DIS3L2 and LSm proteins are involved in the surveillance of Sm ring-deficient snRNAs

. 2020 Jun 19 ; 48 (11) : 6184-6197.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32374871

Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo a complex maturation pathway containing multiple steps in the nucleus and in the cytoplasm. snRNP biogenesis is strictly proofread and several quality control checkpoints are placed along the pathway. Here, we analyzed the fate of small nuclear RNAs (snRNAs) that are unable to acquire a ring of Sm proteins. We showed that snRNAs lacking the Sm ring are unstable and accumulate in P-bodies in an LSm1-dependent manner. We further provide evidence that defective snRNAs without the Sm binding site are uridylated at the 3' end and associate with DIS3L2 3'→5' exoribonuclease and LSm proteins. Finally, inhibition of 5'→3' exoribonuclease XRN1 increases association of ΔSm snRNAs with DIS3L2, which indicates competition and compensation between these two degradation enzymes. Together, we provide evidence that defective snRNAs without the Sm ring are uridylated and degraded by alternative pathways involving either DIS3L2 or LSm proteins and XRN1.

Erratum v

PubMed

Zobrazit více v PubMed

Houry W.A., Bertrand E., Coulombe B.. The PAQosome, an R2TP-based chaperone for quaternary structure formation. Trends Biochem. Sci. 2018; 43:4–9. PubMed

Gruss O.J., Meduri R., Schilling M., Fischer U.. UsnRNP biogenesis: mechanisms and regulation. Chromosoma. 2017; 126:577–593. PubMed

Li D.K., Tisdale S., Lotti F., Pellizzoni L.. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin. Cell Dev. Biol. 2014; 32:22–29. PubMed PMC

Raimer A.C., Gray K.M., Matera A.G.. SMN: a chaperone for nuclear RNP social occasions?. RNA Biol. 2017; 14:701–711. PubMed PMC

Golembe T.J., Yong J., Dreyfuss G.. Specific sequence features, recognized by the SMN complex, identify snRNAs and determine their fate as snRNPs. Mol. Cell. Biol. 2005; 25:10989–11004. PubMed PMC

Jin W., Wang Y., Liu C.P., Yang N., Jin M., Cong Y., Wang M., Xu R.M.. Structural basis for snRNA recognition by the double-WD40 repeat domain of Gemin5. Genes Dev. 2016; 30:2391–2403. PubMed PMC

Xu C., Ishikawa H., Izumikawa K., Li L., He H., Nobe Y., Yamauchi Y., Shahjee H.M., Wu X.H., Yu Y.T. et al. .. Structural insights into Gemin5-guided selection of pre-snRNAs for snRNP assembly. Genes Dev. 2016; 30:2376–2390. PubMed PMC

Neuenkirchen N., Englbrecht C., Ohmer J., Ziegenhals T., Chari A., Fischer U.. Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization. EMBO J. 2015; 34:1925–1941. PubMed PMC

Pellizzoni L., Yong J., Dreyfuss G.. Essential role for the SMN complex in the specificity of snRNP assembly. Science. 2002; 298:1775–1779. PubMed

Chari A., Golas M.M., Klingenhager M., Neuenkirchen N., Sander B., Englbrecht C., Sickmann A., Stark H., Fischer U.. An assembly chaperone collaborates with the SMN complex to generate spliceosomal snRNPs. Cell. 2008; 135:497–509. PubMed

Grimm C., Chari A., Pelz J.P., Kuper J., Kisker C., Diederichs K., Stark H., Schindelin H., Fischer U.. Structural basis of assembly chaperone-mediated snRNP formation. Mol. Cell. 2013; 49:692–703. PubMed

Stanek D. Cajal bodies and snRNPs: friends with benefits. RNA Biol. 2017; 14:671–679. PubMed PMC

Jady B.E., Darzacq X., Tucker K.E., Matera A.G., Bertrand E., Kiss T.. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. 2003; 22:1878–1888. PubMed PMC

Stanek D., Neugebauer K.M.. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J. Cell Biol. 2004; 166:1015–1025. PubMed PMC

Bizarro J., Dodre M., Huttin A., Charpentier B., Schlotter F., Branlant C., Verheggen C., Massenet S., Bertrand E.. NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Res. 2015; 43:8973–8989. PubMed PMC

Malinova A., Cvackova Z., Mateju D., Horejsi Z., Abeza C., Vandermoere F., Bertrand E., Stanek D., Verheggen C.. Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J. Cell Biol. 2017; 216:1579–1596. PubMed PMC

Cloutier P., Poitras C., Durand M., Hekmat O., Fiola-Masson E., Bouchard A., Faubert D., Chabot B., Coulombe B.. R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat. Commun. 2017; 8:15615. PubMed PMC

Novotny I., Malinova A., Stejskalova E., Mateju D., Klimesova K., Roithova A., Sveda M., Knejzlik Z., Stanek D.. SART3-dependent accumulation of incomplete spliceosomal snRNPs in Cajal bodies. Cell Rep. 2015; 10:429–440. PubMed

Baillat D., Hakimi M.A., Nr A.M., Shilatifard A., Cooch N., Shiekhattar R.. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell. 2005; 123:265–276. PubMed

Ustianenko D., Pasulka J., Feketova Z., Bednarik L., Zigackova D., Fortova A., Zavolan M., Vanacova S.. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J. 2016; 35:2179–2191. PubMed PMC

Labno A., Warkocki Z., Kulinski T., Krawczyk P.S., Bijata K., Tomecki R., Dziembowski A.. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Res. 2016; 44:10437–10453. PubMed PMC

Pirouz M., Du P., Munafo M., Gregory R.I.. Dis3l2-mediated decay is a quality control pathway for noncoding RNAs. Cell Rep. 2016; 16:1861–1873. PubMed PMC

Machyna M., Kehr S., Straube K., Kappei D., Buchholz F., Butter F., Ule J., Hertel J., Stadler P.F., Neugebauer K.M.. The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol. Cell. 2014; 56:389–399. PubMed

Suzuki T., Izumi H., Ohno M.. Cajal body surveillance of U snRNA export complex assembly. J. Cell Biol. 2010; 190:603–612. PubMed PMC

Smith K.P., Lawrence J.B.. Interactions of U2 gene loci and their nuclear transcripts with Cajal (coiled) bodies: evidence for PreU2 within Cajal bodies. Mol. Biol. Cell. 2000; 11:2987–2998. PubMed PMC

Massenet S., Pellizzoni L., Paushkin S., Mattaj I.W., Dreyfuss G.. The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway. Mol. Cell. Biol. 2002; 22:6533–6541. PubMed PMC

Prusty A.B., Meduri R., Prusty B.K., Vanselow J., Schlosser A., Fischer U.. Impaired spliceosomal UsnRNP assembly leads to Sm mRNA down-regulation and Sm protein degradation. J. Cell Biol. 2017; 216:2391–2407. PubMed PMC

Paknia E., Chari A., Stark H., Fischer U.. The ribosome cooperates with the assembly chaperone pICln to initiate formation of snRNPs. Cell Rep. 2016; 16:3103–3112. PubMed

Fischer U., Sumpter V., Sekine M., Satoh T., Luhrmann R.. Nucleo-cytoplasmic transport of U snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap. EMBO J. 1993; 12:573–583. PubMed PMC

Malatesta M., Fakan S., Fischer U.. The Sm core domain mediates targeting of U1 snRNP to subnuclear compartments involved in transcription and splicing. Exp. Cell Res. 1999; 249:189–198. PubMed

Roithova A., Klimesova K., Panek J., Will C.L., Luhrmann R., Stanek D., Girard C.. The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. Nucleic Acids Res. 2018; 46:3774–3790. PubMed PMC

Shukla S., Parker R.. Quality control of assembly-defective U1 snRNAs by decapping and 5′-to-3′ exonucleolytic digestion. Proc. Natl Acad. Sci. U.S.A. 2014; 111:E3277–E3286. PubMed PMC

Ishikawa H., Nobe Y., Izumikawa K., Yoshikawa H., Miyazawa N., Terukina G., Kurokawa N., Taoka M., Yamauchi Y., Nakayama H. et al. .. Identification of truncated forms of U1 snRNA reveals a novel RNA degradation pathway during snRNP biogenesis. Nucleic Acids Res. 2014; 42:2708–2724. PubMed PMC

Labno A., Tomecki R., Dziembowski A.. Cytoplasmic RNA decay pathways: enzymes and mechanisms. Biochim. Biophys. Acta. 2016; 1863:3125–3147. PubMed

Hoefig K.P., Rath N., Heinz G.A., Wolf C., Dameris J., Schepers A., Kremmer E., Ansel K.M., Heissmeyer V.. Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat. Struct. Mol. Biol. 2013; 20:73–81. PubMed

Nomura Y., Roston D., Montemayor E.J., Cui Q., Butcher S.E.. Structural and mechanistic basis for preferential deadenylation of U6 snRNA by Usb1. Nucleic Acids Res. 2018; 46:11488–11501. PubMed PMC

Ishikawa H., Nobe Y., Izumikawa K., Taoka M., Yamauchi Y., Nakayama H., Simpson R.J., Isobe T., Takahash N.. Truncated forms of U2 snRNA (U2-tfs) are shunted toward a novel uridylylation pathway that differs from the degradation pathway for U1-tfs. RNA Biol. 2018; 15:261–268. PubMed PMC

van Dijk E., Cougot N., Meyer S., Babajko S., Wahle E., Seraphin B.. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 2002; 21:6915–6924. PubMed PMC

Wang Z., Jiao X., Carr-Schmid A., Kiledjian M.. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl Acad. Sci. U.S.A. 2002; 99:12663–12668. PubMed PMC

Bouveret E., Rigaut G., Shevchenko A., Wilm M., Seraphin B.. A Sm-like protein complex that participates in mRNA degradation. EMBO J. 2000; 19:1661–1671. PubMed PMC

Song M.G., Kiledjian M.. 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA. 2007; 13:2356–2365. PubMed PMC

Totaro A., Renzi F., La Fata G., Mattioli C., Raabe M., Urlaub H., Achsel T.. The human Pat1b protein: a novel mRNA deadenylation factor identified by a new immunoprecipitation technique. Nucleic Acids Res. 2011; 39:635–647. PubMed PMC

Tharun S., He W., Mayes A.E., Lennertz P., Beggs J.D., Parker R.. Yeast Sm-like proteins function in mRNA decapping and decay. Nature. 2000; 404:515–518. PubMed

Wu D., Muhlrad D., Bowler M.W., Jiang S., Liu Z., Parker R., Song H.. Lsm2 and Lsm3 bridge the interaction of the Lsm1–7 complex with Pat1 for decapping activation. Cell Res. 2014; 24:233–246. PubMed PMC

Chowdhury A., Mukhopadhyay J., Tharun S.. The decapping activator Lsm1p-7p–Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA. 2007; 13:998–1016. PubMed PMC

Zhou L., Zhou Y., Hang J., Wan R., Lu G., Yan C., Shi Y.. Crystal structure and biochemical analysis of the heptameric Lsm1–7 complex. Cell Res. 2014; 24:497–500. PubMed PMC

Sobti M., Cubeddu L., Haynes P.A., Mabbutt B.C.. Engineered rings of mixed yeast Lsm proteins show differential interactions with translation factors and U-rich RNA. Biochemistry. 2010; 49:2335–2345. PubMed

Tharun S., Parker R.. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol. Cell. 2001; 8:1075–1083. PubMed

Hrossova D., Sikorsky T., Potesil D., Bartosovic M., Pasulka J., Zdrahal Z., Stefl R., Vanacova S.. RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3′-end extended forms of snRNAs. Nucleic Acids Res. 2015; 43:4236–4248. PubMed PMC

Jiang D., Zou X., Zhang C., Chen J., Li Z., Wang Y., Deng Z., Wang L., Chen S.. Gemin5 plays a role in unassembled-U1 snRNA disposal in SMN-deficient cells. FEBS Lett. 2018; 592:1400–1411. PubMed

Ustianenko D., Hrossova D., Potesil D., Chalupnikova K., Hrazdilova K., Pachernik J., Cetkovska K., Uldrijan S., Zdrahal Z., Vanacova S.. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA. 2013; 19:1632–1638. PubMed PMC

Huranova M., Hnilicova J., Fleischer B., Cvackova Z., Stanek D.. A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs. Hum. Mol. Genet. 2009; 18:2014–2023. PubMed

Yong J., Golembe T.J., Battle D.J., Pellizzoni L., Dreyfuss G.. snRNAs contain specific SMN-binding domains that are essential for snRNP assembly. Mol. Cell. Biol. 2004; 24:2747–2756. PubMed PMC

Chapman E.G., Moon S.L., Wilusz J., Kieft J.S.. RNA structures that resist degradation by Xrn1 produce a pathogenic dengue virus RNA. eLife. 2014; 3:e01892. PubMed PMC

Eckwahl M.J., Sim S., Smith D., Telesnitsky A., Wolin S.L.. A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway. Genes Dev. 2015; 29:646–657. PubMed PMC

Lubas M., Damgaard C.K., Tomecki R., Cysewski D., Jensen T.H., Dziembowski A.. Exonuclease hDIS3L2 specifies an exosome-independent 3′–5′ degradation pathway of human cytoplasmic mRNA. EMBO J. 2013; 32:1855–1868. PubMed PMC

Ingelfinger D., Arndt-Jovin D.J., Luhrmann R., Achsel T.. The human LSm1–7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA. 2002; 8:1489–1501. PubMed PMC

Novotny I., Podolska K., Blazikova M., Valasek L.S., Svoboda P., Stanek D.. Nuclear LSm8 affects number of cytoplasmic processing bodies via controlling cellular distribution of Like-Sm proteins. Mol. Biol. Cell. 2012; 23:3776–3785. PubMed PMC

Becker D., Hirsch A.G., Bender L., Lingner T., Salinas G., Krebber H.. Nuclear pre-snRNA export is an essential quality assurance mechanism for functional spliceosomes. Cell Rep. 2019; 27:3199–3214. PubMed

Ma J., Flemr M., Strnad H., Svoboda P., Schultz R.M.. Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biol. Reprod. 2013; 88:11. PubMed PMC

Ma J., Fukuda Y., Schultz R.M.. Mobilization of dormant Cnot7 mRNA promotes deadenylation of maternal transcripts during mouse oocyte maturation. Biol. Reprod. 2015; 93:48. PubMed PMC

Chang H.M., Triboulet R., Thornton J.E., Gregory R.I.. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature. 2013; 497:244–248. PubMed PMC

Balagopal V., Parker R.. Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr. Opin. Cell Biol. 2009; 21:403–408. PubMed PMC

Eulalio A., Behm-Ansmant I., Izaurralde E.. P bodies: at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Biol. 2007; 8:9–22. PubMed

Standart N., Weil D.. P-bodies: cytosolic droplets for coordinated mRNA storage. Trends Genet. 2018; 34:612–626. PubMed

Mitchell P., Petfalski E., Shevchenko A., Mann M., Tollervey D.. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell. 1997; 91:457–466. PubMed

Doamekpor S.K., Gozdek A., Kwasnik A., Kufel J., Tong L.. A novel 5′-hydroxyl dinucleotide hydrolase activity for the DXO/Rai1 family of enzymes. Nucleic Acids Res. 2020; 48:349–358. PubMed PMC

Horvathova I., Voigt F., Kotrys A.V., Zhan Y., Artus-Revel C.G., Eglinger J., Stadler M.B., Giorgetti L., Chao J.A.. The dynamics of mRNA turnover revealed by single-molecule imaging in single cells. Mol. Cell. 2017; 68:615–625. PubMed

Eulalio A., Behm-Ansmant I., Schweizer D., Izaurralde E.. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell. Biol. 2007; 27:3970–3981. PubMed PMC

Hubstenberger A., Courel M., Benard M., Souquere S., Ernoult-Lange M., Chouaib R., Yi Z., Morlot J.B., Munier A., Fradet M. et al. .. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell. 2017; 68:144–157. PubMed

Zhang B., Herman P.K.. It is all about the process(ing): P-body granules and the regulation of signal transduction. Curr. Genet. 2019; 66:73–77. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace