TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
084316/B/07/Z
Wellcome Trust - United Kingdom
PubMed
27647875
PubMed Central
PMC5069555
DOI
10.15252/embj.201694857
PII: embj.201694857
Knihovny.cz E-zdroje
- Klíčová slova
- DIS3L2, RNA surveillance, TSSa, ncRNAs, uridylation,
- MeSH
- buněčné linie MeSH
- exoribonukleasy genetika metabolismus MeSH
- imunoprecipitace MeSH
- lidé MeSH
- nekódující RNA metabolismus MeSH
- nukleotidyltransferasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DIS3L2 protein, human MeSH Prohlížeč
- exoribonukleasy MeSH
- nekódující RNA MeSH
- nukleotidyltransferasy MeSH
Uridylation of various cellular RNA species at the 3' end has been generally linked to RNA degradation. In mammals, uridylated pre-let-7 miRNAs and mRNAs are targeted by the 3' to 5' exoribonuclease DIS3L2. Mutations in DIS3L2 have been associated with Perlman syndrome and with Wilms tumor susceptibility. Using in vivo cross-linking and immunoprecipitation (CLIP) method, we discovered the DIS3L2-dependent cytoplasmic uridylome of human cells. We found a broad spectrum of uridylated RNAs including rRNAs, snRNAs, snoRNAs, tRNAs, vault, 7SL, Y RNAs, mRNAs, lncRNAs, and transcripts from pseudogenes. The unifying features of most of these identified RNAs are aberrant processing and the presence of stable secondary structures. Most importantly, we demonstrate that uridylation mediates DIS3L2 degradation of short RNA polymerase II-derived RNAs. Our findings establish the role of DIS3L2 and oligouridylation as the cytoplasmic quality control for highly structured ncRNAs.
Biozentrum University of Basel and Swiss Institute of Bioinformatics Basel Switzerland
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Abernathy E, Gilbertson S, Alla R, Glaunsinger B (2015) Viral Nucleases Induce an mRNA Degradation‐Transcription Feedback Loop in Mammalian Cells. Cell Host Microbe 18: 243–253 PubMed PMC
Astuti D, Morris MR, Cooper WN, Staals RH, Wake NC, Fews GA, Gill H, Gentle D, Shuib S, Ricketts CJ, Cole T, van Essen AJ, van Lingen RA, Neri G, Opitz JM, Rump P, Stolte‐Dijkstra I, Muller F, Pruijn GJ, Latif F et al (2012) Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat Genet 44: 277–284 PubMed
Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37: D93–D97 PubMed PMC
Chang HM, Triboulet R, Thornton JE, Gregory RI (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28‐let‐7 pathway. Nature 497: 244–248 PubMed PMC
Choi YS, Patena W, Leavitt AD, McManus MT (2012) Widespread RNA 3′‐end oligouridylation in mammals. RNA 18: 394–401 PubMed PMC
Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho‐Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Kahari AK, Keenan S et al (2015) Ensembl 2015. Nucleic Acids Res 43: D662–D669 PubMed PMC
Eckwahl MJ, Sim S, Smith D, Telesnitsky A, Wolin SL (2015) A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway. Genes Dev 29: 646–657 PubMed PMC
Faehnle CR, Walleshauser J, Joshua‐Tor L (2014) Mechanism of Dis3l2 substrate recognition in the Lin28‐let‐7 pathway. Nature 514: 252–256 PubMed PMC
Glaus P, Honkela A, Rattray M (2012) Identifying differentially expressed transcripts from RNA‐seq data with biological variation. Bioinformatics 28: 1721–1728 PubMed PMC
Haas G, Cetin S, Messmer M, Chane‐Woon‐Ming B, Terenzi O, Chicher J, Kuhn L, Hammann P, Pfeffer S (2016) Identification of factors involved in target RNA‐directed microRNA degradation. Nucleic Acids Res 44: 2873–2887 PubMed PMC
Hagan JP, Piskounova E, Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let‐7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16: 1021–1025 PubMed PMC
Hallett RM, Hassell JA (2011) E2F1 and KIAA0191 expression predicts breast cancer patient survival. BMC Res Notes 4: 95 PubMed PMC
Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio‐Reyes G, Saunders G, Steward C et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22: 1760–1774 PubMed PMC
Heo I, Joo C, Cho J, Ha M, Han J, Kim VN (2008) Lin28 mediates the terminal uridylation of let‐7 precursor MicroRNA. Mol Cell 32: 276–284 PubMed
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre‐microRNA uridylation. Cell 138: 696–708 PubMed
Heo I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC, Chang H, Kim VN (2012) Mono‐uridylation of pre‐microRNA as a key step in the biogenesis of group II let‐7 microRNAs. Cell 151: 521–532 PubMed
Hoefig KP, Rath N, Heinz GA, Wolf C, Dameris J, Schepers A, Kremmer E, Ansel KM, Heissmeyer V (2013) Eri1 degrades the stem‐loop of oligouridylated histone mRNAs to induce replication‐dependent decay. Nat Struct Mol Biol 20: 73–81 PubMed
Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF, Hackermuller J (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5: e1000502 PubMed PMC
Holden P, Horton WA (2009) Crude subcellular fractionation of cultured mammalian cell lines. BMC Res Notes 2: 1–10 PubMed PMC
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR‐Cas9 for genome engineering. Cell 157: 1262–1278 PubMed PMC
Kim B, Ha M, Loeff L, Chang H, Simanshu DK, Li S, Fareh M, Patel DJ, Joo C, Kim VN (2015) TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. EMBO J 34: 1801–1815 PubMed PMC
Kim YK, Kim B, Kim VN (2016) Re‐evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA 113: E1881–E1889 PubMed PMC
Kozomara A, Griffiths‐Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42: D68–D73 PubMed PMC
Kumar P, Anaya J, Mudunuri SB, Dutta A (2014) Meta‐analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 12: 78 PubMed PMC
Kwak JE, Wang L, Ballantyne S, Kimble J, Wickens M (2004) Mammalian GLD‐2 homologs are poly(A) polymerases. Proc Natl Acad Sci USA 101: 4407–4412 PubMed PMC
Labno A, Warkocki Z, Kulinski T, Krawczyk PS, Bijata K, Tomecki R, Dziembowski A (2016) Perlman syndrome nuclease DIS3L2 controls cytoplasmic non‐coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Res doi: 10.1093/nar/gkw649 PubMed DOI PMC
Lee M, Kim B, Kim VN (2014) Emerging roles of RNA modification: m(6)A and U‐tail. Cell 158: 980–987 PubMed
Lim J, Ha M, Chang H, Kwon SC, Simanshu DK, Patel DJ, Kim VN (2014) Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159: 1365–1376 PubMed PMC
Liu X, Fagotto F (2011) A method to separate nuclear, cytosolic, and membrane‐associated signaling molecules in cultured cells. Sci Signal 4: pl2 PubMed
Lubas M, Damgaard CK, Tomecki R, Cysewski D, Jensen TH, Dziembowski A (2013) Exonuclease hDIS3L2 specifies an exosome‐independent 3′‐5′ degradation pathway of human cytoplasmic mRNA. EMBO J 32: 1855–1868 PubMed PMC
Lund E, Dahlberg JE (1992) Cyclic 2′,3′‐phosphates and nontemplated nucleotides at the 3′ end of spliceosomal U6 small nuclear RNA's. Science 255: 327–330 PubMed
Malecki M, Viegas SC, Carneiro T, Golik P, Dressaire C, Ferreira MG, Arraiano CM (2013) The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J 32: 1842–1854 PubMed PMC
Martin M (2011) Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnetjournal 17: 10–12
Martin G, Gruber AR, Keller W, Zavolan M (2012) Genome‐wide analysis of pre‐mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep 1: 753–763 PubMed
Morris MR, Astuti D, Maher ER (2013) Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. Am J Med Genet C Semin Med Genet 163C: 106–113 PubMed
Mullen TE, Marzluff WF (2008) Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev 22: 50–65 PubMed PMC
Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P (2011) Molecular basis for interaction of let‐7 microRNAs with Lin28. Cell 147: 1080–1091 PubMed PMC
Ntini E, Jarvelin AI, Bornholdt J, Chen Y, Boyd M, Jorgensen M, Andersson R, Hoof I, Schein A, Andersen PR, Andersen PK, Preker P, Valen E, Zhao X, Pelechano V, Steinmetz LM, Sandelin A, Jensen TH (2013) Polyadenylation site‐induced decay of upstream transcripts enforces promoter directionality. Nat Struct Mol Biol 20: 923–928 PubMed
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR‐Cas9 system. Nat Protoc 8: 2281–2308 PubMed PMC
Rissland OS, Norbury CJ (2009) Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 16: 616–623 PubMed PMC
Schmidt MJ, West S, Norbury CJ (2011) The human cytoplasmic RNA terminal U‐transferase ZCCHC11 targets histone mRNAs for degradation. RNA 17: 39–44 PubMed PMC
Scott DD, Norbury CJ (2013) RNA decay via 3′ uridylation. Biochim Biophys Acta 1829: 654–665 PubMed
Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA (2008) Divergent transcription from active promoters. Science 322: 1849–1851 PubMed PMC
Slevin MK, Meaux S, Welch JD, Bigler R, Miliani de Marval PL, Su W, Rhoads RE, Prins JF, Marzluff WF (2014) Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes. Mol Cell 53: 1020–1030 PubMed PMC
Su W, Slepenkov SV, Slevin MK, Lyons SM, Ziemniak M, Kowalska J, Darzynkiewicz E, Jemielity J, Marzluff WF, Rhoads RE (2013) mRNAs containing the histone 3′ stem‐loop are degraded primarily by decapping mediated by oligouridylation of the 3′ end. RNA 19: 1–16 PubMed PMC
Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ, Lassmann T, Forrest AR, Grimmond SM, Schroder K, Irvine K, Arakawa T, Nakamura M, Kubosaki A, Hayashida K, Kawazu C, Murata M, Nishiyori H, Fukuda S, Kawai J et al (2009) Tiny RNAs associated with transcription start sites in animals. Nat Genet 41: 572–578 PubMed
Tazi J, Forne T, Jeanteur P, Cathala G, Brunel C (1993) Mammalian U6 small nuclear RNA undergoes 3′ end modifications within the spliceosome. Mol Cell Biol 13: 1641–1650 PubMed PMC
Thomas MP, Liu X, Whangbo J, McCrossan G, Sanborn KB, Basar E, Walch M, Lieberman J (2015) Apoptosis Triggers Specific, Rapid, and Global mRNA Decay with 3′ Uridylated Intermediates Degraded by DIS3L2. Cell Rep 11: 1079–1089 PubMed PMC
Thornton JE, Chang HM, Piskounova E, Gregory RI (2012) Lin28‐mediated control of let‐7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18: 1875–1885 PubMed PMC
Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein‐RNA interaction sites in living cells. Methods 37: 376–386 PubMed
Ustianenko D, Hrossova D, Potesil D, Chalupnikova K, Hrazdilova K, Pachernik J, Cetkovska K, Uldrijan S, Zdrahal Z, Vanacova S (2013) Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let‐7 miRNAs. RNA 19: 1632–1638 PubMed PMC
Valen E, Preker P, Andersen PR, Zhao X, Chen Y, Ender C, Dueck A, Meister G, Sandelin A, Jensen TH (2011) Biogenic mechanisms and utilization of small RNAs derived from human protein‐coding genes. Nat Struct Mol Biol 18: 1075–1082 PubMed
Wegert J, Ishaque N, Vardapour R, Georg C, Gu Z, Bieg M, Ziegler B, Bausenwein S, Nourkami N, Ludwig N, Keller A, Grimm C, Kneitz S, Williams RD, Chagtai T, Pritchard‐Jones K, van Sluis P, Volckmann R, Koster J, Versteeg R et al (2015) Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high‐risk blastemal type Wilms tumors. Cancer Cell 27: 298–311 PubMed
Xie M, Li M, Vilborg A, Lee N, Shu MD, Yartseva V, Sestan N, Steitz JA (2013) Mammalian 5′‐capped microRNA precursors that generate a single microRNA. Cell 155: 1568–1580 PubMed PMC
Zhou J, Ng SB, Chng WJ (2013) LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells. Int J Biochem Cell Biol 45: 973–978 PubMed
The SMN complex drives structural changes in human snRNAs to enable snRNP assembly
ISG20L2: an RNA nuclease regulating T cell activation
DIS3L2 and LSm proteins are involved in the surveillance of Sm ring-deficient snRNAs
The role of 3' end uridylation in RNA metabolism and cellular physiology