Airway Epithelial Dynamics in Allergy and Related Chronic Inflammatory Airway Diseases

. 2020 ; 8 () : 204. [epub] 20200327

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32292784

Allergic rhinitis, chronic rhinosinusitis, and asthma are highly prevalent, multifactorial chronic airway diseases. Several environmental and genetic factors affect airway epithelial dynamics leading to activation of inflammatory mechanisms in the airways. This review links environmental factors to host epithelial immunity in airway diseases. Understanding altered homeostasis of the airway epithelium might provide important targets for diagnostics and therapy of chronic airway diseases.

Zobrazit více v PubMed

Aazami H., Seif F., Ghalehbaghi B., Mohebbi A., Ahmadi A., Babaheidarian P., et al. (2018). Levels of total IgA and IgA subclasses in the serum of chronic rhinosinusitis patients. Med. J. Islam. Repub. Iran 32:94. 10.14196/mjiri.32.94 PubMed DOI PMC

Ahsen M. E., Chun Y., Grishin A., Grishina G., Stolovitzky G., Pandey G., et al. (2019). NeTFactor, a framework for identifying transcriptional regulators of gene expression-based biomarkers. Sci. Rep. 9:12970. 10.1038/s41598-019-49498-y PubMed DOI PMC

Akei H., Whitsett J. A., Buroker M., Ninomiya T., Tatsumi H., Weaver T. E., et al. (2006). Surface tension influences cell shape and phagocytosis in alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 291 L572–L579. PubMed

Alevy Y. G., Patel A. C., Romero A. G., Patel D. A., Tucker J., Roswit W. T., et al. (2012). IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J. Clin. Invest. 122 4555–4568. 10.1172/JCI64896 PubMed DOI PMC

Altman M. C., Lai Y., Nolin J. D., Long S., Chen C. C., Piliponsky A. M., et al. (2019). Airway epithelium-shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling. J. Clin. Invest. 129 4979–4991. 10.1172/JCI126402 PubMed DOI PMC

Armstrong L., Medford A. R., Uppington K. M., Robertson J., Witherden I. R., Tetley T. D., et al. (2004). Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 31 241–245. 10.1165/rcmb.2004-0078oc PubMed DOI

Athari S. S. (2019). Targeting cell signaling in allergic asthma. Signal Transduct. Target. Ther. 4:45. 10.1038/s41392-019-0079-0 PubMed DOI PMC

Barham H. P., Osborn J. L., Snidvongs K., Mrad N., Sacks R., Harvey R. J. (2015). Remodeling changes of the upper airway with chronic rhinosinusitis. Int. Forum Allergy Rhinol. 5 565–572. 10.1002/alr.21546 PubMed DOI

Bartel S., La Grutta S., Cilluffo G., Perconti G., Bongiovanni A., Giallongo A., et al. (2019). Human airway epithelial extracellular vesicle miRNA signature is altered upon asthma development. Allergy 75 346–356. 10.1111/all.14008 PubMed DOI

Batzakakis D., Stathas T., Mastronikolis N., Kourousis C., Aletras A., Naxakis S. (2014). Adhesion molecules as predictors of nasal polyposis recurrence. Am. J. Rhinol. Allergy 28 20–22. 10.2500/ajra.2014.28.3962 PubMed DOI

Blaiss M. S., Hammerby E., Robinson S., Kennedy-Martin T., Buchs S. (2018). The burden of allergic rhinitis and allergic rhinoconjunctivitis on adolescents: a literature review. Annals Allergy Asthma Immunol. 121 43–52.e3. 10.1016/j.anai.2018.03.028 PubMed DOI

Bou Saab J., Losa D., Chanson M., Ruez R. (2014). Connexins in respiratory and gastrointestinal mucosal immunity. FEBS Lett. 588 1288–1296. 10.1016/j.febslet.2014.02.059 PubMed DOI

Bravo D. T., Soudry E., Edward J. A., Le W., Nguyen A. L., Hwang P. H., et al. (2013). Characterization of human upper airway epithelial progenitors. Int. Forum Allergy Rhinol. 3 841–847. 10.1002/alr.21205 PubMed DOI

Busse W. W., Lemanske R. F., Jr., Gern J. E. (2010). Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376 826–834. 10.1016/S0140-6736(10)61380-3 PubMed DOI PMC

Carpagnano G. E., Scioscia G., Lacedonia D., Soccio P., Lepore G., Saetta M., et al. (2018). Looking for airways periostin in severe asthma: could it be useful for clustering type 2 endotype? Chest 154 1083–1090. 10.1016/j.chest.2018.08.1032 PubMed DOI

Chen X., Chang L., Li X., Huang J., Yang L., Lai X., et al. (2018). Tc17/IL-17A up-regulated the expression of MMP-9 via NF-kappaB pathway in nasal epithelial cells of patients with chronic rhinosinusitis. Front. Immunol. 9:2121. 10.3389/fimmu.2018.02121 PubMed DOI PMC

Cho J. S., Kang J. H., Um J. Y., Han I. H., Park I. H., Lee H. M. (2014). Lipopolysaccharide induces pro-inflammatory cytokines and MMP production via TLR4 in nasal polyp-derived fibroblast and organ culture. PLoS One 9:e90683. 10.1371/journal.pone.0090683 PubMed DOI PMC

Cho J. S., Kim J. A., Park J. H., Park I. H., Han I. H., Lee H. M. (2016). Toll-like receptor 4-mediated expression of interleukin-32 via the c-Jun N-terminal kinase/protein kinase B/cyclic adenosine monophosphate response element binding protein pathway in chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 6 1020–1028. 10.1002/alr.21792 PubMed DOI

Clifford R. L., Patel J., MacIsaac J. L., McEwen L. M., Johnson S. R., Shaw D., et al. (2019). Airway epithelial cell isolation techniques affect DNA methylation profiles with consequences for analysis of asthma related perturbations to DNA methylation. Sci. Rep. 9:14409. 10.1038/s41598-019-50873-y PubMed DOI PMC

Cohen N. A. (2017). The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis. Laryngoscope 127 44–51. 10.1002/lary.26198 PubMed DOI PMC

Copeland E., Leonard K., Carney R., Kong J., Forer M., Naidoo Y., et al. (2018). Chronic rhinosinusitis: potential role of microbial dysbiosis and recommendations for sampling sites. Front. Cell. Infect. Microbiol. 8:57. 10.3389/fcimb.2018.00057 PubMed DOI PMC

Cutting G. R. (2005). Modifier genetics: cystic fibrosis. Annu. Rev. Genomics Hum. Genet. 6 237–260. 10.1146/annurev.genom.6.080604.162254 PubMed DOI

Deng H., Sun Y., Wang W., Li M., Yuan T., Kong W., et al. (2019). The hippo pathway effector Yes-associated protein promotes epithelial proliferation and remodeling in chronic rhinosinusitis with nasal polyps. Allergy 74 731–742. 10.1111/all.13647 PubMed DOI

Dickson R. P., Erb-Downward J. R., Huffnagle G. B. (2013). The role of the bacterial microbiome in lung disease. Expert Rev. Respir. Med. 7 245–257. 10.1586/ers.13.24 PubMed DOI PMC

Dietz de Loos D., Lourijsen E. S., Wildeman M. A. M., Freling N. J. M., Wolvers M. D. J., Reitsma S., et al. (2019). Prevalence of chronic rhinosinusitis in the general population based on sinus radiology and symptomatology. J. Allergy Clin. Immunol. 143 1207–1214. 10.1016/j.jaci.2018.12.986 PubMed DOI

Earl J. P., Adappa N. D., Krol J., Bhat A. S., Balashov S., Ehrlich R. L., et al. (2018). Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific biosciences sequencing of full-length 16S rRNA genes. Microbiome 6:190. 10.1186/s40168-018-0569-2 PubMed DOI PMC

Ebenezer J. A., Christensen J. M., Oliver B. G., Oliver R. A., Tjin G., Ho J., et al. (2017). Periostin as a marker of mucosal remodelling in chronic rhinosinusitis. Rhinology 55 234–241. 10.4193/Rhin16.215 PubMed DOI

Ege M. J., Mayer M., Normand A. C., Genuneit J., Cookson W. O., Braun-Fahrlander C., et al. (2011). Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364 701–709. 10.1056/NEJMoa1007302 PubMed DOI

El-Anwar M. W., Hamed A. A., Mohamed A. E., Nofal A. A., Mohamed M. A., Abdel-Aziz H. R. (2015). Surfactant protein a expression in chronic rhinosinusitis and atrophic rhinitis. Int. Arch. Otorhinolaryngol. 19 130–134. 10.1055/s-0035-1546432 PubMed DOI PMC

Erle D. J., Sheppard D. (2014). The cell biology of asthma. J. Cell Biol. 205 621–631. 10.1083/jcb.201401050 PubMed DOI PMC

Fokkens W. J., Lund V. J., Mullol J., Bachert C., Alobid I., Baroody F., et al. (2012). EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 50 1–12. 10.4193/Rhino50E2 PubMed DOI

Freund J. R., Mansfield C. J., Doghramji L. J., Adappa N. D., Palmer J. N., Kennedy D. W., et al. (2018). Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J. Biol. Chem. 293 9824–9840. 10.1074/jbc.RA117.001005 PubMed DOI PMC

Frohlich M., Pinart M., Keller T., Reich A., Cabieses B., Hohmann C., et al. (2017). Is there a sex-shift in prevalence of allergic rhinitis and comorbid asthma from childhood to adulthood? A meta-analysis. Clin. Transl. Allergy 7:44. 10.1186/s13601-017-0176-5 PubMed DOI PMC

Fukuoka A., Matsushita K., Morikawa T., Adachi T., Yasuda K., Kiyonari H., et al. (2019). Human cystatin SN is an endogenous protease inhibitor that prevents allergic rhinitis. J. Allergy Clin. Immunol. 143 1153–1162.e12. 10.1016/j.jaci.2018.06.035 PubMed DOI

Georas S. N., Rezaee F. (2014). Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J. Allergy Clin. Immunol. 134 509–520. 10.1016/j.jaci.2014.05.049 PubMed DOI PMC

GINA (2018). GINA Report: Global Strategy for Asthma Management and Prevention. Available online at: https://ginasthma.org/wp-content/uploads/2018/04/wms-GINA-2018-report-V1.3-002.pdf (accessed November 15, 2019).

Golebski K., Luiten S., van Egmond D., de Groot E., Roschmann K. I., Fokkens W. J., et al. (2014). High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells. PLoS One 9:e87768. 10.1371/journal.pone.0087768 PubMed DOI PMC

Goto K., Chiba Y., Sakai H., Misawa M. (2009). Tumor necrosis factor-alpha (TNF-alpha) induces upregulation of RhoA via NF-kappaB activation in cultured human bronchial smooth muscle cells. J. Pharmacol. Sci. 110 437–444. 10.1254/jphs.09081fp PubMed DOI

Guan W. J., Gao Y. H., Li H. M., Yuan J. J., Chen R. C., Zhong N. S. (2015). Impacts of co-existing chronic rhinosinusitis on disease severity and risks of exacerbations in Chinese adults with bronchiectasis. PLoS One 10:e0137348. 10.1371/journal.pone.0137348 PubMed DOI PMC

Guan W. J., Li J. C., Liu F., Zhou J., Liu Y. P., Ling C., et al. (2018). Next-generation sequencing for identifying genetic mutations in adults with bronchiectasis. J. Thorac. Dis. 10 2618–2630. 10.21037/jtd.2018.04.134 PubMed DOI PMC

Gudis D., Zhao K. Q., Cohen N. A. (2012). Acquired cilia dysfunction in chronic rhinosinusitis. Am. J. Rhinol. Allergy 26 1–6. 10.2500/ajra.2012.26.3716 PubMed DOI PMC

Guilemany J. M., Angrill J., Alobid I., Centellas S., Pujols L., Bartra J., et al. (2009). United airways again: high prevalence of rhinosinusitis and nasal polyps in bronchiectasis. Allergy 64 790–797. 10.1111/j.1398-9995.2008.01892.x PubMed DOI

Gupta R., Sheikh A., Strachan D. P., Anderson H. R. (2004). Burden of allergic disease in the UK: secondary analyses of national databases. Clin. Exp. Allergy 34 520–526. 10.1111/j.1365-2222.2004.1935.x PubMed DOI

Hallit S., Raherison C., Malaeb D., Hallit R., Waked M., Kheir N., et al. (2019). Development of an asthma risk factors scale (ARFS) for risk assessment asthma screening in children. Pediatr. Neonatol. 60 156–165. 10.1016/j.pedneo.2018.05.009 PubMed DOI

Hamilos D. L. (2016). Chronic rhinosinusitis in patients with cystic fibrosis. J. Allergy Clin. Immunol. Pract. 4 605–612. 10.1016/j.jaip.2016.04.013 PubMed DOI

Hammad H., Chieppa M., Perros F., Willart M. A., Germain R. N., Lambrecht B. N. (2009). House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15 410–416. 10.1038/nm.1946 PubMed DOI PMC

Hanif T., Dhaygude K., Kankainen M., Renkonen J., Mattila P., Ojala T., et al. (2019). Birch pollen allergen immunotherapy reprograms nasal epithelial transcriptome and recovers microbial diversity. J. Allergy Clin. Immunol. 143 2293–2296.e11. 10.1016/j.jaci.2019.02.002 PubMed DOI

Hansel T. T., Johnston S. L., Openshaw P. J. (2013). Microbes and mucosal immune responses in asthma. Lancet 381 861–873. 10.1016/s0140-6736(12)62202-8 PubMed DOI

Hartshorn K. L. (2010). Role of surfactant protein A and D (SP-A and SP-D) in human antiviral host defense. Front. Biosci. 2:s83. 10.2741/s83 PubMed DOI

Hirota T., Takahashi A., Kubo M., Tsunoda T., Tomita K., Doi S., et al. (2011). Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat. Genet. 43 893–896. 10.1038/ng.887 PubMed DOI PMC

Hirsch A. G., Nordberg C., Bandeen-Roche K., Tan B. K., Schleimer R. P., Kern R. C., et al. (2019). Radiologic sinus inflammation and symptoms of chronic rhinosinusitis in a population-based sample. Allergy 10.1111/all.14106 [Epub ahead of print]. PubMed DOI PMC

Hoggard M., Wagner Mackenzie B., Jain R., Taylor M. W., Biswas K., Douglas R. G. (2017). Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin. Microbiol. Rev. 30 321–348. 10.1128/cmr.00060-16 PubMed DOI PMC

Homma T., Kato A., Sakashita M., Takabayashi T., Norton J. E., Suh L. A., et al. (2017). Potential involvement of the epidermal growth factor receptor ligand epiregulin and matrix metalloproteinase-1 in pathogenesis of chronic rhinosinusitis. Am. J. Respir. Cell Mol. Biol. 57 334–345. 10.1165/rcmb.2016-0325OC PubMed DOI PMC

Hsu J., Avila P. C., Kern R. C., Hayes M. G., Schleimer R. P., Pinto J. M. (2013). Genetics of chronic rhinosinusitis: state of the field and directions forward. J. Allergy Clin. Immunol. 131 977–993.e5. 10.1016/j.jaci.2013.01.028 PubMed DOI PMC

Hu H., Li H. (2018). Prunetin inhibits lipopolysaccharide-induced inflammatory cytokine production and MUC5AC expression by inactivating the TLR4/MyD88 pathway in human nasal epithelial cells. Biomed. Pharmacother. 106 1469–1477. 10.1016/j.biopha.2018.07.093 PubMed DOI

Huang Y. J., Nariya S., Harris J. M., Lynch S. V., Choy D. F., Arron J. R., et al. (2015). The airway microbiome in patients with severe asthma: associations with disease features and severity. J. Allergy Clin. Immunol. 136 874–884. 10.1016/j.jaci.2015.05.044 PubMed DOI PMC

Hupin C., Gohy S., Bouzin C., Lecocq M., Polette M., Pilette C. (2014). Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy 69 1540–1549. 10.1111/all.12503 PubMed DOI

Ilmarinen P., Tuomisto L. E., Kankaanranta H. (2015). Phenotypes, risk factors, and mechanisms of adult-onset asthma. Mediators Inflamm. 2015:514868. 10.1155/2015/514868 PubMed DOI PMC

Ishida A., Ohta N., Suzuki Y., Kakehata S., Okubo K., Ikeda H., et al. (2012). Expression of pendrin and periostin in allergic rhinitis and chronic rhinosinusitis. Allergol. Int. 61 589–595. 10.2332/allergolint.11-OA-0370 PubMed DOI

Jardeleza C., Miljkovic D., Baker L., Boase S., Tan N. C., Koblar S. A., et al. (2013). Inflammasome gene expression alterations in Staphylococcus aureus biofilm-associated chronic rhinosinusitis. Rhinology 51 315–322. 10.4193/Rhin13.045 PubMed DOI

Jarvis D., Newson R., Lotvall J., Hastan D., Tomassen P., Keil T., et al. (2012). Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. Allergy 67 91–98. 10.1111/j.1398-9995.2011.02709.x PubMed DOI

Jiang Z., Zhu L. (2016). Update on the role of alternatively activated macrophages in asthma. J. Asthma Allergy 9 101–107. 10.2147/JAA.S104508 PubMed DOI PMC

Jiao J., Duan S., Meng N., Li Y., Fan E., Zhang L. (2015). Role of IFN-gamma, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps. Clin. Exp. Allergy 46 449–460. 10.1111/cea.12644 PubMed DOI

Jiao J., Wang C., Zhang L. (2019). Epithelial physical barrier defects in chronic rhinosinusitis. Expert Rev. Clin. Immunol. 15 679–688. 10.1080/1744666X.2019.1601556 PubMed DOI

Jiao J., Wang M., Duan S., Meng Y., Meng N., Li Y., et al. (2018). Transforming growth factor-beta1 decreases epithelial tight junction integrity in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 141 1160–1163.e9. 10.1016/j.jaci.2017.08.045 PubMed DOI

Joenvaara S., Mattila P., Renkonen J., Makitie A., Toppila-Salmi S., Lehtonen M., et al. (2009). Caveolar transport through nasal epithelium of birch pollen allergen Bet v 1 in allergic patients. J. Allergy Clin. Immunol. 124 135–142.e1-21. 10.1016/j.jaci.2008.11.048 PubMed DOI

Juhn Y. J. (2014). Risks for infection in patients with asthma (or other atopic conditions): is asthma more than a chronic airway disease? J. Allergy Clin. Immunol. 134 247–257: quiz 58–59. PubMed PMC

Juncadella I. J., Kadl A., Sharma A. K., Shim Y. M., Hochreiter-Hufford A., Borish L., et al. (2013). Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493 547–551. 10.1038/nature11714 PubMed DOI PMC

Kaur R., Chupp G. (2019). Phenotypes and endotypes of adult asthma: moving toward precision medicine. J. Allergy Clin. Immunol. 144 1–12. 10.1016/j.jaci.2019.05.031 PubMed DOI

Khlifi R., Olmedo P., Gil F., Hammami B., Hamza-Chaffai A. (2015). Cadmium and nickel in blood of Tunisian population and risk of nasosinusal polyposis disease. Environ. Sci. Pollut. Res. 22 3586–3593. 10.1007/s11356-014-3619-8 PubMed DOI

Kim B., Lee H. J., Im N. R., Lee D. Y., Kang C. Y., Park I. H., et al. (2018). Effect of matrix metalloproteinase inhibitor on disrupted E-cadherin after acid exposure in the human nasal epithelium. Laryngoscope 128 E1–E7. 10.1002/lary.26932 PubMed DOI

Kim K. W., Ober C. (2019). Lessons learned from GWAS of asthma. Allergy Asthma Immunol. Res. 11 170–187. PubMed PMC

Kim R., Chang G., Hu R., Phillips A., Douglas R. (2016). Connexin gap junction channels and chronic rhinosinusitis. Int. Forum Allergy Rhinol. 6 611–617. 10.1002/alr.21717 PubMed DOI

Knight R., Vrbanac A., Taylor B. C., Aksenov A., Callewaert C., Debelius J., et al. (2018). Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16 410–422. 10.1038/s41579-018-0029-9 PubMed DOI

Knowles M. R., Daniels L. A., Davis S. D., Zariwala M. A., Leigh M. W. (2013). Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 188 913–922. 10.1164/rccm.201301-0059CI PubMed DOI PMC

Kohanski M. A., Workman A. D., Patel N. N., Hung L.-Y., Shtraks J. P., Chen B., et al. (2018). Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 142 460–469.e7. 10.1016/j.jaci.2018.03.019 PubMed DOI PMC

Kountakis S. E., Arango P., Bradley D., Wade Z. K., Borish L. (2004). Molecular and cellular staging for the severity of chronic rhinosinusitis. Laryngoscope 114 1895–1905. 10.1097/01.mlg.0000147917.43615.c0 PubMed DOI

Kouzaki H., Matsumoto K., Kato T., Tojima I., Shimizu S., Shimizu T. (2016). Epithelial cell-derived cytokines contribute to the pathophysiology of eosinophilic chronic rhinosinusitis. J. Interferon Cytokine Res. 36 169–179. 10.1089/jir.2015.0058 PubMed DOI

Kristjansson R. P., Benonisdottir S., Davidsson O. B., Oddsson A., Tragante V., Sigurdsson J. K., et al. (2019). A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nat. Genet. 51 267–276. 10.1038/s41588-018-0314-6 PubMed DOI

Kudo M., Ishigatsubo Y., Aoki I. (2013). Pathology of asthma. Front. Microbiol. 4:263. PubMed PMC

Kuhar H. N., Tajudeen B. A., Mahdavinia M., Gattuso P., Ghai R., Batra P. S. (2017). Inflammatory infiltrate and mucosal remodeling in chronic rhinosinusitis with and without polyps: structured histopathologic analysis. Int. Forum Allergy Rhinol. 7 679–689. 10.1002/alr.21943 PubMed DOI

Lal D., Keim P., Delisle J., Barker B., Rank M. A., Chia N., et al. (2017). Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int. Forum Allergy Rhinol. 7 561–569. 10.1002/alr.21934 PubMed DOI

Lam K., Schleimer R., Kern R. C. (2015). The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses. Curr. Allergy Asthma Rep. 15:41. 10.1007/s11882-015-0540-2 PubMed DOI PMC

Lambrecht B. N., Hammad H. (2012). The airway epithelium in asthma. Nat. Med. 18 684–692. 10.1038/nm.2737 PubMed DOI

Lambrecht B. N., Hammad H. (2014). Allergens and the airway epithelium response: gateway to allergic sensitization. J. Allergy Clin. Immunol. 134 499–507. 10.1016/j.jaci.2014.06.036 PubMed DOI

Lan B., Mitchel J. A., O’Sullivan M. J., Park C. Y., Kim J. H., Cole W. C., et al. (2018). Airway epithelial compression promotes airway smooth muscle proliferation and contraction. Am. J. Physiol. Lung Cell. Mol. Physiol. 315 L645–L652. 10.1152/ajplung.00261.2018 PubMed DOI PMC

Laury A. M., Hilgarth R., Nusrat A., Wise S. K. (2015). Periostin and receptor activator of nuclear factor kappa-B ligand expression in allergic fungal rhinosinusitis. Int. Forum Allergy Rhinol. 4 716–724. 10.1002/alr.21367 PubMed DOI

Lee R. J., Cohen N. A. (2014). Bitter and sweet taste receptors in the respiratory epithelium in health and disease. J. Mol. Med. 92 1235–1244. 10.1007/s00109-014-1222-6 PubMed DOI PMC

Lehmann A. E., Scangas G. A., Bergmark R. W., El Rassi E., Stankovic K. M., Metson R. (2019). Periostin and inflammatory disease: implications for chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 160 965–973. 10.1177/0194599819838782 PubMed DOI

Li J., Li Y. (2019). Autophagy is involved in allergic rhinitis by inducing airway remodeling. Int. Forum Allergy Rhinol. 9 1346–1351. 10.1002/alr.22424 PubMed DOI

Li X., Tao Y., Li X. (2015). Expression of MMP-9/TIMP-2 in nasal polyps and its functional implications. Int. J. Clin. Exp. Pathol. 8 14556–14561. PubMed PMC

Li Y., Wang X., Wang R., Bo M., Fan E., Duan S., et al. (2014). The expression of epithelial intercellular junctional proteins in the sinonasal tissue of subjects with chronic rhinosinusitis: a histopathologic study. ORL J. Otorhinolaryngol. Relat. Spec. 76 110–119. 10.1159/000362246 PubMed DOI

Li Y. Y., Li C. W., Chao S. S., Yu F. G., Yu X. M., Liu J., et al. (2014). Impairment of cilia architecture and ciliogenesis in hyperplastic nasal epithelium from nasal polyps. J. Allergy Clin. Immunol. 134 1282–1292. 10.1016/j.jaci.2014.07.038 PubMed DOI

Li Z., Zeng M., Deng Y., Zhao J., Zhou X., Trudeau J. B., et al. (2019). 15-Lipoxygenase 1 in nasal polyps promotes CCL26/eotaxin 3 expression through extracellular signal-regulated kinase activation. J. Allergy Clin. Immunol. 144 1228–1241.e9. 10.1016/j.jaci.2019.06.037 PubMed DOI PMC

Liao B., Hu C. Y., Liu T., Liu Z. (2014). Respiratory viral infection in the chronic persistent phase of chronic rhinosinusitis. Laryngoscope 124 832–837. 10.1002/lary.24348 PubMed DOI PMC

Licona-Limon P., Kim L. K., Palm N. W., Flavell R. A. (2013). TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 14 536–542. 10.1038/ni.2617 PubMed DOI

Lin H., Li Z., Lin D., Zheng C., Zhang W. (2016). Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation 39 2045–2052. 10.1007/s10753-016-0442-z PubMed DOI

Lisspers K., Janson C., Larsson K., Johansson G., Telg G., Thuresson M., et al. (2018). Comorbidity, disease burden and mortality across age groups in a Swedish primary care asthma population: an epidemiological register study (PACEHR). Respir. Med. 136 15–20. 10.1016/j.rmed.2018.01.020 PubMed DOI

Liu C., Li Y., Yu J., Feng L., Hou S., Liu Y., et al. (2013). Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 8:e54841. 10.1371/journal.pone.0054841 PubMed DOI PMC

London N. R., Jr., Ramanathan M., Jr. (2017). The role of the sinonasal epithelium in allergic rhinitis. Otolaryngol. Clin. North Am. 50 1043–1050. 10.1016/j.otc.2017.08.002 PubMed DOI PMC

Lopez-Souza N., Favoreto S., Wong H., Ward T., Yagi S., Schnurr D., et al. (2009). In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J. Allergy Clin. Immunol. 123 1384–1390.e2. 10.1016/j.jaci.2009.03.010 PubMed DOI PMC

Luukkainen A., Puan K. J., Yusof N., Lee B., Tan K. S., Liu J., et al. (2018). A co-culture model of PBMC and stem cell derived human nasal epithelium reveals rapid activation of NK and innate T cells upon influenza A virus infection of the nasal epithelium. Front. Immunol. 9:2514. 10.3389/fimmu.2018.02514 PubMed DOI PMC

Ma Y., Sun Y., Jiang L., Zuo K., Chen H., Guo J., et al. (2017). WDPCP regulates the ciliogenesis of human sinonasal epithelial cells in chronic rhinosinusitis. Cytoskeleton 74 82–90. 10.1002/cm.21351 PubMed DOI

Maeda Y., Chen G., Xu Y., Haitchi H. M., Du L., Keiser A. R., et al. (2011). Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation. Am. J. Respir. Crit. Care Med. 184 421–429. 10.1164/rccm.201101-0106OC PubMed DOI PMC

Malinsky R. R., Valera F. C., Cavallari F. E., Kupper D. S., Milaneze C., Silva J. S., et al. (2013). Matrix metalloproteinases and their impact on sinusal extension in chronic rhinosinusitis with nasal polyps. Eur. Arch. Otorhinolaryngol. 270 1345–1348. 10.1007/s00405-012-2219-9 PubMed DOI

Martin F. J., Prince A. S. (2008). TLR2 regulates gap junction intercellular communication in airway cells. J. Immunol. 180 4986–4993. 10.4049/jimmunol.180.7.4986 PubMed DOI PMC

Mattila P., Renkonen J., Toppila-Salmi S., Parviainen V., Joenvaara S., Alff-Tuomala S., et al. (2010). Time-series nasal epithelial transcriptomics during natural pollen exposure in healthy subjects and allergic patients. Allergy 65 175–183. 10.1111/j.1398-9995.2009.02181.x PubMed DOI

McDougall C. M., Blaylock M. G., Douglas J. G., Brooker R. J., Helms P. J., Walsh G. M. (2008). Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies. Am. J. Respir. Cell Mol. Biol. 39 560–568. 10.1165/rcmb.2007-0325OC PubMed DOI PMC

McKiernan P. J., Molloy K., Cryan S. A., McElvaney N. G., Greene C. M. (2014). Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium. Int. J. Biochem. Cell Biol. 52 184–191. 10.1016/j.biocel.2014.02.022 PubMed DOI

Mésidor M., Benedetti A., El-Zein M., Menzies D., Parent M. -É, Rousseau M.-C. (2019). Asthma phenotypes based on health services use for allergic diseases in a province-wide birth cohort. Ann. Allergy Asthma Immunol. 122 50–57.e2. 10.1016/j.anai.2018.09.453 PubMed DOI

Milonski J., Zielinska-Blizniewska H., Przybylowska K., Pietkiewicz P., Korzycka-Zaborowska B., Majsterek I., et al. (2015). Significance of CYCLOOXYGENASE-2(COX-2), PERIOSTIN (POSTN) and INTERLEUKIN-4(IL-4) gene expression in the pathogenesis of chronic rhinosinusitis with nasal polyps. Eur. Arch. Otorhinolaryngol. 272 3715–3720. 10.1007/s00405-014-3481-9 PubMed DOI PMC

Monick M. M., Yarovinsky T. O., Powers L. S., Butler N. S., Carter A. B., Gudmundsson G., et al. (2003). Respiratory syncytial virus up-regulates TLR4 and sensitizes airway epithelial cells to endotoxin. J. Biol. Chem. 278 53035–53044. 10.1074/jbc.m308093200 PubMed DOI

Morris A., Beck J. M., Schloss P. D., Campbell T. B., Crothers K., Curtis J. L., et al. (2013). Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187 1067–1075. PubMed PMC

Muluk N. B., Arikan O. K., Atasoy P., Kilic R., Yalcinozan E. T. (2015). The role of MMP-2, MMP-9, and TIMP-1 in the pathogenesis of nasal polyps: immunohistochemical assessment at eight different levels in the epithelial, subepithelial, and deep layers of the mucosa. Ear Nose Throat J. 94 E1–E13. PubMed

Numata M., Chu H. W., Dakhama A., Voelker D. R. (2010). Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc. Natl. Acad. Sci. USA 107 320–325. 10.1073/pnas.0909361107 PubMed DOI PMC

Nunes C., Pereira A. M., Morais-Almeida M. (2017). Asthma costs and social impact. Asthma Res. Pract. 3:1. PubMed PMC

Ohta N., Ishida A., Kurakami K., Suzuki Y., Kakehata S., Ono J., et al. (2014). Expressions and roles of periostin in otolaryngological diseases. Allergol. Int. 63 171–180. 10.2332/allergolint.13-RAI-0673 PubMed DOI

Ordovas-Montanes J., Dwyer D. F., Nyquist S. K., Buchheit K. M., Vukovic M., Deb C., et al. (2018). Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560 649–654. 10.1038/s41586-018-0449-8 PubMed DOI PMC

Osorio F., Lambrecht B., Janssens S. (2013). The UPR and lung disease. Semin. Immunopathol. 35 293–306. 10.1007/s00281-013-0368-6 PubMed DOI

Oyer S. L., Nagel W., Mulligan J. K. (2013). Differential expression of adhesion molecules by sinonasal fibroblasts among control and chronic rhinosinusitis patients. Am. J. Rhinol. Allergy 27 381–386. 10.2500/ajra.2013.27.3934 PubMed DOI

Pace E., Ferraro M., Siena L., Melis M., Montalbano A. M., Johnson M., et al. (2008). Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 124 401–411. 10.1111/j.1365-2567.2007.02788.x PubMed DOI PMC

Pallasaho P., Ronmark E., Haahtela T., Sovijarvi A. R., Lundback B. (2006). Degree and clinical relevance of sensitization to common allergens among adults: a population study in Helsinki, Finland. Clin. Exp. Allergy 36 503–509. 10.1111/j.1365-2222.2006.02460.x PubMed DOI

Park S. K., Jin S. Y., Yeon S. H., Lee S. B., Xu J., Yoon Y. H., et al. (2018). Role of Toll-like receptor 9 signaling on activation of nasal polyp-derived fibroblasts and its association with nasal polypogenesis. Int. Forum Allergy Rhinol. 8 1001–1012. 10.1002/alr.22155 PubMed DOI

Peric A., Mirkovic C. S., Vojvodic D. (2018). Clara cell protein 16 release from the nasal mucosa in allergic rhinitis, chronic rhinosinusitis, and exposure to air pollutants. Arh. Hig. Rada. Toksikol. 69 215–219. 10.2478/aiht-2018-69-3081 PubMed DOI

Peterson S., Poposki J. A., Nagarkar D. R., Chustz R. T., Peters A. T., Suh L. A., et al. (2012). Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 129 119–127.e1–9. 10.1016/j.jaci.2011.08.021 PubMed DOI PMC

Pividori M., Schoettler N., Nicolae D. L., Ober C., Im H. K. (2019). Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. Lancet Respir. Med. 7 509–522. 10.1016/S2213-2600(19)30055-4 PubMed DOI PMC

Polosa R., Thomson N. C. (2013). Smoking and asthma: dangerous liaisons. Eur. Respir. J. 41 716–726. 10.1183/09031936.00073312 PubMed DOI

Pols D. H. J., Wartna J. B., Moed H., van Alphen E. I., Bohnen A. M., Bindels P. J. E. (2016). Atopic dermatitis, asthma and allergic rhinitis in general practice and the open population: a systematic review. Scand. J. Prim. Health Care 34 143–150. 10.3109/02813432.2016.1160629 PubMed DOI PMC

Poole A., Urbanek C., Eng C., Schageman J., Jacobson S., O’Connor B. P., et al. (2014). Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. J. Allergy Clin. Immunol. 133 670–678.e12. 10.1016/j.jaci.2013.11.025 PubMed DOI PMC

Popatia R., Haver K., Casey A. (2014). Primary ciliary dyskinesia: an update on new diagnostic modalities and review of the literature. Pediatr. Allergy Immunol. Pulmonol. 27 51–59. 10.1089/ped.2013.0314 PubMed DOI PMC

Pothoven K. L., Norton J. E., Hulse K. E., Suh L. A., Carter R. G., Rocci E., et al. (2015). Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J. Allergy Clin. Immunol. 136 737–746.e4. 10.1016/j.jaci.2015.01.043 PubMed DOI PMC

Pothoven K. L., Schleimer R. P. (2017). The barrier hypothesis and oncostatin M: restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease. Tissue Barriers 5:e1341367. 10.1080/21688370.2017.1341367 PubMed DOI PMC

Ramezanpour M., Moraitis S., Smith J. L., Wormald P. J., Vreugde S. (2016). Th17 cytokines disrupt the airway mucosal barrier in chronic rhinosinusitis. Mediators Inflamm. 2016:9798206. 10.1155/2016/9798206 PubMed DOI PMC

Rehl R. M., Balla A. A., Cabay R. J., Hearp M. L., Pytynia K. B., Joe S. A. (2007). Mucosal remodeling in chronic rhinosinusitis. Am. J. Rhinol. 21 651–657. 10.2500/ajr.2007.21.3096 PubMed DOI

Renkonen J., Toppila-Salmi S., Joenvaara S., Mattila P., Parviainen V., Hagstrom J., et al. (2015). Expression of Toll-like receptors in nasal epithelium in allergic rhinitis. APMIS 123 716–725. 10.1111/apm.12408 PubMed DOI PMC

Roberts N., Al Mubarak R., Francisco D., Kraft M., Chu H. W. (2018). Comparison of paired human nasal and bronchial airway epithelial cell responses to rhinovirus infection and IL-13 treatment. Clin. Transl. Med. 7:13. 10.1186/s40169-018-0189-2 PubMed DOI PMC

Roschmann K. I., Luiten S., Jonker M. J., Breit T. M., Fokkens W. J., Petersen A., et al. (2011). Timothy grass pollen extract-induced gene expression and signalling pathways in airway epithelial cells. Clin. Exp. Allergy 41 830–841. 10.1111/j.1365-2222.2011.03713.x PubMed DOI

Roscioli E., Jersmann H. P., Lester S., Badiei A., Fon A., Zalewski P., et al. (2017). Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 12 3503–3510. 10.2147/COPD.S149589 PubMed DOI PMC

Ryu G., Kim D. W. (2020). Th2 inflammatory responses in the development of nasal polyps and chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 20 1–8. 10.1097/aci.0000000000000588 PubMed DOI

Saulyte J., Regueira C., Montes-Martinez A., Khudyakov P., Takkouche B. (2014). Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: a systematic review and meta-analysis. PLoS Med. 11:e1001611. 10.1371/journal.pmed.1001611 PubMed DOI PMC

Scadding G. (2014). Cytokine profiles in allergic rhinitis. Curr. Allergy Asthma Rep.o 14:435. PubMed

Schleimer R. P. (2017). Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu. Rev. Pathol. 12 331–357. 10.1146/annurev-pathol-052016-100401 PubMed DOI PMC

Schleimer R. P., Berdnikovs S. (2017). Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J. Allergy Clin. Immunol. 139 1752–1761. 10.1016/j.jaci.2017.04.010 PubMed DOI PMC

Schoettler N., Rodriguez E., Weidinger S., Ober C. (2019). Advances in asthma and allergic disease genetics – is bigger always better? J. Allergy Clin. Immunol. 144 1495–1506. 10.1016/j.jaci.2019.10.023 PubMed DOI PMC

Seshadri S., Lin D. C., Rosati M., Carter R. G., Norton J. E., Suh L., et al. (2012). Reduced expression of antimicrobial PLUNC proteins in nasal polyp tissues of patients with chronic rhinosinusitis. Allergy 67 920–928. 10.1111/j.1398-9995.2012.02848.x PubMed DOI PMC

Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S. A., Mardani F., et al. (2018). Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233 6425–6440. 10.1002/jcp.26429 PubMed DOI

Sharma N., Akkoyunlu M., Rabin R. L. (2017). Macrophages-common culprit in obesity and asthma. Allergy. 73 1196–1205. 10.1111/all.13369 PubMed DOI

Shi L. L., Xiong P., Zhang L., Cao P. P., Liao B., Lu X., et al. (2013). Features of airway remodeling in different types of Chinese chronic rhinosinusitis are associated with inflammation patterns. Allergy 68 101–109. 10.1111/all.12064 PubMed DOI

Shimizu S., Kouzaki H., Kato T., Tojima I., Shimizu T. (2016). HMGB1-TLR4 signaling contributes to the secretion of interleukin 6 and interleukin 8 by nasal epithelial cells. Am. J. Rhinol. Allergy 30 167–172. 10.2500/ajra.2016.30.4300 PubMed DOI

Shimizu S., Ogawa T., Takezawa K., Tojima I., Kouzaki H., Shimizu T. (2015). Tissue factor and tissue factor pathway inhibitor in nasal mucosa and nasal secretions of chronic rhinosinusitis with nasal polyp. Am. J. Rhinol. Allergy 29 235–242. 10.2500/ajra.2015.29.4183 PubMed DOI

Shimizu S., Tojima I., Takezawa K., Matsumoto K., Kouzaki H., Shimizu T. (2017). Thrombin and activated coagulation factor X stimulate the release of cytokines and fibronectin from nasal polyp fibroblasts via protease-activated receptors. Am. J. Rhinol. Allergy 31 13–18. 10.2500/ajra.2017.31.4400 PubMed DOI

Shin S. H., Kim Y. H., Jin H. S., Kang S. H. (2016a). Alternaria induces production of thymic stromal lymphopoietin in nasal fibroblasts through toll-like receptor 2. Allergy Asthma Immunol. Res. 8 63–68. 10.4168/aair.2016.8.1.63 PubMed DOI PMC

Shin S. H., Ye M. K., Kim Y. H., Kim J. K. (2016b). Role of TLRs in the production of chemical mediators in nasal polyp fibroblasts by fungi. Auris Nasus Larynx 43 166–170. 10.1016/j.anl.2015.07.003 PubMed DOI

Shiono O., Sakuma Y., Komatsu M., Hirama M., Yamashita Y., Ishitoya J., et al. (2015). Differential expression of periostin in the nasal polyp may represent distinct histological features of chronic rhinosinusitis. Auris Nasus Larynx 42 123–127. 10.1016/j.anl.2014.09.003 PubMed DOI

Sica A., Mantovani A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122 787–795. 10.1172/JCI59643 PubMed DOI PMC

Sigurs N., Bjarnason R., Sigurbergsson F., Kjellman B. (2000). Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med. 161 1501–1507. 10.1164/ajrccm.161.5.9906076 PubMed DOI

Soyka M. B., Wawrzyniak P., Eiwegger T., Holzmannm D., Treis A., Wanke K., et al. (2012). Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J. Allergy Clin. Immunol. 130 1087–1096.e10. 10.1016/j.jaci.2012.05.052 PubMed DOI

Stentzel S., Teufelberger A., Nordengrun M., Kolata J., Schmidt F., van Crombruggen K., et al. (2017). Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J. Allergy Clin. Immunol. 139 492–500.e8. 10.1016/j.jaci.2016.03.045 PubMed DOI

Sterner T., Uldahl A., Svensson A., Bjork J., Svedman C., Nielsen C., et al. (2019). The southern Sweden adolescent allergy-cohort: prevalence of allergic diseases and cross-sectional associations with individual and social factors. J. Asthma 56 227–235. 10.1080/02770903.2018.1452033 PubMed DOI

Sun Y., Zhou B., Wang C., Huang Q., Zhang Q., Han Y., et al. (2012). Biofilm formation and Toll-like receptor 2, Toll-like receptor 4, and NF-kappaB expression in sinus tissues of patients with chronic rhinosinusitis. Am. J. Rhinol. Allergy 26 104–109. 10.2500/ajra.2012.26.3718 PubMed DOI

Suzuki H., Koizumi H., Ikezaki S., Tabata T., Ohkubo J., Kitamura T., et al. (2016). Electrical impedance and expression of tight junction components of the nasal turbinate and polyp. ORL J. Otorhinolaryngol. Relat. Spec. 78 16–25. 10.1159/000442024 PubMed DOI

Suzuki M., Itoh M., Ohta N., Nakamura Y., Moriyama A., Matsumoto T., et al. (2006). Blocking of protease allergens with inhibitors reduces allergic responses in allergic rhinitis and other allergic diseases. Acta Otolaryngol. 126 746–751. 10.1080/00016480500475625 PubMed DOI

Suzuki M., Ramezanpour M., Cooksley C., Li J., Nakamaru Y., Homma A., et al. (2018). Sirtuin-1 controls Poly (I:C)-dependent matrix metalloproteinase 9 activation in primary human nasal epithelial cells. Am. J. Respir. Cell Mol. Biol. 59 500–510. 10.1165/rcmb.2017-0415OC PubMed DOI

Takabayashi T., Kato A., Peters A. T., Hulse K. E., Suh L. A., Carter R., et al. (2013). Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am. J. Respir. Crit. Care Med. 187 49–57. 10.1164/rccm.201207-1292OC PubMed DOI PMC

Takabayashi T., Tanaka Y., Susuki D., Yoshida K., Tomita K., Sakashita M., et al. (2019). Increased expression of L-plastin in nasal polyp of patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. Allergy 74 1307–1316. 10.1111/all.13677 PubMed DOI PMC

Tan A. M., Chen H. C., Pochard P., Eisenbarth S. C., Herrick C. A., Bottomly H. K. (2010). TLR4 signaling in stromal cells is critical for the initiation of allergic Th2 responses to inhaled antigen. J. Immunol. 184 3535–3544. 10.4049/jimmunol.0900340 PubMed DOI

Tengroth L., Arebro J., Kumlien Georen S., Winqvist O., Cardell L. O. (2014a). Deprived TLR9 expression in apparently healthy nasal mucosa might trigger polyp-growth in chronic rhinosinusitis patients. PLoS One 9:e105618. 10.1371/journal.pone.0105618 PubMed DOI PMC

Tengroth L., Millrud C. R., Kvarnhammar A. M., Kumlien Georen S., Latif L., Cardell L. O. (2014b). Functional effects of Toll-like receptor (TLR)3, 7, 9, RIG-I and MDA-5 stimulation in nasal epithelial cells. PLoS One 9:e98239. 10.1371/journal.pone.0098239 PubMed DOI PMC

Thai P., Loukoianov A., Wachi S., Wu R. (2008). Regulation of airway mucin gene expression. Annu. Rev. Physiol. 70 405–429. 10.1146/annurev.physiol.70.113006.100441 PubMed DOI PMC

Tharakan A., Halderman A. A., Lane A. P., Biswal S., Ramanathan M., Jr. (2016). Reversal of cigarette smoke extract-induced sinonasal epithelial cell barrier dysfunction through Nrf2 Activation. Int. Forum Allergy Rhinol. 6 1145–1150. 10.1002/alr.21827 PubMed DOI PMC

Tieu D. D., Peters A. T., Carter R. G., Suh L., Conley D. B., Chandra R., et al. (2010). Evidence for diminished levels of epithelial psoriasin and calprotectin in chronic rhinosinusitis. J. Allergy Clin. Immunol. 125 667–675. 10.1016/j.jaci.2009.11.045 PubMed DOI PMC

Tipirneni K. E., Zhang S., Cho D. Y., Grayson J., Skinner D. F., Mackey C., et al. (2018). Submucosal gland mucus strand velocity is decreased in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 8 509–512. 10.1002/alr.22065 PubMed DOI PMC

Tokunaga Y., Imaoka H., Kaku Y., Kawayama T., Hoshino T. (2019). The significance of CD163-expressing macrophages in asthma. Ann. Allergy Asthma Immunol. 123 263–270. 10.1016/j.anai.2019.05.019 PubMed DOI

Tomassen P., Vandeplas G., Van Zele T., Cardell L. O., Arebro J., Olze H., et al. (2016). Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J. Allergy Clin. Immunol. 137 1449–1456.e4. 10.1016/j.jaci.2015.12.1324 PubMed DOI

Tomaszewska M., Sarnowska E., Rusetska N., Kowalik K., Sierdzinski J., Siedlecki J. A., et al. (2019). Role of vitamin D and its receptors in the pathophysiology of chronic rhinosinusitis. J. Am. Coll. Nutr. 38 108–118. 10.1080/07315724.2018.1503102 PubMed DOI

Toppila-Salmi S., Chanoine S., Karjalainen J., Pekkanen J., Bousquet J., Siroux V. (2019). Risk of adult-onset asthma increases with the number of allergic multimorbidities and decreases with age. Allergy 74 2406–2416. 10.1111/all.13971 PubMed DOI

Toppila-Salmi S., van Drunen C. M., Fokkens W. J., Golebski K., Mattila P., Joenvaara S., et al. (2015). Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis. Curr. Allergy Asthma Rep. 15:495. PubMed PMC

Toskala E., Kennedy D. W. (2015). Asthma risk factors. Int. Forum Allergy Rhinol. 5(Suppl. 1) S11–S16. PubMed PMC

Tourdot S., Mathie S., Hussell T., Edwards L., Wang H., Openshaw P. J., et al. (2008). Respiratory syncytial virus infection provokes airway remodelling in allergen-exposed mice in absence of prior allergen sensitization. Clin. Exp. Allergy 38 1016–1024. 10.1111/j.1365-2222.2008.02974.x PubMed DOI PMC

Tsai Y. J., Chi J. C., Hao C. Y., Wu W. B. (2018). Peptidoglycan induces bradykinin receptor 1 expression through Toll-like receptor 2 and NF-kappaB signaling pathway in human nasal mucosa-derived fibroblasts of chronic rhinosinusitis patients. J. Cell. Physiol. 233 7226–7238. 10.1002/jcp.26553 PubMed DOI

Tsybikov N. N., Egorova E. V., Kuznik B. I., Fefelova E. V., Magen E. (2016). Biomarker assessment in chronic rhinitis and chronic rhinosinusitis: endothelin-1, TARC/CCL17, neopterin, and alpha-defensins. Allergy Asthma Proc. 37 35–42. 10.2500/aap.2016.37.3899 PubMed DOI

Tyner J. W., Kim E. Y., Ide K., Pelletier M. R., Roswit W. T., Morton J. D., et al. (2006). Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J. Clin. Invest. 116 309–321. 10.1172/jci25167 PubMed DOI PMC

Van Bruaene N., Bachert C. (2011). Tissue remodeling in chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 11 8–11. 10.1097/aci.0b013e32834233ef PubMed DOI

Vercelli D., Bleecker E. R. (2019). Strength in numbers: the quest for asthma genes. J. Allergy Clin. Immunol. 144 413–415. 10.1016/j.jaci.2019.06.007 PubMed DOI

Vonk J. M., Nieuwenhuis M. A. E., Dijk F. N., Boudier A., Siroux V., Bouzigon E., et al. (2018). Novel genes and insights in complete asthma remission: a genome-wide association study on clinical and complete asthma remission. Clin. Exp. Allergy 48 1286–1296. 10.1111/cea.13181 PubMed DOI

Voynow J. A., Rubin B. K. (2009). Mucins, mucus, and sputum. Chest 135 505–512. 10.1378/chest.08-0412 PubMed DOI

Wagener A. H., Zwinderman A. H., Luiten S., Fokkens W. J., Bel E. H., Sterk P. J., et al. (2014). dsRNA-induced changes in gene expression profiles of primary nasal and bronchial epithelial cells from patients with asthma, rhinitis and controls. Respir. Res. 15:9. 10.1186/1465-9921-15-9 PubMed DOI PMC

Wang L. F., Chien C. Y., Chiang F. Y., Chai C. Y., Tai C. F. (2012). Corelationship between matrix metalloproteinase 2 and 9 expression and severity of chronic rhinosinusitis with nasal polyposis. Am. J. Rhinol. Allergy 26 e1–e4. 10.2500/ajra.2012.26.3724 PubMed DOI

Wang M., Wang X., Zhang N., Wang H., Li Y., Fan E., et al. (2015). Association of periostin expression with eosinophilic inflammation in nasal polyps. J. Allergy Clin. Immunol. 136 1700–1703.e9. 10.1016/j.jaci.2015.09.005 PubMed DOI

Wang X., Moylan B., Leopold D. A., Kim J., Rubenstein R. C., Togias A., et al. (2000). Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA 284 1814–1819. PubMed

Wei Y., Ma R., Zhang J., Wu X., Yu G., Hu X., et al. (2018). Excessive periostin expression and Th2 response in patients with nasal polyps: association with asthma. J. Thorac. Dis. 10 6585–6597. 10.21037/jtd.2018.11.12 PubMed DOI PMC

Wenzel S. E. (2012). Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18 716–725. 10.1038/nm.2678 PubMed DOI

Westphalen K., Gusarova G. A., Islam M. N., Subramanian M., Cohen T. S., Prince A. S., et al. (2014). Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506 503–506. 10.1038/nature12902 PubMed DOI PMC

Whitsett J. A., Alenghat T. (2015). Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 16 27–35. 10.1038/ni.3045 PubMed DOI PMC

Whitsett J. A., Wert S. E., Weaver T. E. (2010). Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu. Rev. Med. 61 105–119. 10.1146/annurev.med.60.041807.123500 PubMed DOI PMC

Wiksten J., Toppila-Salmi S., Makela M. (2018). Primary prevention of airway allergy. Curr. Treat. Options Allergy 5 347–355. 10.1007/s40521-018-0190-4 PubMed DOI PMC

Willis-Owen S. A. G., Cookson W. O. C., Moffatt M. F. (2018). The genetics and genomics of asthma. Annu. Rev. Genomics Hum. Genet. 19 223–246. 10.1146/annurev-genom-083117-021651 PubMed DOI

Wise S. K., Lin S. Y., Toskala E., Orlandi R. R., Akdis C. A., Alt J. A., et al. (2018). International consensus statement on allergy and rhinology: allergic rhinitis. Int. Forum Allergy Rhinol. 8 108–352. PubMed PMC

Wu D., Wei Y., Bleier B. S. (2018). Emerging role of proteases in the pathogenesis of chronic rhinosinusitis with nasal polyps. Front. Cell. Infect. Microbiol. 7:538. 10.3389/fcimb.2017.00538 PubMed DOI PMC

Xiang R., Zhang Q. P., Zhang W., Kong Y. G., Tan L., Chen S. M., et al. (2019). Different effects of allergic rhinitis on nasal mucosa remodeling in chronic rhinosinusitis with and without nasal polyps. Eur. Arch. Otorhinolaryngol. 276 115–130. 10.1007/s00405-018-5195-x PubMed DOI PMC

Xu J., Lee J. W., Park S. K., Lee S. B., Yoon Y. H., Yeon S. H., et al. (2014). Toll-like receptor 9 ligands increase type I interferon induced B-cell activating factor expression in chronic rhinosinusitis with nasal polyposis. Clin. Immunol. 197 19–26. 10.1016/j.clim.2018.07.014 PubMed DOI

Xu M., Chen D., Zhou H., Zhang W., Xu J., Chen L. (2017). The role of periostin in the occurrence and progression of eosinophilic chronic sinusitis with nasal polyps. Sci. Rep. 7:9479. 10.1038/s41598-017-08375-2 PubMed DOI PMC

Yamin M., Holbrook E. H., Gray S. T., Busaba N. Y., Lovett B., Hamilos D. L. (2015). Profibrotic transforming growth factor beta 1 and activin A are increased in nasal polyp tissue and induced in nasal polyp epithelium by cigarette smoke and Toll-like receptor 3 ligation. Int. Forum Allergy Rhinol. 5 573–582. 10.1002/alr.21516 PubMed DOI

Yang H. W., Park J. H., Shin J. M., Lee H. M. (2018). Glucocorticoids ameliorate periostin-induced tissue remodeling in chronic rhinosinusitis with nasal polyps. Clin. Exp. Allergy 10 10. 10.1111/cea.13267 [Epub ahead of print]. PubMed DOI

Yang L. Y., Li X., Li W. T., Huang J. C., Wang Z. Y., Huang Z. Z., et al. (2017). Vgamma1+ gammadeltaT cells are correlated with increasing expression of eosinophil cationic protein and metalloproteinase-7 in chronic rhinosinusitis with nasal polyps inducing the formation of edema. Allergy Asthma Immunol. Res. 9 142–151. 10.4168/aair.2017.9.2.142 PubMed DOI PMC

Yeo N. K., Eom D. W., Oh M. Y., Lim H. W., Song Y. J. (2013). Expression of matrix metalloproteinase 2 and 9 and tissue inhibitor of metalloproteinase 1 in nonrecurrent vs recurrent nasal polyps. Ann. Allergy Asthma Immunol. 111 205–210. 10.1016/j.anai.2013.06.023 PubMed DOI

Yilmaz O. H., Katajisto P., Lamming D. W., Gultekin Y., Bauer-Rowe K. E., Sengupta S., et al. (2012). mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486 490–495. 10.1038/nature11163 PubMed DOI PMC

Yoo F., Suh J. D. (2017). What is the evidence for genetics in chronic rhinosinusitis? Curr. Opin. Otolaryngol. Head Neck Surg. 25 54–63. 10.1097/MOO.0000000000000329 PubMed DOI

Yu X. M., Li C. W., Li Y. Y., Liu J., Lin Z. B., Li T. Y., et al. (2013). Down-regulation of EMP1 is associated with epithelial hyperplasia and metaplasia in nasal polyps. Histopathology 63 686–695. 10.1111/his.12211 PubMed DOI

Zhang Y. L., Chen P. X., Guan W. J., Guo H. M., Qiu Z. E., Xu J. W., et al. (2018). Increased intracellular Cl concentration promotes ongoing inflammation in airway epithelium. Mucosal Immunol. 11 1149–1157. 10.1038/s41385-018-0013-8 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace