Translation reinitiation relies on the interaction between eIF3a/TIF32 and progressively folded cis-acting mRNA elements preceding short uORFs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
090812
Wellcome Trust - United Kingdom
Howard Hughes Medical Institute - United States
076456
Wellcome Trust - United Kingdom
090812/B/09/Z
Wellcome Trust - United Kingdom
076456/Z/05/Z
Wellcome Trust - United Kingdom
PubMed
21750682
PubMed Central
PMC3131280
DOI
10.1371/journal.pgen.1002137
PII: PGENETICS-D-11-00397
Knihovny.cz E-zdroje
- MeSH
- 5' nepřekládaná oblast MeSH
- 5' přiléhající oblast DNA MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- eukaryotický iniciační faktor 3 * genetika metabolismus MeSH
- malé podjednotky ribozomu eukaryotické genetika metabolismus MeSH
- messenger RNA * genetika metabolismus MeSH
- otevřené čtecí rámce genetika MeSH
- regulační oblasti nukleových kyselin MeSH
- ribozomální proteiny genetika metabolismus MeSH
- ribozomy * genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny * genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- transkripční faktory bZIP genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- zesilovače transkripce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- DNA vazebné proteiny MeSH
- eukaryotický iniciační faktor 3 * MeSH
- GCN4 protein, S cerevisiae MeSH Prohlížeč
- messenger RNA * MeSH
- ribozomální proteiny MeSH
- RPG1 protein, S cerevisiae MeSH Prohlížeč
- RPS0A protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny * MeSH
- transkripční faktory bZIP MeSH
- transkripční faktory MeSH
Reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream uORFs to retain post-termination 40S subunits on mRNA. Its efficiency depends on surrounding cis-acting sequences, uORF elongation rates, various initiation factors, and the intercistronic distance. To unravel effects of cis-acting sequences, we investigated previously unconsidered structural properties of one such a cis-enhancer in the mRNA leader of GCN4 using yeast genetics and biochemistry. This leader contains four uORFs but only uORF1, flanked by two transferrable 5' and 3' cis-acting sequences, and allows efficient reinitiation. Recently we showed that the 5' cis-acting sequences stimulate reinitiation by interacting with the N-terminal domain (NTD) of the eIF3a/TIF32 subunit of the initiation factor eIF3 to stabilize post-termination 40S subunits on uORF1 to resume scanning downstream. Here we identify four discernible reinitiation-promoting elements (RPEs) within the 5' sequences making up the 5' enhancer. Genetic epistasis experiments revealed that two of these RPEs operate in the eIF3a/TIF32-dependent manner. Likewise, two separate regions in the eIF3a/TIF32-NTD were identified that stimulate reinitiation in concert with the 5' enhancer. Computational modeling supported by experimental data suggests that, in order to act, the 5' enhancer must progressively fold into a specific secondary structure while the ribosome scans through it prior uORF1 translation. Finally, we demonstrate that the 5' enhancer's stimulatory activity is strictly dependent on and thus follows the 3' enhancer's activity. These findings allow us to propose for the first time a model of events required for efficient post-termination resumption of scanning. Strikingly, structurally similar RPE was predicted and identified also in the 5' leader of reinitiation-permissive uORF of yeast YAP1. The fact that it likewise operates in the eIF3a/TIF32-dependent manner strongly suggests that at least in yeasts the underlying mechanism of reinitiation on short uORFs is conserved.
Zobrazit více v PubMed
Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–127. PubMed PMC
Calvo SE, Pagliarini DJ, Mootha VK. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. PNAS. 2009;106:7507–7512. PubMed PMC
Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986;44:283–292. PubMed
Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science. 2009;324:218–223. PubMed PMC
Ivanov IP, Loughran G, Atkins JF. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. PNAS. 2008;105:10079–10084. PubMed PMC
Hood HM, Neafsey DE, Galagan J, Sachs MS. Evolutionary Roles of Upstream Open Reading Frames in Mediating Gene Regulation in Fungi. Annual Review of Microbiology. 2009;63:385–409. PubMed
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene. 2005;361:13–37. PubMed
Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol. 2005;59:407–450. PubMed
Kozak M. Constraints on reinitiation of translation in mammals. Nucleic Acids Res. 2001;29:5226–5232. PubMed PMC
Szamecz B, Rutkai E, Cuchalova L, Munzarova V, Herrmannova A, et al. eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev. 2008;22:2414–2425. PubMed PMC
Dever TE. Gene-specific regulation by general translation factors. Cell. 2002;108:545–556. PubMed
Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A. 2004;101:11269–11274. PubMed PMC
Grant CM, Hinnebusch AG. Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control. Mol Cell Biol. 1994;14:606–618. PubMed PMC
Grant CM, Miller PF, Hinnebusch AG. Sequences 5′ of the first upstream open reading frame in GCN4 mRNA are required for efficient translational reinitiation. Nuc Acids Res. 1995;23:3980–3988. PubMed PMC
Valášek L, Mathew A, Shin BS, Nielsen KH, Szamecz B, et al. The Yeast eIF3 Subunits TIF32/a and NIP1/c and eIF5 Make Critical Connections with the 40S Ribosome in vivo. Genes Dev. 2003;17:786–799. PubMed PMC
Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. Science. in press; 2011. Crystal Structure of the Eukaryotic 40S Ribosomal Subunit in Complex with Initiation Factor 1. PubMed
Cuchalová L, Kouba T, Herrmannová A, Danyi I, Chiu W-l, et al. The RNA Recognition Motif of Eukaryotic Translation Initiation Factor 3g (eIF3g) Is Required for Resumption of Scanning of Posttermination Ribosomes for Reinitiation on GCN4 and Together with eIF3i Stimulates Linear Scanning. Mol Cell Biol. 2010;30:4671–4686. PubMed PMC
Vilela C, Linz B, Rodrigues-Pousada C, McCarthy JE. The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Nucleic Acids Res. 1998;26:1150–1159. PubMed PMC
Miller PF, Hinnebusch AG. Sequences that surround the stop codons of upstream open reading frames in GCN4 mRNA determine their distinct functions in translational control. Genes and Development. 1989;3:1217–1225. PubMed
Ruiz-Echevarria MJ, Peltz SW. The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell. 2000;101:741–751. PubMed
Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, et al. Fast Folding and Comparison of RNA Secondary Structures. MonatshChem. 1994;125:167–188.
Chen Y, Kortemme T, Robertson T, Baker D, Varani G. A new hydrogen-bonding potential for the design of protein-RNA interactions predicts specific contacts and discriminates decoys. Nucleic Acids Research. 2004;32:5147–5162. PubMed PMC
Pestova TV, Kolupaeva VG. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 2002;16:2906–2922. PubMed PMC
Wethmar K, Begay V, Smink JJ, Zaragoza K, Wiesenthal V, et al. C/EBPbetaDeltauORF mice – a genetic model for uORF-mediated translational control in mammals. Genes & Development. 2010;24:15–20. PubMed PMC
Wiestner A, Schlemper RJ, van der Maas APC, Skoda RC. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat Genet. 1998;18:49–52. PubMed
Wen Y, Liu Y, Xu Y, Zhao Y, Hua R, et al. Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nat Genet. 2009;41:228–233. PubMed
Liu L, Dilworth D, Gao L, Monzon J, Summers A, et al. Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet. 1999;21:128–132. PubMed
Griffin E, Re A, Hamel N, Fu C, Bush H, et al. A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Nat Med. 2001;7:840–846. PubMed
Zhou W, Song W. Leaky scanning and reinitiation regulate BACE1 gene expression. Mol Cell Biol. 2006;26:3353–3364. PubMed PMC
Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, et al. The Role of ABCE1 in Eukaryotic Posttermination Ribosomal Recycling. 2010;37:196–210. PubMed PMC
Pisarev AV, Kolupaeva VG, Yusupov MM, Hellen CUT, Pestova TV. Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J. 2008;27:1609–1621. PubMed PMC
Park HS, Himmelbach A, Browning KS, Hohn T, Ryabova LA. A plant viral “reinitiation” factor interacts with the host translational machinery. Cell. 2001;106:723–733. PubMed
Roy B, Vaughn JN, Kim B-H, Zhou F, Gilchrist MA, et al. The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames. RNA. 2010;16:748–761. PubMed PMC
Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, et al. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell. 2007;26:41–50. PubMed
Pöyry TA, Kaminski A, Connell EJ, Fraser CS, Jackson RJ. The mechanism of an exceptional case of reinitiation after translation of a long ORF reveals why such events do not generally occur in mammalian mRNA translation. Genes Dev. 2007;21:3149–3162. PubMed PMC
Luttermann C, Meyers G. The importance of inter- and intramolecular base pairing for translation reinitiation on a eukaryotic bicistronic mRNA. Genes Dev. 2009;23:331–344. PubMed PMC
Kyu Young S, Chun Sung K, Cheol Kyu H, Hack Sun C, Ping-Yee L, et al. uAUG-mediated translational initiations are responsible for human mu opioid receptor gene expression. Journal of Cellular and Molecular Medicine. 2010;14:1113–1124. PubMed PMC
Calkhoven CR, Muller C, Leutz A. Translational control of C/EBPa and C/EBPb isoform expression. Genes Dev. 2000;14:1920–1932. PubMed PMC
Nielsen KH, Valášek L. In vivo deletion analysis of the architecture of a multi-protein complex of translation initiation factors. Methods Enzymol. 2007;431:15–32. PubMed
Valášek L, Phan L, Schoenfeld LW, Valášková V, Hinnebusch AG. Related eIF3 subunits TIF32 and HCR1 interact with an RNA recoginition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO J. 2001;20:891–904. PubMed PMC
Please do not recycle! Translation reinitiation in microbes and higher eukaryotes
Does eIF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells?
Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast
Translation initiation factor eIF3 promotes programmed stop codon readthrough