Human eIF3b and eIF3a serve as the nucleation core for the assembly of eIF3 into two interconnected modules: the yeast-like core and the octamer
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
090812/B/09/Z
Wellcome Trust - United Kingdom
PubMed
27924037
PubMed Central
PMC5159561
DOI
10.1093/nar/gkw972
PII: gkw972
Knihovny.cz E-zdroje
- MeSH
- down regulace MeSH
- eukaryotický iniciační faktor 3 fyziologie MeSH
- HeLa buňky MeSH
- lidé MeSH
- multimerizace proteinu MeSH
- multiproteinové komplexy metabolismus MeSH
- proliferace buněk MeSH
- Saccharomyces cerevisiae MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- EIF3A protein, human MeSH Prohlížeč
- EIF3B protein, human MeSH Prohlížeč
- eukaryotický iniciační faktor 3 MeSH
- multiproteinové komplexy MeSH
The 12-subunit mammalian eIF3 is the largest and most complex translation initiation factor and has been implicated in numerous steps of translation initiation, termination and ribosomal recycling. Imbalanced eIF3 expression levels are observed in various types of cancer and developmental disorders, but the consequences of altered eIF3 subunit expression on its overall structure and composition, and on translation in general, remain unclear. We present the first complete in vivo study monitoring the effects of RNAi knockdown of each subunit of human eIF3 on its function, subunit balance and integrity. We show that the eIF3b and octameric eIF3a subunits serve as the nucleation core around which other subunits assemble in an ordered way into two interconnected modules: the yeast-like core and the octamer, respectively. In the absence of eIF3b neither module forms in vivo, whereas eIF3d knock-down results in severe proliferation defects with no impact on eIF3 integrity. Disrupting the octamer produces an array of subcomplexes with potential roles in translational regulation. This study, outlining the mechanism of eIF3 assembly and illustrating how imbalanced expression of eIF3 subunits impacts the factor's overall expression profile, thus provides a comprehensive guide to the human eIF3 complex and to the relationship between eIF3 misregulation and cancer.
Zobrazit více v PubMed
Hershey J.W. The role of eIF3 and its individual subunits in cancer. Biochim. Biophys. Acta. 2015;1849:792–800. PubMed
Silvera D., Formenti S.C., Schneider R.J. Translational control in cancer. Nat. Rev. Cancer. 2010;10:254–266. PubMed
Spilka R., Ernst C., Mehta A.K., Haybaeck J. Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett. 2013;340:9–21. PubMed
Valášek L.S. 'Ribozoomin’ – translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs) Curr. Protein Pept. Sci. 2012;13:305–330. PubMed PMC
Hinnebusch A.G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 2014;83:779–812. PubMed
Unbehaun A., Borukhov S.I., Hellen C.U., Pestova T.V. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev. 2004;18:3078–3093. PubMed PMC
Zhou M., Sandercock A.M., Fraser C.S., Ridlova G., Stephens E., Schenauer M.R., Yokoi-Fong T., Barsky D., Leary J.A., Hershey J.W., et al. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc. Natl. Acad. Sci. U.S.A. 2008;105:18139–18144. PubMed PMC
Fraser C.S., Lee J.Y., Mayeur G.L., Bushell M., Doudna J.A., Hershey J.W. The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40S ribosomal subunits in vitro. J. Biol. Chem. 2004;279:8946–8956. PubMed
Valášek L., Phan L., Schoenfeld L.W., Valášková V., Hinnebusch A.G. Related eIF3 subunits TIF32 and HCR1 interact with an RNA recoginition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO J. 2001;20:891–904. PubMed PMC
Nielsen K.H., Valášek L., Sykes C., Jivotovskaya A., Hinnebusch A.G. Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast. Mol. Cell. Biol. 2006;26:2984–2998. PubMed PMC
ElAntak L., Wagner S., Herrmannová A., Karásková M., Rutkai E., Lukavsky P.J., Valášek L. The indispensable N-terminal half of eIF3j co-operates with its structurally conserved binding partner eIF3b-RRM and eIF1A in stringent AUG selection. J. Mol. Biol. 2010;396:1097–1116. PubMed PMC
Kolupaeva V.G., Unbehaun A., Lomakin I.B., Hellen C.U., Pestova T.V. Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA. 2005;11:470–486. PubMed PMC
Beznosková P., Cuchalová L., Wagner S., Shoemaker C.J., Gunišová S., Von der Haar T., Valášek L.S. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet. 2013;9:e1003962. PubMed PMC
Lee A.S., Kranzusch P.J., Cate J.H. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature. 2015;522:111–114. PubMed PMC
Meyer K.D., Patil D.P., Zhou J., Zinoviev A., Skabkin M.A., Elemento O., Pestova T.V., Qian S.B., Jaffrey S.R. 5′ UTR m(6)A promotes cap-independent translation. Cell. 2015;163:999–1010. PubMed PMC
Shah M., Su D., Scheliga J.S., Pluskal T., Boronat S., Motamedchaboki K., Campos A.R., Qi F., Hidalgo E., Yanagida M., et al. A transcript-specific eIF3 complex mediates global translational control of energy metabolism. Cell Rep. 2016;16:1891–1902. PubMed PMC
Szamecz B., Rutkai E., Cuchalova L., Munzarova V., Herrmannova A., Nielsen K.H., Burela L., Hinnebusch A.G., Valášek L. eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev. 2008;22:2414–2425. PubMed PMC
Munzarová V., Pánek J., Gunišová S., Dányi I., Szamecz B., Valášek L.S. Translation reinitiation relies on the interaction between eIF3a/TIF32 and progressively folded cis-acting mRNA elements preceding short uORFs. PLoS Genet. 2011;7:e1002137. PubMed PMC
Gunisova S., Valasek L.S. Fail-safe mechanism of GCN4 translational control-uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Res. 2014;42:5880–5893. PubMed PMC
von Arnim A.G., Jia Q., Vaughn J.N. Regulation of plant translation by upstream open reading frames. Plant Sci. 2014;214:1–12. PubMed
Pisarev A.V., Hellen C.U.T., Pestova T.V. Recycling of eukaryotic posttermination ribosomal complexes. Cell. 2007;131:286–299. PubMed PMC
Beznoskova P., Wagner S., Jansen M.E., von der Haar T., Valasek L.S. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res. 2015;43:5099–5111. PubMed PMC
Beznoskova P., Gunisova S., Valasek L.S. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA. 2016;22:456–466. PubMed PMC
Choudhuri A., Maitra U., Evans T. Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis. Proc. Natl. Acad. Sci. U.S.A. 2013;110:9818–9823. PubMed PMC
Yuan Y., Zhang Y., Yao S., Shi H., Huang X., Li Y., Wei Y., Lin S. The translation initiation factor eIF3i up-regulates vascular endothelial growth factor A, accelerates cell proliferation, and promotes angiogenesis in embryonic development and tumorigenesis. J. Biol. Chem. 2014;289:28310–28323. PubMed PMC
Zeng L., Wan Y., Li D., Wu J., Shao M., Chen J., Hui L., Ji H., Zhu X. The m subunit of murine translation initiation factor eIF3 maintains the integrity of the eIF3 complex and is required for embryonic development, homeostasis, and organ size control. J. Biol. Chem. 2013;288:30087–30093. PubMed PMC
Gildea D.E., Luetkemeier E.S., Bao X., Loftus S.K., Mackem S., Yang Y., Pavan W.J., Biesecker L.G. The pleiotropic mouse phenotype extra-toes spotting is caused by translation initiation factor Eif3c mutations and is associated with disrupted sonic hedgehog signaling. FASEB J. 2011;25:1596–1605. PubMed PMC
Siridechadilok B., Fraser C.S., Hall R.J., Doudna J.A., Nogales E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science. 2005;310:1513–1515. PubMed
Querol-Audi J., Sun C., Vogan J.M., Smith M.D., Gu Y., Cate J.H., Nogales E. Architecture of human translation initiation factor 3. Structure. 2013;21:920–928. PubMed PMC
Ellisdon A.M., Stewart M. Structural biology of the PCI-protein fold. Bioarchitecture. 2012;2:118–123. PubMed PMC
Pick E., Hofmann K., Glickman M.H. PCI complexes: beyond the proteasome, CSN, and eIF3 Troika. Mol. Cell. 2009;35:260–264. PubMed
des Georges A., Dhote V., Kuhn L., Hellen C.U., Pestova T.V., Frank J., Hashem Y. Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature. 2015;525:491–495. PubMed PMC
Sun C., Todorovic A., Querol-Audi J., Bai Y., Villa N., Snyder M., Ashchyan J., Lewis C.S., Hartland A., Gradia S., et al. Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3) Proc. Natl. Acad. Sci. U.S.A. 2011;108:20473–20478. PubMed PMC
Hashem Y., des Georges A., Dhote V., Langlois R., Liao H.Y., Grassucci R.A., Hellen C.U., Pestova T.V., Frank J. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell. 2013;153:1108–1119. PubMed PMC
Hashem Y., des Georges A., Dhote V., Langlois R., Liao H.Y., Grassucci R.A., Pestova T.V., Hellen C.U., Frank J. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Nature. 2013;503:539–543. PubMed PMC
Rezende A.M., Assis L.A., Nunes E.C., da Costa Lima T.D., Marchini F.K., Freire E.R., Reis C.R., de Melo Neto O.P. The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates–identification of conserved and divergent features based on orthologue analysis. BMC Genomics. 2014;15:1175. PubMed PMC
Phan L., Zhang X., Asano K., Anderson J., Vornlocher H.P., Greenberg J.R., Qin J., Hinnebusch A.G. Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol. Cell. Biol. 1998;18:4935–4946. PubMed PMC
Valášek L., Hašek J., Trachsel H., Imre E.M., Ruis H. The Saccharomyces cerevisiae HCRI gene encoding a homologue of the p35 subunit of human translation eukaryotic initiation factor 3 (eIF3) is a high copy suppressor of a temperature-sensitive mutation in the Rpg1p subunit of yeast eIF3. J. Biol. Chem. 1999;274:27567–27572. PubMed
Wagner S., Herrmannova A., Malik R., Peclinovska L., Valasek L.S. Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells. Mol. Cell. Biol. 2014;34:3041–3052. PubMed PMC
Smith M.D., Arake-Tacca L., Nitido A., Montabana E., Park A., Cate J.H. Assembly of eIF3 mediated by mutually dependent subunit insertion. Structure. 2016;24:886–896. PubMed PMC
Zhang L., Pan X., Hershey J.W. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 2007;282:5790–5800. PubMed
Valášek L., Nielsen K.H., Hinnebusch A.G. Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J. 2002;21:5886–5898. PubMed PMC
Phan L., Schoenfeld L.W., Valášek L., Nielsen K.H., Hinnebusch A.G. A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNAiMet. EMBO J. 2001;20:2954–2965. PubMed PMC
Dong Z., Qi J., Peng H., Liu J., Zhang J.T. Spectrin domain of eukaryotic initiation factor 3a is the docking site for formation of the a:b:i:g subcomplex. J. Biol. Chem. 2013;288:27951–27959. PubMed PMC
Zhou C., Arslan F., Wee S., Krishnan S., Ivanov A.R., Oliva A., Leatherwood J., Wolf D.A. PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol. 2005;3:14. PubMed PMC
Sha Z., Brill L.M., Cabrera R., Kleifeld O., Scheliga J.S., Glickman M.H., Chang E.C., Wolf D.A. The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol. Cell. 2009;36:141–152. PubMed PMC
Smith M.D., Gu Y., Querol-Audi J., Vogan J.M., Nitido A., Cate J.H. Human-like eukaryotic translation initiation factor 3 from Neurospora crassa. PLoS One. 2013;8:e78715. PubMed PMC
Cattie D.J., Richardson C.E., Reddy K.C., Ness-Cohn E.M., Droste R., Thompson M.K., Gilbert W.V., Kim D.H. Mutations in nonessential eIF3k and eIF3l genes confer lifespan extension and enhanced resistance to ER stress in Caenorhabditis elegans. PLoS Genet. 2016;12:e1006326. PubMed PMC
Ray A., Bandyopadhyay A., Matsumoto T., Deng H., Maitra U. Fission yeast translation initiation factor 3 subunit eIF3h is not essential for global translation initiation, but deletion of eif3h+ affects spore formation. Yeast. 2008;25:809–823. PubMed
Herrmannová A., Daujotyte D., Yang J.C., Cuchalová L., Gorrec F., Wagner S., Danyi I., Lukavsky P.J., Valášek L.S. Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-Initiation complex assembly. Nucleic Acids Res. 2012;40:2294–2311. PubMed PMC
Cuchalová L., Kouba T., Herrmannová A., Danyi I., Chiu W.-l, Valášek L. The RNA recognition motif of eukaryotic translation initiation factor 3g (eIF3g) is required for resumption of scanning of posttermination ribosomes for reinitiation on GCN4 and together with eIF3i stimulates linear scanning. Mol. Cell. Biol. 2010;30:4671–4686. PubMed PMC
Smith C.L., Horowitz-Scherer R., Flanagan J.F., Woodcock C.L., Peterson C.L. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat. Struct. Biol. 2003;10:141–145. PubMed
Lee A.S., Kranzusch P.J., Doudna J.A., Cate J.H. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature. 2016;536:96–99. PubMed PMC
A Unique ISR Program Determines Cellular Responses to Chronic Stress
Does eIF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells?