Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathways
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-25821X
Grantová Agentura České Republiky
Praemium Academiae
Akademie Věd České Republiky
CZ.02.01.01/00/22_008/0004575
Ministerstvo Školství, Mládeže a Tělovýchovy
19-08013S
Grantová Agentura České Republiky
Senior Investigator award
Fonds de Recherche du Québec - Santé
LM2023055
The Ministry of Education, Youth and Sports
LX22NPO5102
European Union
PubMed
39495207
PubMed Central
PMC11534336
DOI
10.7554/elife.95846
PII: 95846
Knihovny.cz E-zdroje
- Klíčová slova
- MAPK pathway, eIF3, genetics, genomics, human, ribosomal proteins, ribosome, translation, translational control,
- MeSH
- eukaryotický iniciační faktor 3 * metabolismus genetika MeSH
- HeLa buňky MeSH
- lidé MeSH
- MAP kinasový signální systém * MeSH
- proteosyntéza MeSH
- protoonkogen Mas * MeSH
- ribozomální proteiny * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 * MeSH
- MAS1 protein, human MeSH Prohlížeč
- protoonkogen Mas * MeSH
- ribozomální proteiny * MeSH
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
doi: 10.1101/2023.06.29.547003 PubMed
Před aktualizacídoi: 10.7554/eLife.95846.1 PubMed
Před aktualizacídoi: 10.7554/eLife.95846.2 PubMed
Zobrazit více v PubMed
Akulich KA, Sinitcyn PG, Makeeva DS, Andreev DE, Terenin IM, Anisimova AS, Shatsky IN, Dmitriev SE. A novel uORF-based regulatory mechanism controls translation of the human MDM2 and eIF2D mRNAs during stress. Biochimie. 2019;157:92–101. doi: 10.1016/j.biochi.2018.11.005. PubMed DOI
Alard A, Katsara O, Rios-Fuller T, Parra C, Ozerdem U, Ernlund A, Schneider RJ. Breast cancer cell mesenchymal transition and metastasis directed by DAP5/eIF3d-mediated selective mRNA translation. Cell Reports. 2023;42:112646. doi: 10.1016/j.celrep.2023.112646. PubMed DOI PMC
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC
Andrews S. A quality control tool for high throughput sequence data. V3Babraham Bioinformatics. 2010 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene Ontology: tool for the unification of biology. Nature Genetics. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Beznosková P, Cuchalová L, Wagner S, Shoemaker CJ, Gunišová S, von der Haar T, Valášek LS. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLOS Genetics. 2013;9:e1003962. doi: 10.1371/journal.pgen.1003962. PubMed DOI PMC
Beznosková P, Wagner S, Jansen ME, von der Haar T, Valášek LS. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Research. 2015;43:5099–5111. doi: 10.1093/nar/gkv421. PubMed DOI PMC
Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I. Targeting the translation machinery in cancer. Nature Reviews. Drug Discovery. 2015;14:261–278. doi: 10.1038/nrd4505. PubMed DOI
Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N, Taylor J, Nekrutenko A. Dissemination of scientific software with Galaxy ToolShed. Genome Biology. 2014;15:403. doi: 10.1186/gb4161. PubMed DOI PMC
Bochler A, Querido JB, Prilepskaja T, Soufari H, Simonetti A, Del Cistia ML, Kuhn L, Ribeiro AR, Valášek LS, Hashem Y. Structural differences in translation initiation between pathogenic trypanosomatids and their mammalian hosts. Cell Reports. 2020;33:108534. doi: 10.1016/j.celrep.2020.108534. PubMed DOI PMC
Bohlen J, Roiuk M, Neff M, Teleman AA. PRRC2 proteins impact translation initiation by promoting leaky scanning. Nucleic Acids Research. 2023;51:3391–3409. doi: 10.1093/nar/gkad135. PubMed DOI PMC
Brito Querido J, Sokabe M, Kraatz S, Gordiyenko Y, Skehel JM, Fraser CS, Ramakrishnan V. Structure of a human 48S translational initiation complex. Science. 2020;369:1220–1227. doi: 10.1126/science.aba4904. PubMed DOI PMC
Buxade M, Parra-Palau JL, Proud CG. The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases) Frontiers in Bioscience. 2008;13:5359–5373. doi: 10.2741/3086. PubMed DOI
Calviello L, Sydow D, Harnett D, Ohler U. Ribo-seQC: comprehensive analysis of cytoplasmic and organellar ribosome profiling data. bioRxiv. 2019 doi: 10.1101/601468. DOI
Carbon S, Douglass E, Good BM, Unni DR, Harris NL, Mungall CJ, Basu S, Chisholm RL, Dodson RJ, Hartline E, Fey P, Thomas PD, Albou LP, Ebert D, Kesling MJ, Mi H, Muruganujan A, Huang X, Mushayahama T, LaBonte SA, Siegele DA, Antonazzo G, Attrill H, Brown NH, Garapati P, Marygold SJ, Trovisco V, dos Santos G, Falls K, Tabone C, Zhou P, Goodman JL, Strelets VB, Thurmond J, Garmiri P, Ishtiaq R, Rodríguez-López M, Acencio ML, Kuiper M, Lægreid A, Logie C, Lovering RC, Kramarz B, Saverimuttu SCC, Pinheiro SM, Gunn H, Su R, Thurlow KE, Chibucos M, Giglio M, Nadendla S, Munro J, Jackson R, Duesbury MJ, Del-Toro N, Meldal BHM, Paneerselvam K, Perfetto L, Porras P, Orchard S, Shrivastava A, Chang HY, Finn RD, Mitchell AL, Rawlings ND, Richardson L, Sangrador-Vegas A, Blake JA, Christie KR, Dolan ME, Drabkin HJ, Hill DP, Ni L, Sitnikov DM, Harris MA, Oliver SG, Rutherford K, Wood V, Hayles J, Bähler J, Bolton ER, De Pons JL, Dwinell MR, Hayman GT, Kaldunski ML, Kwitek AE, Laulederkind SJF, Plasterer C, Tutaj MA, Vedi M, Wang SJ, D’Eustachio P, Matthews L, Balhoff JP, Aleksander SA, Alexander MJ, Cherry JM, Engel SR, Gondwe F, Karra K, Miyasato SR, Nash RS, Simison M, Skrzypek MS, Weng S, Wong ED, Feuermann M, Gaudet P, Morgat A, Bakker E, Berardini TZ, Reiser L, Subramaniam S, Huala E, Arighi CN, Auchincloss A, Axelsen K, Argoud-Puy G, Bateman A, Blatter MC, Boutet E, Bowler E, Breuza L, Bridge A, Britto R, Bye-A-Jee H, Casas CC, Coudert E, Denny P, Estreicher A, Famiglietti ML, Georghiou G, Gos A, Gruaz-Gumowski N, Hatton-Ellis E, Hulo C, Ignatchenko A, Jungo F, Laiho K, Le Mercier P, Lieberherr D, Lock A, Lussi Y, MacDougall A, Magrane M, Martin MJ, Masson P, Natale DA, Hyka-Nouspikel N, Orchard S, Pedruzzi I, Pourcel L, Poux S, Pundir S, Rivoire C, Speretta E, Sundaram S, Tyagi N, Warner K, Zaru R, Wu CH, Diehl AD, Chan JN, Grove C, Lee RYN, Muller HM, Raciti D, Van Auken K, Sternberg PW, Berriman M, Paulini M, Howe K, Gao S, Wright A, Stein L, Howe DG, Toro S, Westerfield M, Jaiswal P, Cooper L, Elser J, The Gene Ontology Consortium The gene ontology resource: enriching a gold mine. Nucleic Acids Research. 2021;49:D325–D334. doi: 10.1093/nar/gkaa1113. PubMed DOI PMC
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews. 2011;75:50–83. doi: 10.1128/MMBR.00031-10. PubMed DOI PMC
Carriere A, Ray H, Blenis J, Roux PP. The RSK factors of activating the Ras/MAPK signaling cascade. Frontiers in Bioscience. 2008;13:4258–4275. doi: 10.2741/3003. PubMed DOI
Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Research. 2016;44:D184–D189. doi: 10.1093/nar/gkv1309. PubMed DOI PMC
Chothani S, Adami E, Ouyang JF, Viswanathan S, Hubner N, Cook SA, Schafer S, Rackham OJL. deltaTE: Detection of Translationally Regulated Genes by Integrative Analysis of Ribo-seq and RNA-seq Data. Current Protocols in Molecular Biology. 2019;129:e108. doi: 10.1002/cpmb.108. PubMed DOI PMC
Cockman E, Anderson P, Ivanov P. TOP mRNPs: molecular mechanisms and principles of regulation. Biomolecules. 2020;10:969. doi: 10.3390/biom10070969. PubMed DOI PMC
Colak S, Ten Dijke P. Targeting TGF-β signaling in cancer. Trends in Cancer. 2017;3:56–71. doi: 10.1016/j.trecan.2016.11.008. PubMed DOI
Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35:347–367. doi: 10.1016/j.ccell.2019.01.007. PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. Twelve years of samtools and bcftools. GigaScience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
David M, Olender T, Mizrahi O, Weingarten-Gabbay S, Friedlander G, Meril S, Goldberg N, Savidor A, Levin Y, Salomon V, Stern-Ginossar N, Bialik S, Kimchi A. DAP5 drives translation of specific mRNA targets with upstream ORFs in human embryonic stem cells. RNA. 2022;28:1325–1336. doi: 10.1261/rna.079194.122. PubMed DOI PMC
De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. The International Journal of Biochemistry & Cell Biology. 1999;31:59–72. doi: 10.1016/s1357-2725(98)00132-0. PubMed DOI
de la Parra C, Ernlund A, Alard A, Ruggles K, Ueberheide B, Schneider RJ. A widespread alternate form of cap-dependent mRNA translation initiation. Nature Communications. 2018a;9:3068. doi: 10.1038/s41467-018-05539-0. PubMed DOI PMC
de la Parra C, Walters BA, Geter P, Schneider RJ. Translation initiation factors and their relevance in cancer. Current Opinion in Genetics & Development. 2018b;48:82–88. doi: 10.1016/j.gde.2017.11.001. PubMed DOI PMC
des Georges A, Dhote V, Kuhn L, Hellen CUT, Pestova TV, Frank J, Hashem Y. Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature. 2015;525:491–495. doi: 10.1038/nature14891. PubMed DOI PMC
Dey S, Baird TD, Zhou D, Palam LR, Spandau DF, Wek RC. Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. The Journal of Biological Chemistry. 2010;285:33165–33174. doi: 10.1074/jbc.M110.167213. PubMed DOI PMC
Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–3290. doi: 10.1038/sj.onc.1210421. PubMed DOI
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Duan H, Zhang S, Zarai Y, Öllinger R, Wu Y, Sun L, Hu C, He Y, Tian G, Rad R, Kong X, Cheng Y, Tuller T, Wolf DA. eIF3 mRNA selectivity profiling reveals eIF3k as a cancer-relevant regulator of ribosome content. The EMBO Journal. 2023;42:e112362. doi: 10.15252/embj.2022112362. PubMed DOI PMC
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols. 2009;4:1184–1191. doi: 10.1038/nprot.2009.97. PubMed DOI PMC
Fukunaga R, Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. The EMBO Journal. 1997;16:1921–1933. doi: 10.1093/emboj/16.8.1921. PubMed DOI PMC
Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury LA, Pandolfi PP, Saad F, Sonenberg N. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. PNAS. 2010;107:14134–14139. doi: 10.1073/pnas.1005320107. PubMed DOI PMC
Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, Tenkerian C, Morita M, Balanathan P, Jean-Jean O, Stambolic V, Trost M, Furic L, Larose L, Koromilas AE, Asano K, Litchfield D, Larsson O, Topisirovic I. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nature Communications. 2016;7:11127. doi: 10.1038/ncomms11127. PubMed DOI PMC
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
Gerashchenko MV, Nesterchuk MV, Smekalova EM, Paulo JA, Kowalski PS, Akulich KA, Bogorad R, Dmitriev SE, Gygi S, Zatsepin T, Anderson DG, Gladyshev VN, Koteliansky VE. Translation elongation factor 2 depletion by siRNA in mouse liver leads to mTOR-independent translational upregulation of ribosomal protein genes. Scientific Reports. 2020;10:15473. doi: 10.1038/s41598-020-72399-4. PubMed DOI PMC
Gomes-Duarte A, Lacerda R, Menezes J, Romão L. eIF3: a factor for human health and disease. RNA Biology. 2018;15:26–34. doi: 10.1080/15476286.2017.1391437. PubMed DOI PMC
Guan B-J, van Hoef V, Jobava R, Elroy-Stein O, Valasek LS, Cargnello M, Gao X-H, Krokowski D, Merrick WC, Kimball SR, Komar AA, Koromilas AE, Wynshaw-Boris A, Topisirovic I, Larsson O, Hatzoglou M. A Unique ISR Program Determines Cellular Responses to Chronic Stress. Molecular Cell. 2017;68:885–900. doi: 10.1016/j.molcel.2017.11.007. PubMed DOI PMC
Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell. 2000;6:1099–1108. doi: 10.1016/s1097-2765(00)00108-8. PubMed DOI
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:169. doi: 10.1186/s12859-015-0611-3. PubMed DOI PMC
Herrmannová A, Prilepskaja T, Wagner S, Šikrová D, Zeman J, Poncová K, Valášek LS. Adapted formaldehyde gradient cross-linking protocol implicates human eIF3d and eIF3c, k and l subunits in the 43S and 48S pre-initiation complex assembly, respectively. Nucleic Acids Research. 2020;48:1969–1984. doi: 10.1093/nar/gkz1185. PubMed DOI PMC
Hershey JWB. The role of eIF3 and its individual subunits in cancer. Biochimica et Biophysica Acta. 2015;1849:792–800. doi: 10.1016/j.bbagrm.2014.10.005. PubMed DOI
Hinnebusch AG. Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation. Trends in Biochemical Sciences. 2017;42:589–611. doi: 10.1016/j.tibs.2017.03.004. PubMed DOI
Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, Billis K, Boddu S, Charkhchi M, Cummins C, Da Rin Fioretto L, Davidson C, Dodiya K, El Houdaigui B, Fatima R, Gall A, Garcia Giron C, Grego T, Guijarro-Clarke C, Haggerty L, Hemrom A, Hourlier T, Izuogu OG, Juettemann T, Kaikala V, Kay M, Lavidas I, Le T, Lemos D, Gonzalez Martinez J, Marugán JC, Maurel T, McMahon AC, Mohanan S, Moore B, Muffato M, Oheh DN, Paraschas D, Parker A, Parton A, Prosovetskaia I, Sakthivel MP, Salam AIA, Schmitt BM, Schuilenburg H, Sheppard D, Steed E, Szpak M, Szuba M, Taylor K, Thormann A, Threadgold G, Walts B, Winterbottom A, Chakiachvili M, Chaubal A, De Silva N, Flint B, Frankish A, Hunt SE, IIsley GR, Langridge N, Loveland JE, Martin FJ, Mudge JM, Morales J, Perry E, Ruffier M, Tate J, Thybert D, Trevanion SJ, Cunningham F, Yates AD, Zerbino DR, Flicek P. Ensembl 2021. Nucleic Acids Research. 2021;49:D884–D891. doi: 10.1093/nar/gkaa942. PubMed DOI PMC
Hronová V, Mohammad MP, Wagner S, Pánek J, Gunišová S, Zeman J, Poncová K, Valášek LS. Does eIF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells? RNA Biology. 2017;14:1660–1667. doi: 10.1080/15476286.2017.1353863. PubMed DOI PMC
Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protocols. 2012;7:1534–1550. doi: 10.1038/nprot.2012.086. PubMed DOI PMC
Ishikawa K. Multilayered regulation of proteome stoichiometry. Current Genetics. 2021;67:883–890. doi: 10.1007/s00294-021-01205-z. PubMed DOI PMC
Jelinek J. RibosomeProfiling. swh:1:rev:fd1134caba2a51c6bd4f7cc0d0450c9e12502c06Software Heritage. 2024 https://archive.softwareheritage.org/swh:1:dir:81308158211879ef16dc437b1096b3058f7d1f32;origin=https://github.com/cas-bioinf/RibosomeProfiling;visit=swh:1:snp:84e2af77c2e5ad23090e04596a7fcbef47e3c96a;anchor=swh:1:rev:fd1134caba2a51c6bd4f7cc0d0450c9e12502c06
Jin X, Turcott E, Englehardt S, Mize GJ, Morris DR. The two upstream open reading frames of oncogene mdm2 have different translational regulatory properties. The Journal of Biological Chemistry. 2003;278:25716–25721. doi: 10.1074/jbc.M300316200. PubMed DOI
Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Research. 2009;37:D159–D162. doi: 10.1093/nar/gkn772. PubMed DOI PMC
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MDM, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–339. doi: 10.1038/nature12634. PubMed DOI PMC
Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Science. 2020;29:28–35. doi: 10.1002/pro.3711. PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Science. 2022;31:47–53. doi: 10.1002/pro.4172. PubMed DOI PMC
Karampelias C, Watt K, Mattsson CL, Ruiz ÁF, Rezanejad H, Mi J, Liu X, Chu L, Locasale JW, Korbutt GS, Rovira M, Larsson O, Andersson O. MNK2 deficiency potentiates β-cell regeneration via translational regulation. Nature Chemical Biology. 2022;18:942–953. doi: 10.1038/s41589-022-01047-x. PubMed DOI PMC
King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S, Marshall MS. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature. 1998;396:180–183. doi: 10.1038/24184. PubMed DOI
Kouba T, Rutkai E, Karásková M, Valášek LS. The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Nucleic Acids Research. 2012;40:2683–2699. doi: 10.1093/nar/gkr1083. PubMed DOI PMC
Kovalski JR, Kuzuoglu‐Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. The EMBO Journal. 2022;41:e109823. doi: 10.15252/embj.2021109823. PubMed DOI PMC
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research. 2016;44:W90–W97. doi: 10.1093/nar/gkw377. PubMed DOI PMC
Kusnadi EP, Timpone C, Topisirovic I, Larsson O, Furic L. Regulation of gene expression via translational buffering. Biochimica et Biophysica Acta. Molecular Cell Research. 2022;1869:119140. doi: 10.1016/j.bbamcr.2021.119140. PubMed DOI
Lamper AM, Fleming RH, Ladd KM, Lee ASY. A phosphorylation-regulated eIF3d translation switch mediates cellular adaptation to metabolic stress. Science. 2020;370:853–856. doi: 10.1126/science.abb0993. PubMed DOI
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Lauria F, Tebaldi T, Bernabò P, Groen EJN, Gillingwater TH, Viero G. riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. PLOS Computational Biology. 2018;14:e1006169. doi: 10.1371/journal.pcbi.1006169. PubMed DOI PMC
Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nature Reviews. Molecular Cell Biology. 2020;21:607–632. doi: 10.1038/s41580-020-0255-7. PubMed DOI
Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5’ cap. Nature. 1990;345:544–547. doi: 10.1038/345544a0. PubMed DOI
Lee ASY, Kranzusch PJ, Cate JHD. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature. 2015;522:111–114. doi: 10.1038/nature14267. PubMed DOI PMC
Lee AS, Kranzusch PJ, Doudna JA, Cate JHD. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature. 2016;536:96–99. doi: 10.1038/nature18954. PubMed DOI PMC
Leppä S, Saffrich R, Ansorge W, Bohmann D. Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. The EMBO Journal. 1998;17:4404–4413. doi: 10.1093/emboj/17.15.4404. PubMed DOI PMC
Li X, Wang Z, Liu G, Guo J. EIF3D promotes the progression of preeclampsia by inhibiting of MAPK/ERK1/2 pathway. Reproductive Toxicology. 2021;105:166–174. doi: 10.1016/j.reprotox.2021.09.006. PubMed DOI
Lin Y, Li F, Huang L, Polte C, Duan H, Fang J, Sun L, Xing X, Tian G, Cheng Y, Ignatova Z, Yang X, Wolf DA. eIF3 Associates with 80S Ribosomes to Promote Translation Elongation, Mitochondrial Homeostasis, and Muscle Health. Molecular Cell. 2020;79:575–587. doi: 10.1016/j.molcel.2020.06.003. PubMed DOI
Lindqvist LM, Tandoc K, Topisirovic I, Furic L. Cross-talk between protein synthesis, energy metabolism and autophagy in cancer. Current Opinion in Genetics & Development. 2018;48:104–111. doi: 10.1016/j.gde.2017.11.003. PubMed DOI PMC
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Llácer JL, Hussain T, Dong J, Villamayor L, Gordiyenko Y, Hinnebusch AG. Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Nucleic Acids Research. 2021;49:11491–11511. doi: 10.1093/nar/gkab908. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Lu PD, Harding HP, Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. The Journal of Cell Biology. 2004;167:27–33. doi: 10.1083/jcb.200408003. PubMed DOI PMC
Manske F, Ogoniak L, Jürgens L, Grundmann N, Makałowski W, Wethmar K. The new uORFdb: integrating literature, sequence, and variation data in a central hub for uORF research. Nucleic Acids Research. 2023;51:D328–D336. doi: 10.1093/nar/gkac899. PubMed DOI PMC
Marine JC, Lozano G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death and Differentiation. 2010;17:93–102. doi: 10.1038/cdd.2009.68. PubMed DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
Morales J, Pujar S, Loveland JE, Astashyn A, Bennett R, Berry A, Cox E, Davidson C, Ermolaeva O, Farrell CM, Fatima R, Gil L, Goldfarb T, Gonzalez JM, Haddad D, Hardy M, Hunt T, Jackson J, Joardar VS, Kay M, Kodali VK, McGarvey KM, McMahon A, Mudge JM, Murphy DN, Murphy MR, Rajput B, Rangwala SH, Riddick LD, Thibaud-Nissen F, Threadgold G, Vatsan AR, Wallin C, Webb D, Flicek P, Birney E, Pruitt KD, Frankish A, Cunningham F, Murphy TD. A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature. 2022;604:310–315. doi: 10.1038/s41586-022-04558-8. PubMed DOI PMC
Mukhopadhyay S, Amodeo ME, Lee ASY. eIF3d controls the persistent integrated stress response. Molecular Cell. 2023;83:3303–3313. doi: 10.1016/j.molcel.2023.08.008. PubMed DOI PMC
Nilsson J, Sengupta J, Frank J, Nissen P. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Reports. 2004;5:1137–1141. doi: 10.1038/sj.embor.7400291. PubMed DOI PMC
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Reports. 2016;17:1374–1395. doi: 10.15252/embr.201642195. PubMed DOI PMC
Pearce SF, Cipullo M, Chung B, Brierley I, Rorbach J. Mitoribosome profiling from human cell culture: a high resolution view of mitochondrial translation. Methods in Molecular Biology. 2021;2192:183–196. doi: 10.1007/978-1-0716-0834-0_14. PubMed DOI
Philippe L, van den Elzen AMG, Watson MJ, Thoreen CC. Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5’ TOP motifs. PNAS. 2020;117:5319–5328. doi: 10.1073/pnas.1912864117. PubMed DOI PMC
Pisarev AV, Hellen CUT, Pestova TV. Recycling of eukaryotic posttermination ribosomal complexes. Cell. 2007;131:286–299. doi: 10.1016/j.cell.2007.08.041. PubMed DOI PMC
Poncová K, Wagner S, Jansen ME, Beznosková P, Gunišová S, Herrmannová A, Zeman J, Dong J, Valášek LS. uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3. Nucleic Acids Research. 2019;47:11326–11343. doi: 10.1093/nar/gkz929. PubMed DOI PMC
Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. The EMBO Journal. 1999;18:270–279. doi: 10.1093/emboj/18.1.270. PubMed DOI PMC
Rayburn E, Zhang R, He J, Wang H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Current Cancer Drug Targets. 2005;5:27–41. doi: 10.2174/1568009053332636. PubMed DOI
Rendleman J, Haizel S, Wu S, Liu J, Ge X, Zou H, Mohammad MP, Pressler M, Maity S, Hronová V. Regulatory Start-Stop Elements in 5’ Untranslated Regions Pervasively Modulate Translation. Cell Press; 2023. DOI
Robichaud N, del Rincon SV, Huor B, Alain T, Petruccelli LA, Hearnden J, Goncalves C, Grotegut S, Spruck CH, Furic L, Larsson O, Muller WJ, Miller WH, Sonenberg N. Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene. 2015;34:2032–2042. doi: 10.1038/onc.2014.146. PubMed DOI PMC
Robichaud N, Sonenberg N. Translational control and the cancer cell response to stress. Current Opinion in Cell Biology. 2017;45:102–109. doi: 10.1016/j.ceb.2017.05.007. PubMed DOI
Robichaud N, Sonenberg N, Ruggero D, Schneider RJ. Translational Control in Cancer. Cold Spring Harb Perspect Biol; 2019. PubMed DOI PMC
Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. PNAS. 2004;101:13489–13494. doi: 10.1073/pnas.0405659101. PubMed DOI PMC
Roux PP, Topisirovic I. Signaling Pathways Involved in the Regulation of mRNA Translation. Molecular and Cellular Biology. 2018;38:e00070-18. doi: 10.1128/MCB.00070-18. PubMed DOI PMC
Ruggero D. Translational Control in Cancer Etiology. Cold Spring Harb Perspect Biol 5; 2013. PubMed PMC
Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, Madej T, Marchler-Bauer A, Lanczycki C, Lathrop S, Lu Z, Thibaud-Nissen F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R, Trawick BW, Pruitt KD, Sherry ST. Database resources of the national center for biotechnology information. Nucleic Acids Research. 2022;50:D20–D26. doi: 10.1093/nar/gkab1112. PubMed DOI PMC
Scheper GC, van der Knaap MS, Proud CG. Translation matters: protein synthesis defects in inherited disease. Nature Reviews Genetics. 2007;8:711–723. doi: 10.1038/nrg2142. PubMed DOI
She R, Luo J, Weissman JS. Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity. Nucleic Acids Research. 2023;51:6355–6369. doi: 10.1093/nar/gkad329. PubMed DOI PMC
Shu XE, Mao Y, Jia L, Qian SB. Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress. Nature Chemical Biology. 2022;18:134–141. doi: 10.1038/s41589-021-00913-4. PubMed DOI PMC
Shuda M, Kondoh N, Tanaka K, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, Hatsuse K, Aihara T, Horiuchi S, Shichita M, Yamamoto N, Yamamoto M. Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer Research. 2000;20:2489–2494. PubMed
Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nature Reviews Cancer. 2010;10:254–266. doi: 10.1038/nrc2824. PubMed DOI
Simonetti A, Guca E, Bochler A, Kuhn L, Hashem Y. Structural insights into the mammalian late-stage initiation complexes. Cell Reports. 2020;31:107497. doi: 10.1016/j.celrep.2020.03.061. PubMed DOI PMC
Smekalova EM, Gerashchenko MV, O’Connor PBF, Whittaker CA, Kauffman KJ, Fefilova AS, Zatsepin TS, Bogorad RL, Baranov PV, Langer R, Gladyshev VN, Anderson DG, Koteliansky V. In vivo rnai-mediated eif3m knockdown affects ribosome biogenesis and transcription but has limited impact on mrna-specific translation. Molecular Therapy. Nucleic Acids. 2020;19:252–266. doi: 10.1016/j.omtn.2019.11.009. PubMed DOI PMC
Smirnova AM, Hronová V, Mohammad MP, Herrmannová A, Gunišová S, Petráčková D, Halada P, Coufal Š, Świrski M, Rendleman J, Jendruchová K, Hatzoglou M, Beznosková P, Vogel C, Valášek LS. Stem-loop-induced ribosome queuing in the uORF2/ATF4 overlap fine-tunes stress-induced human ATF4 translational control. Cell Reports. 2024;43:113976. doi: 10.1016/j.celrep.2024.113976. PubMed DOI PMC
Sodani K, Patel A, Kathawala RJ, Chen ZS. Multidrug resistance associated proteins in multidrug resistance. Chinese Journal of Cancer. 2012;31:58–72. doi: 10.5732/cjc.011.10329. PubMed DOI PMC
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–745. doi: 10.1016/j.cell.2009.01.042. PubMed DOI PMC
Spilka R, Ernst C, Mehta AK, Haybaeck J. Eukaryotic translation initiation factors in cancer development and progression. Cancer Letters. 2013;340:9–21. doi: 10.1016/j.canlet.2013.06.019. PubMed DOI
Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Reports. 2018;19:e45947. doi: 10.15252/embr.201845947. PubMed DOI PMC
Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science. 1994;264:1463–1467. doi: 10.1126/science.7811320. PubMed DOI
Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, Bae SS, Birnbaum MJ, Meyuhas O. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Molecular and Cellular Biology. 2002;22:8101–8113. doi: 10.1128/MCB.22.23.8101-8113.2002. PubMed DOI PMC
Topisirovic I, Ruiz-Gutierrez M, Borden KLB. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Research. 2004;64:8639–8642. doi: 10.1158/0008-5472.CAN-04-2677. PubMed DOI
Truitt ML, Ruggero D. New frontiers in translational control of the cancer genome. Nature Reviews. Cancer. 2016;16:288–304. doi: 10.1038/nrc.2016.27. PubMed DOI PMC
Tweedie S, Braschi B, Gray K, Jones TEM, Seal RL, Yates B, Bruford EA. Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Research. 2021;49:D939–D946. doi: 10.1093/nar/gkaa980. PubMed DOI PMC
Valásek LS. Ribozoomin’--translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs) Current Protein & Peptide Science. 2012;13:305–330. doi: 10.2174/138920312801619385. PubMed DOI PMC
Valášek LS, Zeman J, Wagner S, Beznosková P, Pavlíková Z, Mohammad MP, Hronová V, Herrmannová A, Hashem Y, Gunišová S. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Research. 2017;45:10948–10968. doi: 10.1093/nar/gkx805. PubMed DOI PMC
Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. PNAS. 2004;101:11269–11274. doi: 10.1073/pnas.0400541101. PubMed DOI PMC
Volta V, Pérez-Baos S, de la Parra C, Katsara O, Ernlund A, Dornbaum S, Schneider RJ. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells. Nature Communications. 2021;12:6979. doi: 10.1038/s41467-021-27087-w. PubMed DOI PMC
Wagner S, Herrmannová A, Malík R, Peclinovská L, Valášek LS. Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells. Molecular and Cellular Biology. 2014;34:3041–3052. doi: 10.1128/MCB.00663-14. PubMed DOI PMC
Wagner S, Herrmannová A, Šikrová D, Valášek LS. Human eIF3b and eIF3a serve as the nucleation core for the assembly of eIF3 into two interconnected modules: the yeast-like core and the octamer. Nucleic Acids Research. 2016;44:10772–10788. doi: 10.1093/nar/gkw972. PubMed DOI PMC
Wagner S, Herrmannová A, Hronová V, Gunišová S, Sen ND, Hannan RD, Hinnebusch AG, Shirokikh NE, Preiss T, Valášek LS. Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes. Molecular Cell. 2020;79:546–560. doi: 10.1016/j.molcel.2020.06.004. PubMed DOI PMC
Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. The EMBO Journal. 1997;16:1909–1920. doi: 10.1093/emboj/16.8.1909. PubMed DOI PMC
Wolf DA, Lin Y, Duan H, Cheng Y. eIF-Three to Tango: emerging functions of translation initiation factor eIF3 in protein synthesis and disease. Journal of Molecular Cell Biology. 2020;12:403–409. doi: 10.1093/jmcb/mjaa018. PubMed DOI PMC
Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunology Research. 2014;2:823–830. doi: 10.1158/2326-6066.CIR-14-0112. PubMed DOI PMC
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research. 2002;12:9–18. doi: 10.1038/sj.cr.7290105. PubMed DOI
Zhang L, Pan X, Hershey JWB. Individual overexpression of five subunits of human translation initiation factor eif3 promotes malignant transformation of immortal fibroblast cells. Journal of Biological Chemistry. 2007;282:5790–5800. doi: 10.1074/jbc.M606284200. PubMed DOI
Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. Journal of Hematology & Oncology. 2020;13:165. doi: 10.1186/s13045-020-00990-3. PubMed DOI PMC
GEO
GSE216967