The role of 3' end uridylation in RNA metabolism and cellular physiology
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
30397107
PubMed Central
PMC6232591
DOI
10.1098/rstb.2018.0171
PII: rstb.2018.0171
Knihovny.cz E-zdroje
- Klíčová slova
- RNA degradation, RNA modification, RNA processing, RNA surveillance, RNA uridylation, tutase,
- MeSH
- Eukaryota MeSH
- eukaryotické buňky fyziologie MeSH
- lidé MeSH
- RNA metabolismus MeSH
- úpravy 3' konce RNA * MeSH
- uridin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- RNA MeSH
- uridin MeSH
Most eukaryotic RNAs are posttranscriptionally modified. The majority of modifications promote RNA maturation, others may regulate function and stability. The 3' terminal non-templated oligouridylation is a widespread modification affecting many cellular RNAs at some stage of their life cycle. It has diverse roles in RNA metabolism. The most prevalent is the regulation of stability and quality control. On the cellular and organismal level, it plays a critical role in a number of pathways, such as cell cycle regulation, cell death, development or viral infection. Defects in uridylation have been linked to several diseases. This review summarizes the current knowledge about the role of the 3' terminal oligo(U)-tailing in biology of various RNAs in eukaryotes and describes key factors involved in these pathways.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Zobrazit více v PubMed
Labno A, Tomecki R, Dziembowski A. 2016. Cytoplasmic RNA decay pathways - enzymes and mechanisms. Biochim. Biophys. Acta 1863, 3125–3147. (10.1016/j.bbamcr.2016.09.023) PubMed DOI
LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D. 2005. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713–724. (10.1016/j.cell.2005.04.029) PubMed DOI
Lim J, et al. 2018. Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science 361, 701–704. (10.1126/science.aam5794) PubMed DOI
Lim J, Ha M, Chang H, Kwon SC, Simanshu DK, Patel DJ, Kim VN. 2014. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365–1376. (10.1016/j.cell.2014.10.055) PubMed DOI PMC
Morozov IY, Jones MG, Razak AA, Rigden DJ, Caddick MX. 2010. CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans. Mol. Cell. Biol. 30, 460–469. (10.1128/MCB.00997-09) PubMed DOI PMC
Vaňáčova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W. 2005. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol. 3, e189 (10.1371/journal.pbio.0030189) PubMed DOI PMC
Chang H, Lim J, Ha M, Kim VN. 2014. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell 53, 1044–1052. (10.1016/j.molcel.2014.02.007) PubMed DOI
de Almeida C, Scheer H, Gobert A, Fileccia V, Martinelli F, Zuber H, Gagliardi D. 2018. RNA uridylation and decay in plants. Phil. Trans. R. Soc. B 373, 20180163 (10.1098/rstb.2018.0163) PubMed DOI PMC
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. 2018. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Phil. Trans. R. Soc. B 373, 20180162 (10.1098/rstb.2018.0162) PubMed DOI PMC
Jones MR, et al. 2012. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival. PLoS Genet. 8, e1003105 (10.1371/journal.pgen.1003105) PubMed DOI PMC
Thornton JE, Du P, Jing L, Sjekloca L, Lin S, Grossi E, Sliz P, Zon LI, Gregory RI. 2014. Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Res. 42, 11 777–11 791. (10.1093/nar/gku805) PubMed DOI PMC
Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V. 2005. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev. Cell 9, 403–414. (10.1016/j.devcel.2005.07.009) PubMed DOI PMC
Thomas MP, Liu X, Whangbo J, McCrossan G, Sanborn KB, Basar E, Walch M, Lieberman J. 2015. Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2. Cell Rep. 11, 1079–1089. (10.1016/j.celrep.2015.04.026) PubMed DOI PMC
Hoefig KP, Rath N, Heinz GA, Wolf C, Dameris J, Schepers A, Kremmer E, Ansel KM, Heissmeyer V. 2013. Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat. Struct. Mol. Biol. 20, 73–81. (10.1038/nsmb.2450) PubMed DOI
Mullen TE, Marzluff WF. 2008. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev. 22, 50–65. (10.1101/gad.1622708) PubMed DOI PMC
Song MG, Kiledjian M. 2007. 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA 13, 2356–2365. (10.1261/rna.765807) PubMed DOI PMC
Lackey PE, Welch JD, Marzluff WF. 2016. TUT7 catalyzes the uridylation of the 3′ end for rapid degradation of histone mRNA. RNA 22, 1673–1688. (10.1261/rna.058107.116) PubMed DOI PMC
Welch JD, Slevin MK, Tatomer DC, Duronio RJ, Prins JF, Marzluff WF. 2015. EnD-Seq and AppEnD: sequencing 3′ ends to identify nontemplated tails and degradation intermediates. RNA 21, 1375–1389. (10.1261/rna.048785.114) PubMed DOI PMC
Slevin MK, Meaux S, Welch JD, Bigler R, Miliani de Marval PL, Su W, Rhoads RE, Prins JF, Marzluff WF. 2014. Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes. Mol. Cell 53, 1020–1030. (10.1016/j.molcel.2014.02.027) PubMed DOI PMC
Yang XC, Purdy M, Marzluff WF, Dominski Z. 2006. Characterization of 3′hExo, a 3′ exonuclease specifically interacting with the 3′ end of histone mRNA. J. Biol. Chem. 281, 30 447–30 454. (10.1074/jbc.M602947200) PubMed DOI
Eckwahl MJ, Sim S, Smith D, Telesnitsky A, Wolin SL. 2015. A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway. Genes Dev. 29, 646–657. (10.1101/gad.258731.115) PubMed DOI PMC
Huo Y, Shen J, Wu H, Zhang C, Guo L, Yang J, Li W. 2016. Widespread 3′–end uridylation in eukaryotic RNA viruses. Sci. Rep. 6, 25454 (10.1038/srep25454) PubMed DOI PMC
Aphasizheva I, Aphasizhev R. 2010. RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol. Cell. Biol. 30, 1555–1567. (10.1128/MCB.01281-09) PubMed DOI PMC
Suematsu T, Zhang L, Aphasizheva I, Monti S, Huang L, Wang Q, Costello CE, Aphasizhev R. 2016. Antisense transcripts delimit exonucleolytic activity of the mitochondrial 3′ processome to generate guide RNAs. Mol. Cell 61, 364–378. (10.1016/j.molcel.2016.01.004) PubMed DOI PMC
Aphasizheva I, Maslov D, Wang X, Huang L, Aphasizhev R. 2011. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol. Cell 42, 106–117. (10.1016/j.molcel.2011.02.021) PubMed DOI PMC
Lapointe CP, Wickens M. 2013. The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase. J. Biol. Chem. 288, 20 723–20 733. (10.1074/jbc.M113.455451) PubMed DOI PMC
Ustianenko D, Pasulka J, Feketova Z, Bednarik L, Zigáčková D, Fortova A, Zavolan M, Vaňáčova S. 2016. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J. 35, 2179–2191. (10.15252/embj.201694857) PubMed DOI PMC
Ustianenko D, et al. 2013. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632–1638. (10.1261/rna.040055.113) PubMed DOI PMC
Labno A, Warkocki Z, Kulinski T, Krawczyk PS, Bijata K, Tomecki R, Dziembowski A. 2016. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Res. 44, 10 437–10 453. (10.1093/nar/gkw649) PubMed DOI PMC
Morgan M, et al. 2017. mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548, 347–351. (10.1038/nature23318) PubMed DOI PMC
Ibrahim F, Rymarquis LA, Kim EJ, Becker J, Balassa E, Green PJ, Cerutti H. 2010. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc. Natl Acad. Sci. USA 107, 3906–3911. (10.1073/pnas.0912632107) PubMed DOI PMC
Zhao Y, Yu Y, Zhai J, Ramachandran V, Dinh TT, Meyers BC, Mo B, Chen X. 2012. The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr. Biol. 22, 689–694. (10.1016/j.cub.2012.02.051) PubMed DOI PMC
Haas G, Cetin S, Messmer M, Chane-Woon-Ming B, Terenzi O, Chicher J, Kuhn L, Hammann P, Pfeffer S. 2016. Identification of factors involved in target RNA-directed microRNA degradation. Nucleic Acids Res. 44, 2873–2887. (10.1093/nar/gkw040) PubMed DOI PMC
Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD. 2010. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539. (10.1126/science.1187058) PubMed DOI PMC
de la Mata M, Gaidatzis D, Vitanescu M, Stadler MB, Wentzel C, Scheiffele P, Filipowicz W, Grosshans H. 2015. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep. 16, 500–511. (10.15252/embr.201540078) PubMed DOI PMC
Ren G, Chen X, Yu B. 2012. Uridylation of miRNAs by hen1 suppressor1 in Arabidopsis. Curr. Biol. 22, 695–700. (10.1016/j.cub.2012.02.052) PubMed DOI PMC
Yeom KH, Heo I, Lee J, Hohng S, Kim VN, Joo C. 2011. Single-molecule approach to immunoprecipitated protein complexes: insights into miRNA uridylation. EMBO Rep. 12, 690–696. (10.1038/embor.2011.100) PubMed DOI PMC
Heo I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC, Chang H, Kim VN. 2012. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521–532. (10.1016/j.cell.2012.09.022) PubMed DOI
Trippe R, Sandrock B, Benecke BJ. 1998. A highly specific terminal uridylyl transferase modifies the 3′-end of U6 small nuclear RNA. Nucleic Acids Res. 26, 3119–3126. (10.1093/nar/26.13.3119) PubMed DOI PMC
Trippe R, Richly H, Benecke BJ. 2003. Biochemical characterization of a U6 small nuclear RNA-specific terminal uridylyltransferase. Eur. J. Biochem. 270, 971–980. (10.1046/j.1432-1033.2003.03466.x) PubMed DOI
Trippe R, Guschina E, Hossbach M, Urlaub H, Luhrmann R, Benecke BJ. 2006. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 12, 1494–1504. (10.1261/rna.87706) PubMed DOI PMC
Zuber H, Scheer H, Ferrier E, Sement FM, Mercier P, Stupfler B, Gagliardi D. 2016. Uridylation and PABP cooperate to repair mRNA deadenylated ends in Arabidopsis. Cell Rep. 14, 2707–2717. (10.1016/j.celrep.2016.02.060) PubMed DOI
Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, Wolf DA, Mizgerd JP. 2009. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat. Cell Biol. 11, 1157–1163. (10.1038/ncb1931) PubMed DOI PMC
Gutierrez-Vazquez C, et al. 2017. 3′ Uridylation controls mature microRNA turnover during CD4 T-cell activation. RNA 23, 882–891. (10.1261/rna.060095.116) PubMed DOI PMC
Koppers-Lalic D, et al. 2014. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 8, 1649–1658. (10.1016/j.celrep.2014.08.027) PubMed DOI
Reimao-Pinto MM, et al. 2015. Uridylation of RNA hairpins by Tailor confines the emergence of microRNAs in Drosophila. Mol. Cell 59, 203–216. (10.1016/j.molcel.2015.05.033) PubMed DOI PMC
Bortolamiol-Becet D, Hu F, Jee D, Wen J, Okamura K, Lin CJ, Ameres SL, Lai EC. 2015. Selective suppression of the splicing-mediated microRNA pathway by the terminal uridyltransferase Tailor. Mol. Cell 59, 217–228. (10.1016/j.molcel.2015.05.034) PubMed DOI PMC
Pirouz M, Du P, Munafo M, Gregory RI. 2016. Dis3l2-mediated decay is a quality control pathway for noncoding RNAs. Cell Rep. 16, 1861–1873. (10.1016/j.celrep.2016.07.025) PubMed DOI PMC
Martin G, Keller W. 2007. RNA-specific ribonucleotidyl transferases. RNA 13, 1834–1849. (10.1261/rna.652807) PubMed DOI PMC
Kwak JE, Wang L, Ballantyne S, Kimble J, Wickens M. 2004. Mammalian GLD-2 homologs are poly(A) polymerases. Proc. Natl Acad. Sci. USA 101, 4407–4412. (10.1073/pnas.0400779101) PubMed DOI PMC
Kwak JE, Wickens M. 2007. A family of poly(U) polymerases. RNA 13, 860–867. (10.1261/rna.514007) PubMed DOI PMC
Mellman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendziorski C, Anderson RA. 2008. A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451, 1013–1017. (10.1038/nature06666) PubMed DOI
Wang L, Eckmann CR, Kadyk LC, Wickens M, Kimble J. 2002. A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419, 312–316. (10.1038/nature01039) PubMed DOI
Thornton JE, Chang HM, Piskounova E, Gregory RI. 2012. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18, 1875–1885. (10.1261/rna.034538.112) PubMed DOI PMC
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN. 2009. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708. (10.1016/j.cell.2009.08.002) PubMed DOI
Kaufmann I, Martin G, Friedlein A, Langen H, Keller W. 2004. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J. 23, 616–626. (10.1038/sj.emboj.7600070) PubMed DOI PMC
Rissland OS, Mikulasova A, Norbury CJ. 2007. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol. Cell. Biol. 27, 3612–3624. (10.1128/Mcb.02209-06) PubMed DOI PMC
Read RL, Martinho RG, Wang SW, Carr AM, Norbury CJ. 2002. Cytoplasmic poly(A) polymerases mediate cellular responses to S phase arrest. Proc. Natl Acad. Sci. USA 99, 12 079–12 084. (10.1073/pnas.192467799) PubMed DOI PMC
Chang HM, Triboulet R, Thornton JE, Gregory RI. 2013. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway. Nature 497, 244–248. (10.1038/nature12119) PubMed DOI PMC
Sharif H, Conti E. 2013. Architecture of the Lsm1–7-Pat1 complex: a conserved assembly in eukaryotic mRNA turnover. Cell Rep 5, 283–291. (10.1016/j.celrep.2013.10.004) PubMed DOI
Malecki M, Viegas SC, Carneiro T, Golik P, Dressaire C, Ferreira MG, Arraiano CM. 2013. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 32, 1842–1854. (10.1038/emboj.2013.63) PubMed DOI PMC
Reimao-Pinto MM, Manzenreither RA, Burkard TR, Sledz P, Jinek M, Mechtler K, Ameres SL. 2016. Molecular basis for cytoplasmic RNA surveillance by uridylation-triggered decay in Drosophila. EMBO J. 35, 2417–2434. (10.15252/embj.201695164) PubMed DOI PMC
Faehnle CR, Walleshauser J, Joshua-Tor L. 2014. Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway. Nature 514, 252–256. (10.1038/nature13553) PubMed DOI PMC
Lv H, Zhu Y, Qiu Y, Niu L, Teng M, Li X. 2015. Structural analysis of Dis3l2, an exosome-independent exonuclease from Schizosaccharomyces pombe. Acta Crystallogr. D Biol. Crystallogr. 71, 1284–1294. (10.1107/S1399004715005805) PubMed DOI
Astuti D, et al. 2012. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat. Genet. 44, 277–284. (10.1038/ng.1071) PubMed DOI
Morris MR, Astuti D, Maher ER. 2013. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. Am. J. Med. Genet. C Semin. Med. Genet. 163C, 106–113. (10.1002/ajmg.c.31358) PubMed DOI
Wegert J, et al. 2015. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27, 298–311. (10.1016/j.ccell.2015.01.002) PubMed DOI
Hrossova D, Sikorsky T, Potesil D, Bartosovic M, Pasulka J, Zdrahal Z, Stefl R, Vaňáčova S. 2015. RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3′–end extended forms of snRNAs. Nucleic Acids Res. 43, 4236–4248. (10.1093/nar/gkv240) PubMed DOI PMC
Rissland OS, Norbury CJ. 2009. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat. Struct. Mol. Biol. 16, 616–623. (10.1038/nsmb.1601) PubMed DOI PMC
Shen B, Goodman HM. 2004. Uridine addition after microRNA-directed cleavage. Science 306, 997 (10.1126/science.1103521) PubMed DOI
Xu K, Lin J, Zandi R, Roth JA, Ji L. 2016. MicroRNA-mediated target mRNA cleavage and 3′–uridylation in human cells. Sci. Rep. 6, 30242 (10.1038/srep30242) PubMed DOI PMC
Ren G, Wang X, Yu B. 2017. Analysis of the uridylation of both ARGONAUTE-bound MiRNAs and 5′ cleavage products of their target RNAs in plants. Methods Mol. Biol. 1640, 23–37. (10.1007/978-1-4939-7165-7_2) PubMed DOI
Zhang Z, et al. 2017. RISC-interacting clearing 3′– 5′ exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana. Elife 6, e24466 (10.7554/eLife.24466) PubMed DOI PMC
Chang H, et al. 2018. Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Mol. Cell 70, 72–82. (10.1016/j.molcel.2018.03.004) PubMed DOI
Wang SW, Toda T, MacCallum R, Harris AL, Norbury C. 2000. Cid1, a fission yeast protein required for S-M checkpoint control when DNA polymerase δ or ɛ is inactivated. Mol. Cell. Biol. 20, 3234–3244. (10.1128/Mcb.20.9.3234-3244.2000) PubMed DOI PMC
Scheer H, Zuber H, De Almeida C, Gagliardi D. 2016. Uridylation earmarks mRNAs for degradation and more. Trends Genet. 32, 607–619. (10.1016/j.tig.2016.08.003) PubMed DOI
Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. 2014. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71. (10.1038/nature13007) PubMed DOI PMC
Jonas S, Izaurralde E. 2015. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433. (10.1038/nrg3965) PubMed DOI
Bouveret E, Rigaut G, Shevchenko A, Wilm M, Seraphin B. 2000. A Sm-like protein complex that participates in mRNA degradation. EMBO J. 19, 1661–1671. (10.1093/emboj/19.7.1661) PubMed DOI PMC
Tharun S, Parker R. 2001. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p–7p complex on deadenylated yeast mRNAs. Mol. Cell 8, 1075–1083. (10.1016/S1097-2765(01)00395-1) PubMed DOI
Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91, 457–466. (10.1016/S0092-8674(00)80432-8) PubMed DOI
Chowdhury A, Mukhopadhyay J, Tharun S. 2007. The decapping activator Lsm1p–7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA 13, 998–1016. (10.1261/rna.502507) PubMed DOI PMC
Zhou L, Zhou Y, Hang J, Wan R, Lu G, Yan C, Shi Y. 2014. Crystal structure and biochemical analysis of the heptameric Lsm1–7 complex. Cell Res. 24, 497–500. (10.1038/cr.2014.18) PubMed DOI PMC
Norbury CJ. 2013. Cytoplasmic RNA: a case of the tail wagging the dog. Nat. Rev. Mol. Cell Biol. 14, 643–653. (10.1038/nrm3645) PubMed DOI
Morozov IY, Jones MG, Gould PD, Crome V, Wilson JB, Hall AJ, Rigden DJ, Caddick MX. 2012. mRNA 3′ tagging is induced by nonsense-mediated decay and promotes ribosome dissociation. Mol. Cell. Biol. 32, 2585–2595. (10.1128/MCB.00316-12) PubMed DOI PMC
Pandey NB, Marzluff WF. 1987. The stem-loop structure at the 3′ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell. Biol. 7, 4557–4559. (10.1128/MCB.7.12.4557) PubMed DOI PMC
Marzluff WF, Koreski KP. 2017. Birth and death of histone mRNAs. Trends Genet. 33, 745–759. (10.1016/j.tig.2017.07.014) PubMed DOI PMC
Graves RA, Pandey NB, Chodchoy N, Marzluff WF. 1987. Translation is required for regulation of histone mRNA degradation. Cell 48, 615–626. (10.1016/0092-8674(87)90240-6) PubMed DOI
Meaux SA, Holmquist CE, Marzluff WF. 2018. Role of oligouridylation in normal metabolism and regulated degradation of mammalian histone mRNAs. Phil. Trans. R. Soc. B 373, 20180170 (10.1098/rstb.2018.0170) PubMed DOI PMC
Pfeffer S, et al. 2004. Identification of virus-encoded microRNAs. Science 304, 734–736. (10.1126/science.1096781) PubMed DOI
Lin J, Xu K, Roth JA, Ji L. 2016. Detection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem-loop array RT-PCR analysis. Biochem. Biophys. Rep. 6, 16–23. (10.1016/j.bbrep.2016.02.012) PubMed DOI PMC
Ren G, Xie M, Zhang S, Vinovskis C, Chen X, Yu B. 2014. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage. Proc. Natl Acad. Sci. USA 111, 6365–6370. (10.1073/pnas.1405083111) PubMed DOI PMC
Meister G, Tuschl T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349. (10.1038/nature02873) PubMed DOI
Furnari FB, Adams MD, Pagano JS. 1993. Unconventional processing of the 3′ termini of the Epstein-Barr virus DNA polymerase mRNA. Proc. Natl Acad. Sci. USA 90, 378–382. (10.1073/pnas.90.2.378) PubMed DOI PMC
Branscheid A, Marchais A, Schott G, Lange H, Gagliardi D, Andersen SU, Voinnet O, Brodersen P. 2015. SKI2 mediates degradation of RISC 5′–cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis. Nucleic Acids Res. 43, 10 975–10 988. (10.1093/nar/gkv1014) PubMed DOI PMC
Kim B, et al. 2015. TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. EMBO J. 34, 1801–1815. (10.15252/embj.201590931) PubMed DOI PMC
Chung CZ, Jo DH, Heinemann IU. 2016. Nucleotide specificity of the human terminal nucleotidyltransferase Gld2 (TUT2). RNA 22, 1239–1249. (10.1261/rna.056077.116) PubMed DOI PMC
Lee M, et al. 2014. Adenylation of maternally inherited microRNAs by Wispy. Mol. Cell 56, 696–707. (10.1016/j.molcel.2014.10.011) PubMed DOI PMC
Nakanishi T, Kubota H, Ishibashi N, Kumagai S, Watanabe H, Yamashita M, Kashiwabara S, Miyado K, Baba T. 2006. Possible role of mouse poly(A) polymerase mGLD-2 during oocyte maturation. Dev. Biol. 289, 115–126. (10.1016/j.ydbio.2005.10.017) PubMed DOI
Rouhana L, Wang L, Buter N, Kwak JE, Schiltz CA, Gonzalez T, Kelley AE, Landry CF, Wickens M. 2005. Vertebrate GLD2 poly(A) polymerases in the germline and the brain. RNA 11, 1117–1130. (10.1261/rna.2630205) PubMed DOI PMC
Rammelt C, Bilen B, Zavolan M, Keller W. 2011. PAPD5, a noncanonical poly(A) polymerase with an unusual RNA-binding motif. RNA 17, 1737–1746. (10.1261/rna.2787011) PubMed DOI PMC
Taylor RC, Cullen SP, Martin SJ. 2008. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241. (10.1038/nrm2312) PubMed DOI
Liu X, Fu R, Pan Y, Meza-Sosa KF, Zhang Z, Lieberman J. 2018. PNPT1 release from mitochondria during apoptosis triggers decay of poly(A) RNAs. Cell 174, 187–201. (10.1016/j.cell.2018.04.017) PubMed DOI
Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA. 2008. Divergent transcription from active promoters. Science 322, 1849–1851. (10.1126/science.1162253) PubMed DOI PMC
Taft RJ, et al. 2009. Tiny RNAs associated with transcription start sites in animals. Nat. Genet. 41, 572–578. (10.1038/ng.312) PubMed DOI
Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS, Mapendano CK, Schierup MH, Jensen TH. 2008. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851–1854. (10.1126/science.1164096) PubMed DOI
Hagan JP, Piskounova E, Gregory RI. 2009. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16, 1021–1025. (10.1038/nsmb.1676) PubMed DOI PMC
Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. 2008. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276–284. (10.1016/j.molcel.2008.09.014) PubMed DOI
Tadros W, Lipshitz HD. 2009. The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042. (10.1242/dev.033183) PubMed DOI
Svoboda P, Franke V, Schultz RM. 2015. Sculpting the transcriptome during the oocyte-to-embryo transition in mouse. Curr. Top. Dev. Biol. 113, 305–349. (10.1016/bs.ctdb.2015.06.004) PubMed DOI
Le Pen J, et al. 2018. Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nat. Struct. Mol. Biol. 25, 778–786. (10.1038/s41594-018-0106-9) PubMed DOI PMC
Piskounova E, Viswanathan SR, Janas M, LaPierre RJ, Daley GQ, Sliz P, Gregory RI. 2008. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21 310–21 314. (10.1074/jbc.C800108200) PubMed DOI
Balzeau J, Menezes MR, Cao S, Hagan JP. 2017. The LIN28/let-7 pathway in cancer. Front Genet 8, 31 (10.3389/fgene.2017.00031) PubMed DOI PMC
Lee H, Han S, Kwon CS, Lee D. 2016. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 7, 100–113. (10.1007/s13238-015-0212-y) PubMed DOI PMC
Guo Y, Chen Y, Ito H, Watanabe A, Ge X, Kodama T, Aburatani H. 2006. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 384, 51–61. (10.1016/j.gene.2006.07.011) PubMed DOI
Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P. 2011. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080–1091. (10.1016/j.cell.2011.10.020) PubMed DOI PMC
Ustianenko D, Chiu HS, Treiber T, Weyn-Vanhentenryck SM, Treiber N, Meister G, Sumazin P, Zhang C. 2018. LIN28 selectively modulates a subclass of Let-7 microRNAs. Mol. Cell 71, 271–283. (10.1016/j.molcel.2018.06.029) PubMed DOI PMC
Faehnle CR, Walleshauser J, Joshua-Tor L. 2017. Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis. Nat. Struct. Mol. Biol. 24, 658–665. (10.1038/nsmb.3428) PubMed DOI PMC
Wang L, Nam Y, Lee AK, Yu C, Roth K, Chen C, Ransey EM, Sliz P. 2017. LIN28 zinc knuckle domain is required and sufficient to induce let-7 oligouridylation. Cell Rep. 18, 2664–2675. (10.1016/j.celrep.2017.02.044) PubMed DOI
Choudhury NR, Nowak JS, Zuo J, Rappsilber J, Spoel SH, Michlewski G. 2014. Trim25 is an RNA-specific activator of Lin28a/TuT4-mediated uridylation. Cell Rep. 9, 1265–1272. (10.1016/j.celrep.2014.10.017) PubMed DOI PMC
Wilbert ML, et al. 2012. LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol. Cell 48, 195–206. (10.1016/j.molcel.2012.08.004) PubMed DOI PMC
Cho J, Chang H, Kwon SC, Kim B, Kim Y, Choe J, Ha M, Kim YK, Kim VN. 2012. LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell 151, 765–777. (10.1016/j.cell.2012.10.019) PubMed DOI
Hafner M, Max KE, Bandaru P, Morozov P, Gerstberger S, Brown M, Molina H, Tuschl T. 2013. Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA 19, 613–626. (10.1261/rna.036491.112) PubMed DOI PMC
Towbin H, Wenter P, Guennewig B, Imig J, Zagalak JA, Gerber AP, Hall J. 2013. Systematic screens of proteins binding to synthetic microRNA precursors. Nucleic Acids Res. 41, e47 (10.1093/nar/gks1197) PubMed DOI PMC
Graf R, Munschauer M, Mastrobuoni G, Mayr F, Heinemann U, Kempa S, Rajewsky N, Landthaler M. 2013. Identification of LIN28B-bound mRNAs reveals features of target recognition and regulation. RNA Biol. 10, 1146–1159. (10.4161/rna.25194) PubMed DOI PMC
Diederichs S, Haber DA. 2007. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108. (10.1016/j.cell.2007.10.032) PubMed DOI
Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H, Sugimoto K, Miyazono K. 2011. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol. Cell 44, 424–436. (10.1016/j.molcel.2011.09.012) PubMed DOI
Upton JP, et al. 2012. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818–822. (10.1126/science.1226191) PubMed DOI PMC
Asada K, et al. 2014. Rescuing dicer defects via inhibition of an anti-dicing nuclease. Cell Rep. 9, 1471–1481. (10.1016/j.celrep.2014.10.021) PubMed DOI PMC
Yang JS, Lai EC. 2011. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903. (10.1016/j.molcel.2011.07.024) PubMed DOI PMC
Westholm JO, Lai EC. 2011. Mirtrons: microRNA biogenesis via splicing. Biochimie 93, 1897–1904. (10.1016/j.biochi.2011.06.017) PubMed DOI PMC
Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP. 2006. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207. (10.1016/j.cell.2006.10.040) PubMed DOI
Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, Krouse MA, Webster PJ, Tewari M. 2011. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 21, 1450–1461. (10.1101/gr.118059.110) PubMed DOI PMC
Shi H, Barnes RL, Carriero N, Atayde VD, Tschudi C, Ullu E. 2014. Role of the Trypanosoma brucei HEN1 family methyltransferase in small interfering RNA modification. Eukaryot. Cell 13, 77–86. (10.1128/EC.00233-13) PubMed DOI PMC
Kamminga LM, Luteijn MJ, den Broeder MJ, Redl S, Kaaij LJ, Roovers EF, Ladurner P, Berezikov E, Ketting RF. 2010. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J. 29, 3688–3700. (10.1038/emboj.2010.233) PubMed DOI PMC
Minoda Y, Saeki K, Aki D, Takaki H, Sanada T, Koga K, Kobayashi T, Takaesu G, Yoshimura A. 2006. A novel zinc finger protein, ZCCHC11, interacts with TIFA and modulates TLR signaling. Biochem. Biophys. Res. Commun. 344, 1023–1030. (10.1016/j.bbrc.2006.04.006) PubMed DOI
Marcinowski L, et al. 2012. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 8, e1002510 (10.1371/journal.ppat.1002510) PubMed DOI PMC
Libri V, Helwak A, Miesen P, Santhakumar D, Borger JG, Kudla G, Grey F, Tollervey D, Buck AH. 2012. Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc. Natl Acad. Sci. USA 109, 279–284. (10.1073/pnas.1114204109) PubMed DOI PMC
Cazalla D, Yario T, Steitz JA. 2010. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328, 1563–1566. (10.1126/science.1187197) PubMed DOI PMC
Li J, Yang Z, Yu B, Liu J, Chen X. 2005. Methylation protects miRNAs and siRNAs from a 3′–end uridylation activity in Arabidopsis. Curr. Biol. 15, 1501–1507. (10.1016/j.cub.2005.07.029) PubMed DOI PMC
Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X. 2005. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935. (10.1126/science.1107130) PubMed DOI PMC
Yang Z, Ebright YW, Yu B, Chen X. 2006. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res. 34, 667–675. (10.1093/nar/gkj474) PubMed DOI PMC
Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC. 2007. Pimet, the Drosophila homolog of HEN1, mediates 2′–O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev. 21, 1603–1608. (10.1101/gad.1563607) PubMed DOI PMC
Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC. 2007. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447, 1126–1129. (10.1038/nature05903) PubMed DOI
Boutet S, et al. 2003. Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr. Biol. 13, 843–848. (10.1016/S0960-9822(03)00293-8) PubMed DOI PMC
Ibrahim F, Rohr J, Jeong W.-J., Hesson J, Cerutti H. 2006. Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science 314, 1893 (10.1126/science.1135268) PubMed DOI
Kamminga LM, van Wolfswinkel JC, Luteijn MJ, Kaaij LJ, Bagijn MP, Sapetschnig A, Miska EA, Berezikov E, Ketting RF. 2012. Differential impact of the HEN1 homolog HENN-1 on 21 U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS Genet. 8, e1002702 (10.1371/journal.pgen.1002702) PubMed DOI PMC
Montgomery TA, Rim YS, Zhang C, Dowen RH, Phillips CM, Fischer SE, Ruvkun G. 2012. PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet. 8, e1002616 (10.1371/journal.pgen.1002616) PubMed DOI PMC
Billi AC, Alessi AF, Khivansara V, Han T, Freeberg M, Mitani S, Kim JK. 2012. The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLoS Genet. 8, e1002617 (10.1371/journal.pgen.1002617) PubMed DOI PMC
Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, Zamore PD. 2007. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272. (10.1016/j.cub.2007.06.030) PubMed DOI
Houwing S, et al. 2007. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69–82. (10.1016/j.cell.2007.03.026) PubMed DOI
Lubas M, Damgaard CK, Tomecki R, Cysewski D, Jensen TH, Dziembowski A. 2013. Exonuclease hDIS3L2 specifies an exosome-independent 3′–5′ degradation pathway of human cytoplasmic mRNA. EMBO J. 32, 1855–1868. (10.1038/emboj.2013.135) PubMed DOI PMC
Kunkel GR, Maser RL, Calvet JP, Pederson T. 1986. U6 small nuclear RNA is transcribed by RNA polymerase III. Proc. Natl Acad. Sci. USA 83, 8575–8579. (10.1073/pnas.83.22.8575) PubMed DOI PMC
Reddy R, Henning D, Das G, Harless M, Wright D. 1987. The capped U6 small nuclear-RNA is transcribed by RNA polymerase-III. J. Biol. Chem. 262, 75–81. PubMed
Hilcenko C, et al. 2013. Aberrant 3′ oligoadenylation of spliceosomal U6 small nuclear RNA in poikiloderma with neutropenia. Blood 121, 1028–1038. (10.1182/blood-2012-10-461491) PubMed DOI
Shchepachev V, Wischnewski H, Missiaglia E, Soneson C, Azzalin CM. 2012. Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3′-to-5′ RNA exonuclease processing U6 small nuclear RNA. Cell Rep. 2, 855–865. (10.1016/j.celrep.2012.08.031) PubMed DOI
Licht K, Medenbach J, Luhrmann R, Kambach C, Bindereif A. 2008. 3′-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins. RNA 14, 1532–1538. (10.1261/rna.1129608) PubMed DOI PMC
Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Hobartner C, Sloan KE, Bohnsack MT. 2017. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 18, 2004–2014. (10.15252/embr.201744940) PubMed DOI PMC
Blum B, Bakalara N, Simpson L. 1990. A model for RNA editing in kinetoplastid mitochondria: ‘guide’ RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60, 189–198. (10.1016/0092-8674(90)90735-W) PubMed DOI
Seiwert SD, Stuart K. 1994. RNA editing: transfer of genetic information from gRNA to precursor mRNA in vitro. Science 266, 114–117. (10.1126/science.7524149) PubMed DOI
Clement SL, Mingler MK, Koslowsky DJ. 2004. An intragenic guide RNA location suggests a complex mechanism for mitochondrial gene expression in Trypanosoma brucei. Eukaryot. Cell 3, 862–869. (10.1128/EC.3.4.862-869.2004) PubMed DOI PMC
Grams J, McManus MT, Hajduk SL. 2000. Processing of polycistronic guide RNAs is associated with RNA editing complexes in Trypanosoma brucei. EMBO J. 19, 5525–5532. (10.1093/emboj/19.20.5525) PubMed DOI PMC
Aphasizheva I, Aphasizhev R. 2016. U-insertion/deletion mRNA-editing holoenzyme: definition in sight. Trends Parasitol. 32, 144–156. (10.1016/j.pt.2015.10.004) PubMed DOI PMC
Lin S, Gregory RI. 2015. Identification of small molecule inhibitors of Zcchc11 TUTase activity. RNA Biol. 12, 792–800. (10.1080/15476286.2015.1058478) PubMed DOI PMC