LOGGIC/FIREFLY-2: a phase 3, randomized trial of tovorafenib vs. chemotherapy in pediatric and young adult patients with newly diagnosed low-grade glioma harboring an activating RAF alteration
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu randomizované kontrolované studie, multicentrická studie, klinické zkoušky, fáze III, časopisecké články
PubMed
38291372
PubMed Central
PMC10826080
DOI
10.1186/s12885-024-11820-x
PII: 10.1186/s12885-024-11820-x
Knihovny.cz E-zdroje
- Klíčová slova
- BRAF, Chemotherapy, Child, First-line, MAPK, Pediatric low-grade glioma, Tovorafenib, pLGG,
- MeSH
- dítě MeSH
- gliom * farmakoterapie genetika metabolismus MeSH
- lidé MeSH
- mitogenem aktivované proteinkinasy MeSH
- mladý dospělý MeSH
- mutace MeSH
- oximy MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- protoonkogenní proteiny B-Raf MeSH
- pyridony MeSH
- pyrimidinony terapeutické užití MeSH
- světluškovití * metabolismus MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladý dospělý MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- multicentrická studie MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- mitogenem aktivované proteinkinasy MeSH
- oximy MeSH
- protoonkogenní proteiny B-Raf MeSH
- pyridony MeSH
- pyrimidinony MeSH
BACKGROUND: Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS: LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION: The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.
Children's National Hospital Washington DC USA
CHU Sainte Justine Université de Montréal Montréal QC Canada
Clinical Cooperation Unit Pediatric Oncology German Cancer Research Center Heidelberg Germany
Day One Biopharmaceuticals Brisbane CA USA
Department of Neuro oncology Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
Department of Neuropathology Charité Universitätsmedizin Berlin Berlin Germany
Department of Neuropathology German Cancer Research Center Heidelberg Germany
Department of Pediatrics and Adolescent Medicine Rigshospitalet Copenhagen Denmark
Department of Pediatrics McMaster Children's Hospital and McMaster University Hamilton Canada
Department of Radiology Alder Hey Children's Hospital NHS Foundation Trust Liverpool UK
Division of Oncology Hematology Children's Hospital of Eastern Switzerland St Gallen Switzerland
Division of Pediatric Glioma Research German Cancer Research Center Heidelberg Germany
DKTK Partner Site Berlin Germany
Faculty of Health Sciences and Medicine University of Lucerne Lucerne Switzerland
German Cancer Consortium Heidelberg Germany
Hopp Children's Cancer Center Heidelberg Heidelberg Germany
Institute of Biostatistics and Clinical Research Münster Germany
Kids Cancer Centre Sydney Children's Hospital Randwick NSW Australia
National Center for Tumor Diseases Heidelberg Germany
Neuro oncology Unit Pediatric Cancer Center Hospital Sant Joan de Déu Barcelona Spain
School of Clinical Medicine University of New South Wales Sydney NSW Australia
Zobrazit více v PubMed
Ostrom QT, Price M, Ryan K, Edelson J, Neff C, Cioffi G, et al. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro Oncol. 2022;24(Suppl 3):iii1–38. doi: 10.1093/neuonc/noac161. PubMed DOI PMC
Gnekow AK, Falkenstein F, von Hornstein S, Zwiener I, Berkefeld S, Bison B, et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro Oncol. 2012;14(10):1265–1284. doi: 10.1093/neuonc/nos202. PubMed DOI PMC
Gnekow AK, Kandels D, Tilburg CV, Azizi AA, Opocher E, Stokland T, et al. SIOP-E-BTG and GPOH guidelines for diagnosis and treatment of children and adolescents with low grade glioma. Klin Padiatr. 2019;231(3):107–135. doi: 10.1055/a-1471-5897. PubMed DOI
Goebel AM, Gnekow AK, Kandels D, Witt O, Schmidt R, Hernaiz Driever P. Natural history of pediatric low-grade glioma disease - first multi-state model analysis. J Cancer. 2019;10(25):6314–6326. doi: 10.7150/jca.33463. PubMed DOI PMC
Alemany M, Velasco R, Simo M, Bruna J. Late effects of cancer treatment: consequences for long-term brain cancer survivors. Neurooncol Pract. 2021;8(1):18–30. PubMed PMC
Heitzer AM, Ashford JM, Hastings C, Liu APY, Wu S, Bass JK, et al. Neuropsychological outcomes of patients with low-grade glioma diagnosed during the first year of life. J Neurooncol. 2019;141(2):413–420. doi: 10.1007/s11060-018-03048-0. PubMed DOI PMC
Liu APY, Hastings C, Wu S, Bass JK, Heitzer AM, Ashford J, et al. Treatment burden and long-term health deficits of patients with low-grade gliomas or glioneuronal tumors diagnosed during the first year of life. Cancer. 2019;125(7):1163–1175. doi: 10.1002/cncr.31918. PubMed DOI PMC
Ater JL, Zhou T, Holmes E, Mazewski CM, Booth TN, Freyer DR, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children's Oncology Group. J Clin Oncol. 2012;30(21):2641–2647. doi: 10.1200/JCO.2011.36.6054. PubMed DOI PMC
Gnekow AK, Walker DA, Kandels D, Picton S, Giorgio P, Grill J, et al. A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (</=16 years) low grade glioma - A final report. Eur J Cancer. 2017;81:206–225. doi: 10.1016/j.ejca.2017.04.019. PubMed DOI PMC
Lassaletta A, Scheinemann K, Zelcer SM, Hukin J, Wilson BA, Jabado N, et al. Phase II weekly vinblastine for chemotherapy-naive children with progressive low-grade glioma: A Canadian Pediatric Brain Tumor Consortium study. J Clin Oncol. 2016;34(29):3537–3543. doi: 10.1200/JCO.2016.68.1585. PubMed DOI
Kandels D, Pietsch T, Bison B, Warmuth-Metz M, Thomale UW, Kortmann RD, et al. Loss of efficacy of subsequent nonsurgical therapy after primary treatment failure in pediatric low-grade glioma patients-Report from the German SIOP-LGG 2004 cohort. Int J Cancer. 2020;147(12):3471–3489. doi: 10.1002/ijc.33170. PubMed DOI
Fisher MJ, Jones DTW, Li Y, Guo X, Sonawane PS, Waanders AJ, et al. Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1) Acta Neuropathol. 2021;141(4):605–617. doi: 10.1007/s00401-021-02276-5. PubMed DOI
Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927–932. doi: 10.1038/ng.2682. PubMed DOI PMC
Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–8677. doi: 10.1158/0008-5472.CAN-08-2097. PubMed DOI PMC
Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008;118(5):1739–1749. doi: 10.1172/JCI33656. PubMed DOI PMC
Ryall S, Zapotocky M, Fukuoka K, Nobre L, Guerreiro Stucklin A, Bennett J, et al. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell. 2020;37(4):569–583 e565. doi: 10.1016/j.ccell.2020.03.011. PubMed DOI PMC
Sturm D, Pfister SM, Jones DTW. Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. J Clin Oncol. 2017;35(21):2370–2377. doi: 10.1200/JCO.2017.73.0242. PubMed DOI
Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45(6):602–612. doi: 10.1038/ng.2611. PubMed DOI PMC
Buhl JL, Selt F, Hielscher T, Guiho R, Ecker J, Sahm F, et al. The senescence-associated secretory phenotype mediates oncogene-induced senescence in pediatric pilocytic astrocytoma. Clin Cancer Res. 2019;25(6):1851–1866. doi: 10.1158/1078-0432.CCR-18-1965. PubMed DOI
Selt F, Sigaud R, Valinciute G, Sievers P, Zaman J, Alcon C, et al. BH3 mimetics targeting BCL-XL impact the senescent compartment of pilocytic astrocytoma. Neuro Oncol. 2023;25(4):735–747. doi: 10.1093/neuonc/noac199. PubMed DOI PMC
Bouffet E, Hansford J, Garré ML, Hara J, Plant-Fox A, Aerts I, et al. Primary analysis of a phase II trial of dabrafenib plus trametinib (dab + tram) in BRAF V600–mutant pediatric low-grade glioma (pLGG) J Clin Oncol. 2022;40(Suppl 17):LBA2002–LBA2002. doi: 10.1200/JCO.2022.40.17_suppl.LBA2002. DOI
Tafinlar (dabrafenib) prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/202806s022lbl.pdf. Accessed 4 June 2023.
Schreck KC, Grossman SA, Pratilas CA: BRAF mutations and the utility of RAF and MEK inhibitors in primary brain tumors. Cancers (Basel). 2019;11(9). PubMed PMC
Bouffet E. Trametinib therapy in pediatric patients with low-grade gliomas (LGG) with BRAF gene fusion; a disease-specific cohort in the first pediatric testing of trametinib. Neuro Oncol. 2018;20(Suppl 2):i114. doi: 10.1093/neuonc/noy059.387. DOI
Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011–1022. doi: 10.1016/S1470-2045(19)30277-3. PubMed DOI PMC
Selt F, van Tilburg CM, Bison B, Sievers P, Harting I, Ecker J, et al. Response to trametinib treatment in progressive pediatric low-grade glioma patients. J Neurooncol. 2020;149(3):499–510. doi: 10.1007/s11060-020-03640-3. PubMed DOI PMC
Rosenberg T, Yeo KK, Mauguen A, Alexandrescu S, Prabhu SP, Tsai JW, et al. Upfront molecular targeted therapy for the treatment of BRAF-mutant pediatric high-grade glioma. Neuro Oncol. 2022;24(11):1964–1975. doi: 10.1093/neuonc/noac096. PubMed DOI PMC
Stege H, Haist M, Schultheis M, Fleischer MI, Mohr P, Meier F et al: Discontinuation of BRAF/MEK-directed targeted therapy after complete remission of metastatic melanoma-a retrospective multicenter ADOReg study. Cancers (Basel). 2021;13(10). PubMed PMC
Klesse LJ, Jordan JT, Radtke HB, Rosser T, Schorry E, Ullrich N, et al. The use of MEK inhibitors in Neurofibromatosis type 1-associated tumors and management of toxicities. Oncologist. 2020;25(7):e1109–e1116. doi: 10.1634/theoncologist.2020-0069. PubMed DOI PMC
Lugowska I, Kosela-Paterczyk H, Kozak K, Rutkowski P. Trametinib: a MEK inhibitor for management of metastatic melanoma. Onco Targets Ther. 2015;8:2251–2259. PubMed PMC
Olszanski AJ, Gonzalez R, Corrie P, Pavlick AC, Middleton M, Lorigan P et al: Phase I study of the investigational, oral pan-RAF kinase inhibitor TAK580 (MLN2480) in patients with advanced solid tumors (ST) or melanoma (MEL): Final analysis. Ann Oncol. 2017;28.
Sun Y, Alberta JA, Pilarz C, Calligaris D, Chadwick EJ, Ramkissoon SH, et al. A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro Oncol. 2017;19(6):774–785. PubMed PMC
Kilburn L, Khuong-Quang D-A, Nysom K, Landi D, Ziegler D, Hernáiz Driever P et al: Clinical activity of pan-RAF inhibitor tovorafenib in the registrational pediatric low-grade glioma arm of the phase 2 FIREFLY-1 (PNOC026) study. J Clin Oncol. 2023;41 Suppl 16:abstr 10004 and associated presentation.
Rasco DW, Medina T, Corrie P, Pavlick AC, Middleton MR, Lorigan P, et al. Phase 1 study of the pan-RAF inhibitor tovorafenib in patients with advanced solid tumors followed by dose expansion in patients with metastatic melanoma. Cancer Chemother Pharmacol. 2023;92(1):15–28. doi: 10.1007/s00280-023-04544-5. PubMed DOI PMC
Kilburn L, Khuong-Quang D-A, Nysom K, Landi D, Ziegler D, Hernáiz Driever P et al: Clinical activity of pan-RAF inhibitor tovorafenib in the registrational pediatric low-grade glioma arm of the phase 2 FIREFLY-1 (PNOC026) study. Neuro Oncol. 2023;25 i57 and associated presentation.
van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJ, Jaeckle K, Junck L, et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12(6):583–593. doi: 10.1016/S1470-2045(11)70057-2. PubMed DOI
Hardin EC, Schmid S, Sommerkamp A, Bodden C, Heipertz AE, Sievers P et al: LOGGIC Core BioClinical Data Bank: Added clinical value of RNA-seq in an international molecular diagnostic registry for pediatric low-grade glioma patients. Neuro Oncol. 2023; noad078. PubMed PMC
Sigaud R, Albert TK, Hess C, Hielscher T, Winkler N, Kocher D, et al. MAPK inhibitor sensitivity scores predict sensitivity driven by the immune infiltration in pediatric low-grade gliomas. Nat Commun. 2023;14(1):4533. doi: 10.1038/s41467-023-40235-8. PubMed DOI PMC
Packer RJ, Lange B, Ater J, Nicholson HS, Allen J, Walker R, et al. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J Clin Oncol. 1993;11(5):850–856. doi: 10.1200/JCO.1993.11.5.850. PubMed DOI
Wen PY, Chang SM, Van den Bent MJ, Vogelbaum MA, Macdonald DR, Lee EQ. Response assessment in neuro-oncology clinical trials. J Clin Oncol. 2017;35(21):2439–2449. doi: 10.1200/JCO.2017.72.7511. PubMed DOI PMC
Fangusaro J, Witt O, Hernaiz Driever P, Bag AK, de Blank P, Kadom N, et al. Response assessment in paediatric low-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol. 2020;21(6):e305–e316. doi: 10.1016/S1470-2045(20)30064-4. PubMed DOI
Day One Bio March 6, 2023 press release. https://ir.dayonebio.com/news-releases/news-release-details/day-one-reports-fourth-quarter-and-full-year-2022-financial. Accessed 14 December 2023.
DAY101 vs. Standard of Care Chemotherapy in Pediatric Patients With Low-Grade Glioma Requiring First-Line Systemic Therapy (LOGGIC/FIREFLY-2). https://clinicaltrials.gov/ct2/show/NCT05566795. Accessed 4 June 2023.
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106. PubMed DOI PMC
Vassal G, de Rojas T, Pearson ADJ. Impact of the EU Paediatric Medicine Regulation on new anti-cancer medicines for the treatment of children and adolescents. Lancet Child Adolesc Health. 2023;7(3):214–222. doi: 10.1016/S2352-4642(22)00344-3. PubMed DOI
Dabrafenib With Trametinib for Pediatric Low-Grade Glioma With BRAF V600E Mutation. https://ascopost.com/issues/april-25-2023/dabrafenib-with-trametinib-for-pediatric-low-grade-glioma-with-braf-v600e-mutation/. Accessed 16 August 2023.
Kilburn L, Landi D, Leary S, Ziegler D, Baxter P, Franson A, et al. FIREFLY-1 (PNOC026): Phase 2 study of pan-Raf inhibitor tovorafenib in pediatric and young adult patients with Raf-altered recurrent or progressive low-grade glioma or advanced solid tumors. Neuro Oncol. 2022;24:89. doi: 10.1093/neuonc/noac209.333. DOI
Chemotherapy in pediatric low-grade gliomas (PLGG)
ClinicalTrials.gov
NCT05566795