Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control

. 2022 Oct ; 17 (10) : 2139-2187. [epub] 20220722

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35869369
Odkazy

PubMed 35869369
DOI 10.1038/s41596-022-00708-4
PII: 10.1038/s41596-022-00708-4
Knihovny.cz E-zdroje

Multiple aspects of mRNA translation are subject to regulation. Here we present a ribosome footprinting protocol to determine the location and composition of 40S and 80S ribosome complexes on endogenous mRNAs transcriptome-wide in vivo in yeast and mammalian cells. We present an extension of the translation complex profiling (TCP-seq) protocol, originally developed in yeast, by including an immunoprecipitation step to assay the location of both 40S and 80S ribosome complexes containing proteins of interest. This yields information on where along mRNAs the ribosome-bound protein of interest joins the ribosome to act, and where it leaves again, thereby monitoring the sequential steps of translation and the roles of various translation factors therein. Rapid fixation of live cells ensures the integrity of all translation complexes bound to mRNA at native positions. Two procedures are described, differing mainly in the fixation conditions and the library preparation. Depending on the research question, either procedure offers advantages. Execution of a Sel-TCP-seq experiment takes 5-10 working days, and initial data analysis can be completed within 2 days.

Zobrazit více v PubMed

Tahmasebi, S., Khoutorsky, A., Mathews, M. B. & Sonenberg, N. Translation deregulation in human disease. Nat. Rev. Mol. Cell Biol. 19, 791–807 (2018). PubMed DOI

Kronstad, L. M. & Glaunsinger, B. A. Diverse virus–host interactions influence RNA-based regulation during γ-herpesvirus infection. Curr. Opin. Microbiol. 15, 506–511 (2012). PubMed DOI PMC

Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009). PubMed DOI PMC

Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012). PubMed DOI PMC

Janich, P., Arpat, A. B., Castelo-Szekely, V., Lopes, M. & Gatfield, D. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res. 25, 1848–1859 (2015). PubMed DOI PMC

Chotewutmontri, P., Stiffler, N., Watkins, K. P. & Barkan, A. Ribosome profiling in maize. Maize. Methods Mol. Biol. 1676, 165–183 (2018). PubMed DOI

Mohammad, F., Green, R. & Buskirk, A. R. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. eLife 8, e42591 (2019). PubMed DOI PMC

Gelsinger, D. R. et al. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res. 48, 5201–5216 (2020). PubMed DOI PMC

Jensen, B. C. et al. Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15, 911 (2014). PubMed DOI PMC

Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome profiling: global views of translation. Cold Spring Harb. Perspect. Biol. 11, a032698 (2019). PubMed DOI PMC

Shirokikh, N. E., Archer, S. K., Beilharz, T. H., Powell, D. & Preiss, T. Translation complex profile sequencing to study the in vivo dynamics of mRNA–ribosome interactions during translation initiation, elongation and termination. Nat. Protoc. 12, 697–731 (2017). PubMed DOI

Archer, S. K., Shirokikh, N. E., Beilharz, T. H. & Preiss, T. Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature 535, 570–574 (2016). PubMed DOI

Sen, N. D. et al. Functional interplay between DEAD-box RNA helicases Ded1 and Dbp1 in preinitiation complex attachment and scanning on structured mRNAs in vivo. Nucleic Acids Res. 47, 8785–8806 (2019). PubMed PMC

Wagner, S. et al. Selective translation complex profiling reveals staged initiation and co-translational assembly of initiation factor complexes. Mol. Cell 79, 546–560.e7 (2020). PubMed DOI PMC

Bohlen, J., Fenzl, K., Kramer, G., Bukau, B. & Teleman, A. A. Selective 40S footprinting reveals cap-tethered ribosome scanning in human cells. Mol. Cell 79, 561–574.e5 (2020). PubMed DOI

Jackson, V. Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell 15, 945–954 (1978). PubMed DOI

Toews, J., Rogalski, J. C. & Kast, J. Accessibility governs the relative reactivity of basic residues in formaldehyde-induced protein modifications. Anal. Chim. Acta 676, 60–67 (2010). PubMed DOI

Solomon, M. J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl. Acad. Sci. USA 82, 6470–6474 (1985). PubMed DOI PMC

Valášek, L., Szamecz, B., Hinnebusch, A. G. & Nielsen, K. H. In vivo stabilization of preinitiation complexes by formaldehyde cross-linking. Methods Enzym. 429, 163–183 (2007). DOI

Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295–1308 (2011). PubMed DOI PMC

Wong, C. C., Traynor, D., Basse, N., Kay, R. R. & Warren, A. J. Defective ribosome assembly in Shwachman–Diamond syndrome. Blood 118, 4305–4312 (2011). PubMed DOI

Liu, B. & Qian, S.-B. Characterizing inactive ribosomes in translational profiling. Translation 4, e1138018 (2016). PubMed DOI PMC

Vaklavas, C., Blume, S. W. & Grizzle, W. E. Translational dysregulation in cancer: molecular insights and potential clinical applications in biomarker development. Front. Oncol. 7, 158 (2017). PubMed DOI PMC

Baser, A. et al. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104 (2019). PubMed DOI

Luchessi, A. D. et al. Involvement of eukaryotic translation initiation factor 5A (eIF5A) in skeletal muscle stem cell differentiation. J. Cell. Physiol. 218, 480–489 (2009). PubMed DOI

Sampath, P. et al. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2, 448–460 (2008). PubMed DOI

Holt, C. E. & Schuman, E. M. The central dogma decentralized: new perspectives on RNA function and local translation in. neurons. Neuron 80, 648–657 (2013). PubMed DOI

Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019). PubMed DOI

Glock, C., Heumüller, M. & Schuman, E. M. mRNA transport & local translation in neurons. Curr. Opin. Neurobiol. 45, 169–177 (2017). PubMed DOI

Ichihara, K. et al. Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Res. 49, 7298–7317 (2021). PubMed DOI PMC

Young, D. J., Meydan, S. & Guydosh, N. R. 40S ribosome profiling reveals distinct roles for Tma20/Tma22 (MCT-1/DENR) and Tma64 (eIF2D) in 40S subunit recycling. Nat. Commun. 12, 2976 (2021). PubMed DOI PMC

McGlincy, N. J. & Ingolia, N. T. Transcriptome-wide measurement of translation by ribosome profiling. Methods 126, 112–129 (2017). PubMed DOI PMC

Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015). PubMed DOI PMC

Gerashchenko, M. V. & Gladyshev, V. N. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134–e134 (2014). PubMed DOI PMC

Wu, C. C.-C., Zinshteyn, B., Wehner, K. A. & Green, R. High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Mol. Cell 73, 959–970.e5 (2019). PubMed DOI PMC

Lareau, L. F., Hite, D. H., Hogan, G. J. & Brown, P. O. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife 3, 01257 (2014). DOI

Becker, A. H., Oh, E., Weissman, J. S., Kramer, G. & Bukau, B. Selective ribosome profiling as a tool for studying the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes. Nat. Protoc. 8, 2212–2239 (2013). PubMed DOI PMC

Döring, K. et al. Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding. Cell 170, 298–311.e20 (2017). PubMed DOI PMC

Shiber, A. et al. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 561, 268–272 (2018). PubMed DOI PMC

Zinshteyn, B., Wangen, J. R., Hua, B. & Green, R. Nuclease-mediated depletion biases in ribosome footprint profiling libraries. RNA 26, 1481–1488 (2020). PubMed DOI PMC

Ingolia, N. T. Genome-wide translational profiling by ribosome footprinting. Methods Enzym. 470, 119–142 (2010). DOI

Pringle, E. S., McCormick, C. & Cheng, Z. Polysome profiling analysis of mRNA and associated proteins engaged in translation. Curr. Protoc. Mol. Biol. 125, e79 (2019). PubMed DOI

Pospísek, M. & Valásek, L. Polysome profile analysis – yeast. Methods Enzymol. 530, 173–181 (2013). PubMed DOI

He, S. L. & Green, R. Polysome analysis of mammalian cells. Methods Enzymol. 530, 183–192 (2013). PubMed DOI

Meydan, S. & Guydosh, N. R. Disome and trisome profiling reveal genome-wide targets of ribosome quality control. Mol. Cell 79, 588–602.e6 (2020). PubMed DOI PMC

Han, P. et al. Genome-wide survey of ribosome collision. Cell Rep. 31, 107610 (2020). PubMed DOI PMC

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011). DOI

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). PubMed DOI PMC

Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed DOI PMC

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). PubMed DOI PMC

Lin, Y. et al. eIF3 associates with 80S ribosomes to promote translation elongation, mitochondrial homeostasis, and muscle health. Mol. Cell 79, 575–587.e7 (2020). PubMed DOI

Gu, Y., Mao, Y., Jia, L., Dong, L. & Qian, S.-B. Bi-directional ribosome scanning controls the stringency of start codon selection. Nat. Commun. 12, 6604 (2021). PubMed DOI PMC

Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). PubMed DOI PMC

Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015). PubMed DOI PMC

Giess, A. et al. Profiling of small ribosomal subunits reveals modes and regulation of translation initiation. Cell Rep. 31, 107534 (2020). PubMed DOI

Teleman, A. Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control. aurelioteleman/Teleman-Lab: v1.0.0 (v1.0.0), Zenodo (2021)

Clemm von Hohenberg, K. et al. Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division. Nat. Commun. 13, 668 (2022). PubMed DOI PMC

Wagner, S. Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control. Zuzalka/TCP-seq: (v1.0.0-alpha), Zenodo (2022)

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Stem-loop-induced ribosome queuing in the uORF2/ATF4 overlap fine-tunes stress-induced human ATF4 translational control

. 2024 Apr 23 ; 43 (4) : 113976. [epub] 20240319

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace