Stem-loop-induced ribosome queuing in the uORF2/ATF4 overlap fine-tunes stress-induced human ATF4 translational control

. 2024 Apr 23 ; 43 (4) : 113976. [epub] 20240319

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid38507410

Grantová podpora
R01 DK060596 NIDDK NIH HHS - United States
R35 GM127089 NIGMS NIH HHS - United States
R37 DK060596 NIDDK NIH HHS - United States

Odkazy

PubMed 38507410
PubMed Central PMC11058473
DOI 10.1016/j.celrep.2024.113976
PII: S2211-1247(24)00304-8
Knihovny.cz E-zdroje

Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.

Před aktualizací

PubMed

Zobrazit více v PubMed

Wek RC, Jiang HY, and Anthony TG (2006). Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans 34, 7–11. 10.1042/BST20060007. PubMed DOI

Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, and Gorman AM (2016). The integrated stress response. EMBO Rep. 17, 1374–1395. 10.15252/embr.201642195. PubMed DOI PMC

Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen. M, Johnson TM, Fullen DR, Pointer JN, Gruber SB, Su LD, Nikiforov MA, et al. (2006). Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat. Cell Biol 8, 1053–1063. 10.1038/ncb1471. PubMed DOI

Donnelly N, Gorman AM, Gupta S, and Samali A (2013). The eIF2αlpha kinases: their structures and functions. Cell. Mol. Life Sci 70, 3493–3511. 10.1007/s00018-012-1252-6. PubMed DOI PMC

Valášek LS (2012). Ribozoomin’ – Translation Initiation from the Perspective of the Ribosome-bound Eukaryotic Initiation Factors (eIFs). Curr. Protein Pept. Sci 13, 305–330. PubMed PMC

Hinnebusch AG (2014). The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem 83, 779–812. PubMed

Gunišová S, Hronová V, Mohammad MP, Hinnebusch AG, and Valášek LS (2018). Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol. Rev 42, 165–192. 10.1093/femsre/fux059. PubMed DOI PMC

Dever TE, Ivanov IP, and Hinnebusch AG (2023). Translational regulation by uORFs and start codon selection stringency. Genes Dev. 37, 474–489. 10.1101/gad.350752.123. PubMed DOI PMC

Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, and Ron D (2000). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108. PubMed

Vattem KM, and Wek RC (2004). Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad Sci. USA 101, 11269–11274. PubMed PMC

Lu PD, Harding HP, and Ron D (2004). Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol 167, 27–33. 10.1083/jcb.200408003. PubMed DOI PMC

Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, and Ron D (2003). Stress-induced gene expression requires programmed recovery from translational repression. EMBO J. 22, 1180–1187. 10.1093/emboj/cdg112. PubMed DOI PMC

Guan BJ, van Hoef V, Jobava R, Elroy-Stein O, Valasek LS, Cargnello M, Gao XH, Krokowski D, Merrick WC, Kimball SR, et al. (2017). A Unique ISR Program Determines Cellular Responses to Chronic Stress. Mol. Cell 68, 885–900.e886. 10.1016/j.molcel.2017.11.007. PubMed DOI PMC

Pitale PM, Gorbatyuk O, and Gorbatyuk M (2017). Neurodegeneration: Keeping ATF4 on a Tight Leash. Front. Cell. Neurosci 11, 410. 10.3389/fncel.2017.00410. PubMed DOI PMC

Wortel IMN, van der Meer LT, Kilberg MS, and van Leeuwen FN (2017). Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells. Trends Endocrinol. Metab 28, 794–806. 10.1016/j.tem.2017.07.003. PubMed DOI PMC

Hinnebusch AG (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol 59, 407–450. PubMed

Gunišová S, and Valášek LS (2014). Fail-safe mechanism of GCN4 translational control-uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Res. 42, 5880–5893. PubMed PMC

Gunišová S, Beznosková P, Mohammad MP, Vlcková V, and Valášek LS (2016). In-depth analysis of cis-determinants that either promote or inhibit reinitiation on GCN4 mRNA after translation of its four short uORFs. RNA 22, 542–558. 10.1261/rna.055046.115. PubMed DOI PMC

Hronova V, Mohammad MP, Wagner S, Panek J, Gunisova S, Zeman J, Poncova K, Valasek LS, et al. (2017). Does eIF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells? RNA Biol. 10.1080/15476286.15472017.11353863. PubMed DOI PMC

Mohammad MP, Munzarová Pondelícková V, Zeman J, Gunišová S, and Valášek LS (2017). In vivo evidence that eIF3 stays bound to ribosomes elongating and terminating on short upstream ORFs to promote reinitiation. Nucleic Acids Res. 45, 2658–2674. 10.1093/nar/gkx049. PubMed DOI PMC

Mohammad MP, Smirnova A, Gunišová S, and Valášek LS (2021). eIF4G is retained on ribosomes elongating and terminating on short upstream ORFs to control reinitiation in yeast. Nucleic Acids Res. 49, 8743–8756. 10.1093/nar/gkab652. PubMed DOI PMC

Wagner S, Herrmannová A, Hronová V, Gunišová S, Sen ND, Hannan RD, Hinnebusch AG, Shirokikh NE, Preiss T, and Valášek LS (2020). Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes. Mol. Cell 79, 546–560.e547. 10.1016/j.molcel.2020.06.004. PubMed DOI PMC

Starck SR, Tsai JC, Chen K, Shodiya M, Wang L, Yahiro K, Martins-Green M, Shastri N, and Walter P (2016). Translation from the 5’ untranslated region shapes the integrated stress response. Science 351, aad3867. 10.1126/science.aad3867. PubMed DOI PMC

Andreev DE, O’Connor PBF, Fahey C, Kenny EM, Terenin IM, Dmitriev SE, Cormican P, Morris DW, Shatsky IN, and Baranov PV (2015). Translation of 5’ leaders is pervasive in genes resistant to eIF2 repression. Elife 4, e03971. 10.7554/eLife.03971. PubMed DOI PMC

Sidrauski C, McGeachy AM, Ingolia NT, and Walter P (2015). The small molecule ISRIB reverses the effects of eIF2alpha phosphorylation on translation and stress granule assembly. Elife 4, e05033. 10.7554/eLife.05033. PubMed DOI PMC

Zhou J, Wan J, Shu XE, Mao Y, Liu XM, Yuan X, Zhang X, Hess ME, Bruning JC, and Qian SB (2018). N(6)-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response. Mol. Cell 69, 636–647.e637. 10.1016/j.molcel.2018.01.019. PubMed DOI PMC

Wagner S, Bohlen J, Herrmannová A, Jelínek J, Preiss T, Valášek LS, and Teleman AA (2022). Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control. Nat. Protoc 17, 2139–2187. 10.1038/s41596-022-00708-4. PubMed DOI

Rendleman J, Haizel S, Wu S, Liu J, Ge X, Zou H, Mohammad MP, Pressler M, Maity S, Hronová V, et al. (2023). Regulatory start-stop elements in 5’ untranslated regions pervasively modulate translation. Preprint at bioRxiv. 10.1101/2021.07.26.453809. DOI

Dey S, Baird TD, Zhou D, Palam LR, Spandau DF, and Wek RC (2010). Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J. Biol. Chem 285, 33165–33174. 10.1074/jbc.M110.167213. PubMed DOI PMC

Ichihara K, Matsumoto A, Nishida H, Kito Y, Shimizu H, Shichino Y, Iwasaki S, Imami K, Ishihama Y, and Nakayama KI (2021). Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Res. 49, 7298–7317. 10.1093/nar/gkab549. PubMed DOI PMC

Rendleman J, Cheng Z, Maity S, Kastelic N, Munschauer M, Allgoewer K, Teo G, Zhang YBM, Lei A, Parker B, et al. (2018). New insights into the cellular temporal response to proteostatic stress. Elife 7, e39054. 10.7554/eLife.39054. PubMed DOI PMC

Ivanov IP, Shin BS, Loughran G, Tzani I, Young-Baird SK, Cao C, Atkins JF, and Dever TE (2018). Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Mol. Cell 70, 254–264.e256. 10.1016/j.molcel.2018.03.015. PubMed DOI PMC

Archer SK, Shirokikh NE, Beilharz TH, and Preiss T (2016). Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature 535, 570–574. 10.1038/nature18647. PubMed DOI

Ingolia NT (2010). Genome-wide translational profiling by ribosome footprinting. Methods Enzymol. 470, 119–142. PubMed

Sfakianos AP, Raven RM, and Willis AE (2022). The pleiotropic roles of eIF5A in cellular life and its therapeutic potential in cancer. Biochem. Soc. Trans 50, 1885–1895. 10.1042/BST20221035. PubMed DOI PMC

Schuller AP, Wu CC, Dever TE, Buskirk AR, and Green R (2017). eIF5A Functions Globally in Translation Elongation and Termination. Mol. Cell 66, 194–205.e195. 10.1016/j.molcel.2017.03.003. PubMed DOI PMC

Han P, Shichino Y, Schneider-Poetsch T, Mito M, Hashimoto S, Udagawa T, Kohno K, Yoshida M, Mishima Y, Inada T, and Iwasaki S (2020). Genome-wide Survey of Ribosome Collision. Cell Rep. 31, 107610. 10.1016/j.celrep.2020.107610. PubMed DOI PMC

Liu W, Yan J, Zhang Z, Pian H, Liu C, and Li Z (2018). Identification of a selective DNA ligase for accurate recognition and ultrasensitive quantification of N(6)-methyladenosine in RNA at one-nucleotide resolution. Chem. Sci 9, 3354–3359. 10.1039/c7sc05233b. PubMed DOI PMC

Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C, and Luo GZ (2019). Single-base mapping of m(6) A by an antibody-independent method. Sci. Adv 5, eaax0250. 10.1126/sciadv.aax0250. PubMed DOI PMC

Matsuda D, and Dreher TW (2006). Close spacing of AUG initiation codons confers dicistronic character on a eukaryotic mRNA. RNA 12, 1338–1349. 10.1261/rna.67906. PubMed DOI PMC

Neill G, and Masson GR (2023). A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front. Mol. Neurosci 16, 1112253. 10.3389/fnmol.2023.1112253. PubMed DOI PMC

Roithová A, Feketová Z, Vanáčová Š, and Staněk D (2020). DIS3L2 and LSm proteins are involved in the surveillance of Sm ring-deficient snRNAs. Nucleic Acids Res. 48, 6184–6197. 10.1093/nar/gkaa301. PubMed DOI PMC

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272. 10.1038/s41592-019-0686-2. PubMed DOI PMC

Rossum GV, and Drake FL (2009). Python 3 Reference Manual (CreateSpace).

Hunter JD (2007). Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng 9, 90–95. 10.1109/MCSE.2007.55. DOI

Kolde R, and Kolde M (2015). R Package ‘pheatmap’. R Package 1. Web Tool 790.

Lauria F, Tebaldi T, Bernabo P, Groen EJN, Gillingwater TH, and Viero G (2018). riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. PLoS Comput. Biol 14, e1006169. 10.1371/journal.pcbi.1006169. PubMed DOI PMC

Andreev DE, Terenin IM, Dmitriev SE, and Shatsky IN (2016). Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells. Gene 578, 1–6. 10.1016/j.gene.2015.12.008. PubMed DOI

Iwawaki T, Akai R, Toyoshima T, Takeda N, Ishikawa TO, and Yamamura KI (2017). Transgenic mouse model for imaging of ATF4 translational activation-related cellular stress responses in vivo. Sci. Rep 7, 46230. 10.1038/srep46230. PubMed DOI PMC

Wang L, Zhao W, Xia C, Li Z, Zhao W, Xu K, Wang N, Lian H, Rosas IO, and Yu G (2022). TRIB3 Mediates Fibroblast Activation and Fibrosis though Interaction with ATF4 in IPF. Int. J. Mol. Sci 23, 15705. 10.3390/ijms232415705. PubMed DOI PMC

Penn WD, Harrington HR, Schlebach JP, and Mukhopadhyay S (2020). Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Annu Rev Virol 7, 219–238. 10.1146/annurev-virology-012120-101548. PubMed DOI PMC

Chiu W-L, Wagner S, Herrmannová A, Burela L, Zhang F, Saini AK, Valásek L, and Hinnebusch AG (2010). The C-Terminal Region of Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes mRNA Recruitment, Scanning, and, Together with eIF3j and the eIF3b RNA Recognition Motif, Selection of AUG Start Codons. Mol. Cell. Biol 30, 4415–4434. PubMed PMC

Khoshnevis S, Gunišová S, Vlčková V, Kouba T, Neumann P, Beznosková P, Ficner R, and Valášek LS (2014). Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. Nucleic Acids Res. 42, 4123–4139. PubMed PMC

Herrmannová A, Prilepskaja T, Wagner S, Šikrová D, Zeman J, Poncová K, and Valášek LS (2020). Adapted formaldehyde gradient cross-linking protocol implicates human eIF3d and eIF3c, k and l subunits in the 43S and 48S pre-initiation complex assembly, respectively. Nucleic Acids Res. 48, 1969–1984. 10.1093/nar/gkz1185. PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, and Gingeras TR (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC

Herrmannová A, Jelínek J, Pospíšilová K, Kerényi F, Vomastek T, Watt K, Brábek J, Mohammad MP, Wagner S, Topisirovic I, and Valášek LS (2023). Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathway. Elife, in press. 10.1101/2023.06.29.547003. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...