortality from diabetes and other causes. Eur. J. Nutr. 2022;61:289–298. doi: 10.1007/s00394-021-02641-w. PubMed DOI

Dong Z., Gao X., Chinchilli V.M., Sinha R., Muscat J., Winkels R.M., et al. Association of sulfur amino acid consumption with cardiometabolic risk factors: cross-sectional findings from NHANES III. EClinicalMedicine. 2020;19 doi: 10.1016/j.eclinm.2019.100248. PubMed DOI PMC

Dong Z., Richie J.P., Gao X., Al-Shaar L., Nichenametla S.N., Shen B., et al. Cumulative consumption of sulfur amino acids and risk of diabetes: a prospective cohort study. J. Nutr. 2022 doi: 10.1093/JN/NXAC172. PubMed DOI

Berryman C.E., Cheung S.N., Collette E.M., Pasiakos S.M., Lieberman H.R., Fulgoni V.L. Amino acid intake and conformance with the dietary reference intakes in the United States: analysis of the national health and nutrition examination Survey, 2001–2018. J. Nutr. 2023 doi: 10.1016/J.TJNUT.2023.01.012. PubMed DOI

Tore E.C., Eussen S.J.P.M., Bastani N.E., Dagnelie P.C., Elshorbagy A.K., Grootswagers P., et al. The associations of habitual intake of sulfur amino acids, proteins and diet quality with plasma sulfur amino acid concentrations: the maastricht study. J. Nutr. 2023 doi: 10.1016/J.TJNUT.2023.05.008. PubMed DOI

Elshorbagy A.K., Smith A.D., Kozich V., Refsum H. Cysteine and obesity. Obesity. 2012;20:473–481. doi: 10.1038/oby.2011.93. PubMed DOI

Elshorbagy A.K., Valdivia-Garcia M., Graham I.M., Palma Reis R., Sales Luis A., Smith A.D., et al. The association of fasting plasma sulfur-containing compounds with BMI, serum lipids and apolipoproteins. Nutr. Metabol. Cardiovasc. Dis. 2012;22:1031–1038. doi: 10.1016/J.NUMECD.2011.01.008. PubMed DOI

Elshorbagy A.K., Nurk E., Gjesdal C.G., Tell G.S., Ueland P.M., Nygård O., et al. Homocysteine, cysteine, and body composition in the Hordaland Homocysteine Study: does cysteine link amino acid and lipid metabolism? Am. J. Clin. Nutr. 2008;88:738–746. doi: 10.1093/ajcn/88.3.738. PubMed DOI

Elshorbagy A., Bastani N.E., Lee-Odegard S., Ovrebo B., Haj-Yasein N., Svendsen K., et al. The association of fasting plasma thiol fractions with body fat compartments, biomarker profile, and adipose tissue gene expression. Amino Acids. 2023;55:313–323. doi: 10.1007/s00726-022-03229-2. PubMed DOI PMC

Tore E.C., Elshorbagy A.K., Bakers F.C.H., Brouwers M.C.G.J., Dagnelie P.C., Eussen S.J.P.M., et al. Associations between plasma sulfur amino acids and specific fat depots in two independent cohorts: CODAM and the Maastricht Study. Eur. J. Nutr. 2022 doi: 10.1007/s00394-022-03041-4. PubMed DOI PMC

Elshorbagy A.K., Turner C., Bastani N., Refsum H., Kwok T. The association of serum sulfur amino acids and related metabolites with incident diabetes: a prospective cohort study. Eur. J. Nutr. 2022:1–13. doi: 10.1007/S00394-022-02872-5. PubMed DOI

Elshorbagy A.K., Valdivia-Garcia M., Refsum H., Butte N. The association of cysteine with obesity, inflammatory cytokines and insulin resistance in Hispanic children and adolescents. PLoS One. 2012;7 doi: 10.1371/journal.pone.0044166. PubMed DOI PMC

Orentreich N., Matias J.R., DeFelice A., Zimmerman J.A. Low methionine ingestion by rats extends life span. J. Nutr. 1993;123:269–274. doi: 10.1093/jn/123.2.269. PubMed DOI

Malloy V.L., Krajcik R.A., Bailey S.J., Hristopoulos G., Plummer J.D., Orentreich N. Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell. 2006;5:305–314. doi: 10.1111/j.1474-9726.2006.00220.x. PubMed DOI

Malloy V.L., Perrone C.E., Mattocks D.A.L., Ables G.P., Caliendo N.S., Orentreich D.S., et al. Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice. Metab. Clin. Exp. 2013;62:1651–1661. doi: 10.1016/j.metabol.2013.06.012. PubMed DOI

Ren B., Wang L., Shi L., Jin X., Liu Y., Liu R.H., et al. Methionine restriction alleviates age-associated cognitive decline via fibroblast growth factor 21. Redox Biol. 2021;41 doi: 10.1016/J.REDOX.2021.101940. PubMed DOI PMC

Gao X., Sanderson S.M., Dai Z., Reid M.A., Cooper D.E., Lu M., et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572:397–401. doi: 10.1038/s41586-019-1437-3. PubMed DOI PMC

Elshorbagy A.K. Body composition in gene knockouts of sulfur amino acid-metabolizing enzymes. Mamm. Genome. 2014 doi: 10.1007/s00335-014-9527-x. PubMed DOI

Yang Y., Wang Y., Sun J., Zhang J., Guo H., Shi Y., et al. Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H2S production. Food Funct. 2019;10:61–77. doi: 10.1039/C8FO01629A. PubMed DOI

Hine C., Mitchell J.R. Calorie restriction and methionine restriction in control of endogenous hydrogen sulfide production by the transsulfuration pathway. Exp. Gerontol. 2015;68:26–32. doi: 10.1016/J.EXGER.2014.12.010. PubMed DOI PMC

Haj-Yasein N.N., Berg O., Jerneren F., Refsum H., Nebb H.I., Dalen K.T. Cysteine deprivation prevents induction of peroxisome proliferator-activated receptor gamma-2 and adipose differentiation of 3T3-L1 cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:623–635. doi: 10.1016/j.bbalip.2017.02.009. PubMed DOI

Hine C., Harputlugil E., Zhang Y., Ruckenstuhl C., Lee Byung C., Brace L., et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell. 2015;160:132–144. doi: 10.1016/J.CELL.2014.11.048. PubMed DOI PMC

Niewiadomski J., Zhou J.Q., Roman H.B., Liu X., Hirschberger L.L., Locasale J.W., et al. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice. Ann. N. Y. Acad. Sci. 2016;1363:99–115. doi: 10.1111/nyas.13021. PubMed DOI PMC

Roman H.B., Hirschberger L.L., Krijt J., Valli A., Kožich V., Stipanuk M.H. The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS− production and evidence of pancreatic and lung toxicity. Antioxidants Redox Signal. 2013;19:1321. doi: 10.1089/ARS.2012.5010. PubMed DOI PMC

Krijt J., Sokolová J., Šilhavý J., Mlejnek P., Kubovčiak J., Liška F., et al. High cysteine diet reduces insulin resistance in SHR-CRP rats. Physiol. Res. 2021;70:687–700. doi: 10.33549/PHYSIOLRES.934736. PubMed DOI PMC

Olsen T., Stolt E., Ovrebo B., Elshorbagy A., Tore E.C., Lee-Odegard S., et al. Dietary sulfur amino acid restriction in humans with overweight and obesity: a translational randomized controlled trial. J. Transl. Med. 2024;22:40. doi: 10.1186/s12967-023-04833-w. PubMed DOI PMC

Stolt E., Olsen T., Elshorbagy A., Kožich V., van Greevenbroek M., Øvrebø B., et al. Sulfur amino acid restriction, energy metabolism and obesity: a study protocol of an 8-week randomized controlled dietary intervention with whole foods and amino acid supplements. J. Transl. Med. 2021;19:153. doi: 10.1186/s12967-021-02824-3. PubMed DOI PMC

Recommendations N.N. Nordic Council of Ministers; Copenhagen, Denmark: 2014. Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity; p. 627.

Kozich V., Ditroi T., Sokolova J., Krizkova M., Krijt J., Jesina P., et al. Metabolism of sulfur compounds in homocystinurias. Br. J. Pharmacol. 2019;176:594–606. doi: 10.1111/bph.14523. PubMed DOI PMC

Krijt J., Vackova M., Kozich V. Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2-carboxyethyl)phosphine as reductant compared with tri-n-butylphosphine. Clin. Chem. 2001;47:1821–1828. PubMed

Kozich V., Krijt J., Sokolova J., Melenovska P., Jesina P., Vozdek R., et al. Thioethers as markers of hydrogen sulfide production in homocystinurias. Biochimie. 2016;126:14–20. doi: 10.1016/j.biochi.2016.01.001. PubMed DOI

Krijt J., Duta A., Kozich V. Determination of S-Adenosylmethionine and S-Adenosylhomocysteine by LC-MS/MS and evaluation of their stability in mice tissues. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2009;877:2061–2066. doi: 10.1016/j.jchromb.2009.05.039. PubMed DOI PMC

Sulfate in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality. 2004.

Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Altman D.G. Chapman & Hall/CRC; Boca Raton, Fla: 1999. Practical Statistics for Medical Research.

Twisk J.W.R. In: Analysis of Data from Randomized Controlled Trials: A Practical Guide. Twisk J.W.R., editor. Springer International Publishing; 2021. Analysis of RCT data with more than one follow-up measurement; pp. 15–47.

Stipanuk M.H. Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J. Nutr. 2020;150:2494S. doi: 10.1093/jn/nxaa094. 505S. PubMed DOI

Stipanuk M.H., Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metab. Dis. 2011;34:17–32. doi: 10.1007/s10545-009-9006-9. PubMed DOI PMC

Stipanuk M.H., Dominy J.E., Lee J.I., Coloso R.M. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J. Nutr. 2006;136 doi: 10.1093/JN/136.6.1652S. PubMed DOI

Simmons C.R., Hirschberger L.L., Machi M.S., Stipanuk M.H. Expression, purification, and kinetic characterization of recombinant rat cysteine dioxygenase, a non-heme metalloenzyme necessary for regulation of cellular cysteine levels. Protein Expr. Purif. 2006;47:74–81. doi: 10.1016/J.PEP.2005.10.025. PubMed DOI

Laidlaw S.A., Shultz T.D., Cecchino J.T., Kopple J.D. Plasma and urine taurine levels in vegans. Am. J. Clin. Nutr. 1988;47:660–663. doi: 10.1093/AJCN/47.4.660. PubMed DOI

Olsen T., Øvrebø B., Turner C., Bastani N.E., Refsum H., Vinknes K.J. Combining dietary sulfur amino acid restriction with polyunsaturated fatty acid intake in humans: a randomized controlled pilot trial. Nutrients. 2018;10 doi: 10.3390/nu10121822. PubMed DOI PMC

Olsen T., Ovrebo B., Haj-Yasein N., Lee S., Svendsen K., Hjorth M., et al. Effects of dietary methionine and cysteine restriction on plasma biomarkers, serum fibroblast growth factor 21, and adipose tissue gene expression in women with overweight or obesity: a double-blind randomized controlled pilot study. J. Transl. Med. 2020;18:122. doi: 10.1186/s12967-020-02288-x. PubMed DOI PMC

Plummer J.D., Johnson J.E. Extension of cellular lifespan by methionine restriction involves alterations in central carbon metabolism and is mitophagy-dependent. Front. Cell Dev. Biol. 2019;7 doi: 10.3389/FCELL.2019.00301/FULL. PubMed DOI PMC

Jouandin P., Marelja Z., Shih Y.H., Parkhitko A.A., Dambowsky M., Asara J.M., et al. Lysosomal cystine mobilization shapes the response of TORC1 and tissue growth to fasting. Science. 2022;375 doi: 10.1126/science.abc4203. PubMed DOI PMC

Elshorbagy A.K., Valdivia-Garcia M., Refsum H., Smith A.D., Mattocks D.A.L., Perrone C.E. Sulfur amino acids in methionine-restricted rats: hyperhomocysteinemia. Nutrition. 2010;26:1201–1204. doi: 10.1016/J.NUT.2009.09.017. PubMed DOI

Ables G.P., Ouattara A., Hampton T.G., Cooke D., Perodin F., Augie I., et al. Dietary methionine restriction in mice elicits an adaptive cardiovascular response to hyperhomocysteinemia. Sci. Rep. 2015;5:1–10. doi: 10.1038/srep08886. PubMed DOI PMC

Fang H., Stone K.P., Wanders D., Forney L.A., Gettys T.W. The origins, evolution, and future of dietary methionine restriction. Annu. Rev. Nutr. 2022;42 doi: 10.1146/ANNUREV-NUTR-062320-111849. PubMed DOI PMC

Ables G.P., Hens J.R., Nichenametla S.N. Methionine restriction beyond life-span extension. Ann. N. Y. Acad. Sci. 2016;1363:68–79. doi: 10.1111/nyas.13014. PubMed DOI

Dong Z., Sinha R., Richie Jr. JP. Disease prevention and delayed aging by dietary sulfur amino acid restriction: translational implications. Ann. N. Y. Acad. Sci. 2018;1418:44–55. doi: 10.1111/nyas.13584. PubMed DOI

Ables G.P., Johnson J.E. Pleiotropic responses to methionine restriction. Exp. Gerontol. 2017;94:83–88. doi: 10.1016/j.exger.2017.01.012. PubMed DOI

Tamanna N., Mayengbam S., House J.D., Treberg J.R. Methionine restriction leads to hyperhomocysteinemia and alters hepatic H2S production capacity in Fischer-344 rats. Mech. Ageing Dev. 2018;176:9–18. doi: 10.1016/J.MAD.2018.10.004. PubMed DOI

Jeitner T.M., Azcona J.A., Ables G.P., Cooke D., Horowitz M.C., Singh P., et al. Cystine rather than cysteine is the preferred substrate for β - elimination by cystathionine γ - lyase : implications for dietary methionine restriction. GeroScience. 2023 doi: 10.1007/s11357-023-00788-4. PubMed DOI PMC

Ditroi T., Nagy A., Martinelli D., Rosta A., Kozich V., Nagy P. Comprehensive analysis of how experimental parameters affect H(2)S measurements by the monobromobimane method. Free Radic. Biol. Med. 2019;136:146–158. doi: 10.1016/j.freeradbiomed.2019.04.006. PubMed DOI

Olson K.R., DeLeon E.R., Liu F. Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide. 2014;41:11–26. doi: 10.1016/j.niox.2014.05.012. PubMed DOI

Nagy P., Palinkas Z., Nagy A., Budai B., Toth I., Vasas A. Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim. Biophys. Acta. 2014;1840:876–891. doi: 10.1016/j.bbagen.2013.05.037. PubMed DOI

Tsai C.Y., Peh M.T., Feng W., Dymock B.W., Moore P.K. Hydrogen sulfide promotes adipogenesis in 3T3L1 cells. PLoS One. 2015;10 doi: 10.1371/journal.pone.0119511. PubMed DOI PMC

Comas F., Latorre J., Ortega F., Arnoriaga Rodríguez M., Lluch A., Sabater M., et al. Morbidly obese subjects show increased serum sulfide in proportion to fat mass. Int. J. Obes. 2020;45:415–426. doi: 10.1038/s41366-020-00696-z. PubMed DOI

Bełtowski J., Jamroz-Wiśniewska A. Hydrogen sulfide in the adipose tissue—physiology, pathology and a target for pharmacotherapy. Molecules. 2016;22:63. doi: 10.3390/molecules22010063. PubMed DOI PMC

Flori L., Piragine E., Calderone V., Testai L. Role of hydrogen sulfide in the regulation of lipid metabolism: implications on cardiovascular health. Life Sci. 2024;341 doi: 10.1016/j.lfs.2024.122491. PubMed DOI

Elshorbagy A.K., Refsum H., Smith A.D., Graham I.M. The association of plasma cysteine and gamma-glutamyltransferase with BMI and obesity. Obesity. 2009;17:1435–1440. doi: 10.1038/oby.2008.671. oby2008671 [pii] PubMed DOI

Elkafrawy H., Mehanna R., Ali F., Barghash A., Dessouky I., Jernerén F., et al. Extracellular cystine influences human preadipocyte differentiation and correlates with fat mass in healthy adults. Amino Acids. 2021:1–12. doi: 10.1007/s00726-021-03071-y. PubMed DOI PMC

Elshorbagy A., Bastani N.E., Lee-Ødegård S., Øvrebø B., Haj-Yasein N., Svendsen K., et al. The association of fasting plasma thiol fractions with body fat compartments, biomarker profile, and adipose tissue gene expression. Amino Acids. 2022 doi: 10.1007/s00726-022-03229-2. PubMed DOI PMC

Piro M.C., Tesauro M., Lena A.M., Gentileschi P., Sica G., Rodia G., et al. Free-amino acid metabolic profiling of visceral adipose tissue from obese subjects. Amino Acids. 2020;52:1125–1137. doi: 10.1007/s00726-020-02877-6. PubMed DOI

Hasek B.E., Boudreau A., Shin J., Feng D., Hulver M., Van N.T., et al. Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes. 2013;62:3362–3372. doi: 10.2337/db13-0501. PubMed DOI PMC

See more in PubMed

ClinicalTrials.gov
NCT04701346

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...