Airway Epithelial Dynamics in Allergy and Related Chronic Inflammatory Airway Diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32292784
PubMed Central
PMC7118214
DOI
10.3389/fcell.2020.00204
Knihovny.cz E-zdroje
- Klíčová slova
- allergic rhinitis (AR), asthma, chronic rhinosinusitis, epithelium, inflammation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Allergic rhinitis, chronic rhinosinusitis, and asthma are highly prevalent, multifactorial chronic airway diseases. Several environmental and genetic factors affect airway epithelial dynamics leading to activation of inflammatory mechanisms in the airways. This review links environmental factors to host epithelial immunity in airway diseases. Understanding altered homeostasis of the airway epithelium might provide important targets for diagnostics and therapy of chronic airway diseases.
Haartman Institute Medicum University of Helsinki Helsinki Finland
Skin and Allergy Hospital Helsinki University Hospital and University of Helsinki Helsinki Finland
Zobrazit více v PubMed
Aazami H., Seif F., Ghalehbaghi B., Mohebbi A., Ahmadi A., Babaheidarian P., et al. (2018). Levels of total IgA and IgA subclasses in the serum of chronic rhinosinusitis patients. Med. J. Islam. Repub. Iran 32:94. 10.14196/mjiri.32.94 PubMed DOI PMC
Ahsen M. E., Chun Y., Grishin A., Grishina G., Stolovitzky G., Pandey G., et al. (2019). NeTFactor, a framework for identifying transcriptional regulators of gene expression-based biomarkers. Sci. Rep. 9:12970. 10.1038/s41598-019-49498-y PubMed DOI PMC
Akei H., Whitsett J. A., Buroker M., Ninomiya T., Tatsumi H., Weaver T. E., et al. (2006). Surface tension influences cell shape and phagocytosis in alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 291 L572–L579. PubMed
Alevy Y. G., Patel A. C., Romero A. G., Patel D. A., Tucker J., Roswit W. T., et al. (2012). IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J. Clin. Invest. 122 4555–4568. 10.1172/JCI64896 PubMed DOI PMC
Altman M. C., Lai Y., Nolin J. D., Long S., Chen C. C., Piliponsky A. M., et al. (2019). Airway epithelium-shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling. J. Clin. Invest. 129 4979–4991. 10.1172/JCI126402 PubMed DOI PMC
Armstrong L., Medford A. R., Uppington K. M., Robertson J., Witherden I. R., Tetley T. D., et al. (2004). Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 31 241–245. 10.1165/rcmb.2004-0078oc PubMed DOI
Athari S. S. (2019). Targeting cell signaling in allergic asthma. Signal Transduct. Target. Ther. 4:45. 10.1038/s41392-019-0079-0 PubMed DOI PMC
Barham H. P., Osborn J. L., Snidvongs K., Mrad N., Sacks R., Harvey R. J. (2015). Remodeling changes of the upper airway with chronic rhinosinusitis. Int. Forum Allergy Rhinol. 5 565–572. 10.1002/alr.21546 PubMed DOI
Bartel S., La Grutta S., Cilluffo G., Perconti G., Bongiovanni A., Giallongo A., et al. (2019). Human airway epithelial extracellular vesicle miRNA signature is altered upon asthma development. Allergy 75 346–356. 10.1111/all.14008 PubMed DOI
Batzakakis D., Stathas T., Mastronikolis N., Kourousis C., Aletras A., Naxakis S. (2014). Adhesion molecules as predictors of nasal polyposis recurrence. Am. J. Rhinol. Allergy 28 20–22. 10.2500/ajra.2014.28.3962 PubMed DOI
Blaiss M. S., Hammerby E., Robinson S., Kennedy-Martin T., Buchs S. (2018). The burden of allergic rhinitis and allergic rhinoconjunctivitis on adolescents: a literature review. Annals Allergy Asthma Immunol. 121 43–52.e3. 10.1016/j.anai.2018.03.028 PubMed DOI
Bou Saab J., Losa D., Chanson M., Ruez R. (2014). Connexins in respiratory and gastrointestinal mucosal immunity. FEBS Lett. 588 1288–1296. 10.1016/j.febslet.2014.02.059 PubMed DOI
Bravo D. T., Soudry E., Edward J. A., Le W., Nguyen A. L., Hwang P. H., et al. (2013). Characterization of human upper airway epithelial progenitors. Int. Forum Allergy Rhinol. 3 841–847. 10.1002/alr.21205 PubMed DOI
Busse W. W., Lemanske R. F., Jr., Gern J. E. (2010). Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376 826–834. 10.1016/S0140-6736(10)61380-3 PubMed DOI PMC
Carpagnano G. E., Scioscia G., Lacedonia D., Soccio P., Lepore G., Saetta M., et al. (2018). Looking for airways periostin in severe asthma: could it be useful for clustering type 2 endotype? Chest 154 1083–1090. 10.1016/j.chest.2018.08.1032 PubMed DOI
Chen X., Chang L., Li X., Huang J., Yang L., Lai X., et al. (2018). Tc17/IL-17A up-regulated the expression of MMP-9 via NF-kappaB pathway in nasal epithelial cells of patients with chronic rhinosinusitis. Front. Immunol. 9:2121. 10.3389/fimmu.2018.02121 PubMed DOI PMC
Cho J. S., Kang J. H., Um J. Y., Han I. H., Park I. H., Lee H. M. (2014). Lipopolysaccharide induces pro-inflammatory cytokines and MMP production via TLR4 in nasal polyp-derived fibroblast and organ culture. PLoS One 9:e90683. 10.1371/journal.pone.0090683 PubMed DOI PMC
Cho J. S., Kim J. A., Park J. H., Park I. H., Han I. H., Lee H. M. (2016). Toll-like receptor 4-mediated expression of interleukin-32 via the c-Jun N-terminal kinase/protein kinase B/cyclic adenosine monophosphate response element binding protein pathway in chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 6 1020–1028. 10.1002/alr.21792 PubMed DOI
Clifford R. L., Patel J., MacIsaac J. L., McEwen L. M., Johnson S. R., Shaw D., et al. (2019). Airway epithelial cell isolation techniques affect DNA methylation profiles with consequences for analysis of asthma related perturbations to DNA methylation. Sci. Rep. 9:14409. 10.1038/s41598-019-50873-y PubMed DOI PMC
Cohen N. A. (2017). The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis. Laryngoscope 127 44–51. 10.1002/lary.26198 PubMed DOI PMC
Copeland E., Leonard K., Carney R., Kong J., Forer M., Naidoo Y., et al. (2018). Chronic rhinosinusitis: potential role of microbial dysbiosis and recommendations for sampling sites. Front. Cell. Infect. Microbiol. 8:57. 10.3389/fcimb.2018.00057 PubMed DOI PMC
Cutting G. R. (2005). Modifier genetics: cystic fibrosis. Annu. Rev. Genomics Hum. Genet. 6 237–260. 10.1146/annurev.genom.6.080604.162254 PubMed DOI
Deng H., Sun Y., Wang W., Li M., Yuan T., Kong W., et al. (2019). The hippo pathway effector Yes-associated protein promotes epithelial proliferation and remodeling in chronic rhinosinusitis with nasal polyps. Allergy 74 731–742. 10.1111/all.13647 PubMed DOI
Dickson R. P., Erb-Downward J. R., Huffnagle G. B. (2013). The role of the bacterial microbiome in lung disease. Expert Rev. Respir. Med. 7 245–257. 10.1586/ers.13.24 PubMed DOI PMC
Dietz de Loos D., Lourijsen E. S., Wildeman M. A. M., Freling N. J. M., Wolvers M. D. J., Reitsma S., et al. (2019). Prevalence of chronic rhinosinusitis in the general population based on sinus radiology and symptomatology. J. Allergy Clin. Immunol. 143 1207–1214. 10.1016/j.jaci.2018.12.986 PubMed DOI
Earl J. P., Adappa N. D., Krol J., Bhat A. S., Balashov S., Ehrlich R. L., et al. (2018). Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific biosciences sequencing of full-length 16S rRNA genes. Microbiome 6:190. 10.1186/s40168-018-0569-2 PubMed DOI PMC
Ebenezer J. A., Christensen J. M., Oliver B. G., Oliver R. A., Tjin G., Ho J., et al. (2017). Periostin as a marker of mucosal remodelling in chronic rhinosinusitis. Rhinology 55 234–241. 10.4193/Rhin16.215 PubMed DOI
Ege M. J., Mayer M., Normand A. C., Genuneit J., Cookson W. O., Braun-Fahrlander C., et al. (2011). Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364 701–709. 10.1056/NEJMoa1007302 PubMed DOI
El-Anwar M. W., Hamed A. A., Mohamed A. E., Nofal A. A., Mohamed M. A., Abdel-Aziz H. R. (2015). Surfactant protein a expression in chronic rhinosinusitis and atrophic rhinitis. Int. Arch. Otorhinolaryngol. 19 130–134. 10.1055/s-0035-1546432 PubMed DOI PMC
Erle D. J., Sheppard D. (2014). The cell biology of asthma. J. Cell Biol. 205 621–631. 10.1083/jcb.201401050 PubMed DOI PMC
Fokkens W. J., Lund V. J., Mullol J., Bachert C., Alobid I., Baroody F., et al. (2012). EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 50 1–12. 10.4193/Rhino50E2 PubMed DOI
Freund J. R., Mansfield C. J., Doghramji L. J., Adappa N. D., Palmer J. N., Kennedy D. W., et al. (2018). Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J. Biol. Chem. 293 9824–9840. 10.1074/jbc.RA117.001005 PubMed DOI PMC
Frohlich M., Pinart M., Keller T., Reich A., Cabieses B., Hohmann C., et al. (2017). Is there a sex-shift in prevalence of allergic rhinitis and comorbid asthma from childhood to adulthood? A meta-analysis. Clin. Transl. Allergy 7:44. 10.1186/s13601-017-0176-5 PubMed DOI PMC
Fukuoka A., Matsushita K., Morikawa T., Adachi T., Yasuda K., Kiyonari H., et al. (2019). Human cystatin SN is an endogenous protease inhibitor that prevents allergic rhinitis. J. Allergy Clin. Immunol. 143 1153–1162.e12. 10.1016/j.jaci.2018.06.035 PubMed DOI
Georas S. N., Rezaee F. (2014). Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J. Allergy Clin. Immunol. 134 509–520. 10.1016/j.jaci.2014.05.049 PubMed DOI PMC
GINA (2018). GINA Report: Global Strategy for Asthma Management and Prevention. Available online at: https://ginasthma.org/wp-content/uploads/2018/04/wms-GINA-2018-report-V1.3-002.pdf (accessed November 15, 2019).
Golebski K., Luiten S., van Egmond D., de Groot E., Roschmann K. I., Fokkens W. J., et al. (2014). High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells. PLoS One 9:e87768. 10.1371/journal.pone.0087768 PubMed DOI PMC
Goto K., Chiba Y., Sakai H., Misawa M. (2009). Tumor necrosis factor-alpha (TNF-alpha) induces upregulation of RhoA via NF-kappaB activation in cultured human bronchial smooth muscle cells. J. Pharmacol. Sci. 110 437–444. 10.1254/jphs.09081fp PubMed DOI
Guan W. J., Gao Y. H., Li H. M., Yuan J. J., Chen R. C., Zhong N. S. (2015). Impacts of co-existing chronic rhinosinusitis on disease severity and risks of exacerbations in Chinese adults with bronchiectasis. PLoS One 10:e0137348. 10.1371/journal.pone.0137348 PubMed DOI PMC
Guan W. J., Li J. C., Liu F., Zhou J., Liu Y. P., Ling C., et al. (2018). Next-generation sequencing for identifying genetic mutations in adults with bronchiectasis. J. Thorac. Dis. 10 2618–2630. 10.21037/jtd.2018.04.134 PubMed DOI PMC
Gudis D., Zhao K. Q., Cohen N. A. (2012). Acquired cilia dysfunction in chronic rhinosinusitis. Am. J. Rhinol. Allergy 26 1–6. 10.2500/ajra.2012.26.3716 PubMed DOI PMC
Guilemany J. M., Angrill J., Alobid I., Centellas S., Pujols L., Bartra J., et al. (2009). United airways again: high prevalence of rhinosinusitis and nasal polyps in bronchiectasis. Allergy 64 790–797. 10.1111/j.1398-9995.2008.01892.x PubMed DOI
Gupta R., Sheikh A., Strachan D. P., Anderson H. R. (2004). Burden of allergic disease in the UK: secondary analyses of national databases. Clin. Exp. Allergy 34 520–526. 10.1111/j.1365-2222.2004.1935.x PubMed DOI
Hallit S., Raherison C., Malaeb D., Hallit R., Waked M., Kheir N., et al. (2019). Development of an asthma risk factors scale (ARFS) for risk assessment asthma screening in children. Pediatr. Neonatol. 60 156–165. 10.1016/j.pedneo.2018.05.009 PubMed DOI
Hamilos D. L. (2016). Chronic rhinosinusitis in patients with cystic fibrosis. J. Allergy Clin. Immunol. Pract. 4 605–612. 10.1016/j.jaip.2016.04.013 PubMed DOI
Hammad H., Chieppa M., Perros F., Willart M. A., Germain R. N., Lambrecht B. N. (2009). House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15 410–416. 10.1038/nm.1946 PubMed DOI PMC
Hanif T., Dhaygude K., Kankainen M., Renkonen J., Mattila P., Ojala T., et al. (2019). Birch pollen allergen immunotherapy reprograms nasal epithelial transcriptome and recovers microbial diversity. J. Allergy Clin. Immunol. 143 2293–2296.e11. 10.1016/j.jaci.2019.02.002 PubMed DOI
Hansel T. T., Johnston S. L., Openshaw P. J. (2013). Microbes and mucosal immune responses in asthma. Lancet 381 861–873. 10.1016/s0140-6736(12)62202-8 PubMed DOI
Hartshorn K. L. (2010). Role of surfactant protein A and D (SP-A and SP-D) in human antiviral host defense. Front. Biosci. 2:s83. 10.2741/s83 PubMed DOI
Hirota T., Takahashi A., Kubo M., Tsunoda T., Tomita K., Doi S., et al. (2011). Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat. Genet. 43 893–896. 10.1038/ng.887 PubMed DOI PMC
Hirsch A. G., Nordberg C., Bandeen-Roche K., Tan B. K., Schleimer R. P., Kern R. C., et al. (2019). Radiologic sinus inflammation and symptoms of chronic rhinosinusitis in a population-based sample. Allergy 10.1111/all.14106 [Epub ahead of print]. PubMed DOI PMC
Hoggard M., Wagner Mackenzie B., Jain R., Taylor M. W., Biswas K., Douglas R. G. (2017). Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin. Microbiol. Rev. 30 321–348. 10.1128/cmr.00060-16 PubMed DOI PMC
Homma T., Kato A., Sakashita M., Takabayashi T., Norton J. E., Suh L. A., et al. (2017). Potential involvement of the epidermal growth factor receptor ligand epiregulin and matrix metalloproteinase-1 in pathogenesis of chronic rhinosinusitis. Am. J. Respir. Cell Mol. Biol. 57 334–345. 10.1165/rcmb.2016-0325OC PubMed DOI PMC
Hsu J., Avila P. C., Kern R. C., Hayes M. G., Schleimer R. P., Pinto J. M. (2013). Genetics of chronic rhinosinusitis: state of the field and directions forward. J. Allergy Clin. Immunol. 131 977–993.e5. 10.1016/j.jaci.2013.01.028 PubMed DOI PMC
Hu H., Li H. (2018). Prunetin inhibits lipopolysaccharide-induced inflammatory cytokine production and MUC5AC expression by inactivating the TLR4/MyD88 pathway in human nasal epithelial cells. Biomed. Pharmacother. 106 1469–1477. 10.1016/j.biopha.2018.07.093 PubMed DOI
Huang Y. J., Nariya S., Harris J. M., Lynch S. V., Choy D. F., Arron J. R., et al. (2015). The airway microbiome in patients with severe asthma: associations with disease features and severity. J. Allergy Clin. Immunol. 136 874–884. 10.1016/j.jaci.2015.05.044 PubMed DOI PMC
Hupin C., Gohy S., Bouzin C., Lecocq M., Polette M., Pilette C. (2014). Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy 69 1540–1549. 10.1111/all.12503 PubMed DOI
Ilmarinen P., Tuomisto L. E., Kankaanranta H. (2015). Phenotypes, risk factors, and mechanisms of adult-onset asthma. Mediators Inflamm. 2015:514868. 10.1155/2015/514868 PubMed DOI PMC
Ishida A., Ohta N., Suzuki Y., Kakehata S., Okubo K., Ikeda H., et al. (2012). Expression of pendrin and periostin in allergic rhinitis and chronic rhinosinusitis. Allergol. Int. 61 589–595. 10.2332/allergolint.11-OA-0370 PubMed DOI
Jardeleza C., Miljkovic D., Baker L., Boase S., Tan N. C., Koblar S. A., et al. (2013). Inflammasome gene expression alterations in Staphylococcus aureus biofilm-associated chronic rhinosinusitis. Rhinology 51 315–322. 10.4193/Rhin13.045 PubMed DOI
Jarvis D., Newson R., Lotvall J., Hastan D., Tomassen P., Keil T., et al. (2012). Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. Allergy 67 91–98. 10.1111/j.1398-9995.2011.02709.x PubMed DOI
Jiang Z., Zhu L. (2016). Update on the role of alternatively activated macrophages in asthma. J. Asthma Allergy 9 101–107. 10.2147/JAA.S104508 PubMed DOI PMC
Jiao J., Duan S., Meng N., Li Y., Fan E., Zhang L. (2015). Role of IFN-gamma, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps. Clin. Exp. Allergy 46 449–460. 10.1111/cea.12644 PubMed DOI
Jiao J., Wang C., Zhang L. (2019). Epithelial physical barrier defects in chronic rhinosinusitis. Expert Rev. Clin. Immunol. 15 679–688. 10.1080/1744666X.2019.1601556 PubMed DOI
Jiao J., Wang M., Duan S., Meng Y., Meng N., Li Y., et al. (2018). Transforming growth factor-beta1 decreases epithelial tight junction integrity in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 141 1160–1163.e9. 10.1016/j.jaci.2017.08.045 PubMed DOI
Joenvaara S., Mattila P., Renkonen J., Makitie A., Toppila-Salmi S., Lehtonen M., et al. (2009). Caveolar transport through nasal epithelium of birch pollen allergen Bet v 1 in allergic patients. J. Allergy Clin. Immunol. 124 135–142.e1-21. 10.1016/j.jaci.2008.11.048 PubMed DOI
Juhn Y. J. (2014). Risks for infection in patients with asthma (or other atopic conditions): is asthma more than a chronic airway disease? J. Allergy Clin. Immunol. 134 247–257: quiz 58–59. PubMed PMC
Juncadella I. J., Kadl A., Sharma A. K., Shim Y. M., Hochreiter-Hufford A., Borish L., et al. (2013). Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493 547–551. 10.1038/nature11714 PubMed DOI PMC
Kaur R., Chupp G. (2019). Phenotypes and endotypes of adult asthma: moving toward precision medicine. J. Allergy Clin. Immunol. 144 1–12. 10.1016/j.jaci.2019.05.031 PubMed DOI
Khlifi R., Olmedo P., Gil F., Hammami B., Hamza-Chaffai A. (2015). Cadmium and nickel in blood of Tunisian population and risk of nasosinusal polyposis disease. Environ. Sci. Pollut. Res. 22 3586–3593. 10.1007/s11356-014-3619-8 PubMed DOI
Kim B., Lee H. J., Im N. R., Lee D. Y., Kang C. Y., Park I. H., et al. (2018). Effect of matrix metalloproteinase inhibitor on disrupted E-cadherin after acid exposure in the human nasal epithelium. Laryngoscope 128 E1–E7. 10.1002/lary.26932 PubMed DOI
Kim K. W., Ober C. (2019). Lessons learned from GWAS of asthma. Allergy Asthma Immunol. Res. 11 170–187. PubMed PMC
Kim R., Chang G., Hu R., Phillips A., Douglas R. (2016). Connexin gap junction channels and chronic rhinosinusitis. Int. Forum Allergy Rhinol. 6 611–617. 10.1002/alr.21717 PubMed DOI
Knight R., Vrbanac A., Taylor B. C., Aksenov A., Callewaert C., Debelius J., et al. (2018). Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16 410–422. 10.1038/s41579-018-0029-9 PubMed DOI
Knowles M. R., Daniels L. A., Davis S. D., Zariwala M. A., Leigh M. W. (2013). Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 188 913–922. 10.1164/rccm.201301-0059CI PubMed DOI PMC
Kohanski M. A., Workman A. D., Patel N. N., Hung L.-Y., Shtraks J. P., Chen B., et al. (2018). Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 142 460–469.e7. 10.1016/j.jaci.2018.03.019 PubMed DOI PMC
Kountakis S. E., Arango P., Bradley D., Wade Z. K., Borish L. (2004). Molecular and cellular staging for the severity of chronic rhinosinusitis. Laryngoscope 114 1895–1905. 10.1097/01.mlg.0000147917.43615.c0 PubMed DOI
Kouzaki H., Matsumoto K., Kato T., Tojima I., Shimizu S., Shimizu T. (2016). Epithelial cell-derived cytokines contribute to the pathophysiology of eosinophilic chronic rhinosinusitis. J. Interferon Cytokine Res. 36 169–179. 10.1089/jir.2015.0058 PubMed DOI
Kristjansson R. P., Benonisdottir S., Davidsson O. B., Oddsson A., Tragante V., Sigurdsson J. K., et al. (2019). A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nat. Genet. 51 267–276. 10.1038/s41588-018-0314-6 PubMed DOI
Kudo M., Ishigatsubo Y., Aoki I. (2013). Pathology of asthma. Front. Microbiol. 4:263. PubMed PMC
Kuhar H. N., Tajudeen B. A., Mahdavinia M., Gattuso P., Ghai R., Batra P. S. (2017). Inflammatory infiltrate and mucosal remodeling in chronic rhinosinusitis with and without polyps: structured histopathologic analysis. Int. Forum Allergy Rhinol. 7 679–689. 10.1002/alr.21943 PubMed DOI
Lal D., Keim P., Delisle J., Barker B., Rank M. A., Chia N., et al. (2017). Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int. Forum Allergy Rhinol. 7 561–569. 10.1002/alr.21934 PubMed DOI
Lam K., Schleimer R., Kern R. C. (2015). The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses. Curr. Allergy Asthma Rep. 15:41. 10.1007/s11882-015-0540-2 PubMed DOI PMC
Lambrecht B. N., Hammad H. (2012). The airway epithelium in asthma. Nat. Med. 18 684–692. 10.1038/nm.2737 PubMed DOI
Lambrecht B. N., Hammad H. (2014). Allergens and the airway epithelium response: gateway to allergic sensitization. J. Allergy Clin. Immunol. 134 499–507. 10.1016/j.jaci.2014.06.036 PubMed DOI
Lan B., Mitchel J. A., O’Sullivan M. J., Park C. Y., Kim J. H., Cole W. C., et al. (2018). Airway epithelial compression promotes airway smooth muscle proliferation and contraction. Am. J. Physiol. Lung Cell. Mol. Physiol. 315 L645–L652. 10.1152/ajplung.00261.2018 PubMed DOI PMC
Laury A. M., Hilgarth R., Nusrat A., Wise S. K. (2015). Periostin and receptor activator of nuclear factor kappa-B ligand expression in allergic fungal rhinosinusitis. Int. Forum Allergy Rhinol. 4 716–724. 10.1002/alr.21367 PubMed DOI
Lee R. J., Cohen N. A. (2014). Bitter and sweet taste receptors in the respiratory epithelium in health and disease. J. Mol. Med. 92 1235–1244. 10.1007/s00109-014-1222-6 PubMed DOI PMC
Lehmann A. E., Scangas G. A., Bergmark R. W., El Rassi E., Stankovic K. M., Metson R. (2019). Periostin and inflammatory disease: implications for chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 160 965–973. 10.1177/0194599819838782 PubMed DOI
Li J., Li Y. (2019). Autophagy is involved in allergic rhinitis by inducing airway remodeling. Int. Forum Allergy Rhinol. 9 1346–1351. 10.1002/alr.22424 PubMed DOI
Li X., Tao Y., Li X. (2015). Expression of MMP-9/TIMP-2 in nasal polyps and its functional implications. Int. J. Clin. Exp. Pathol. 8 14556–14561. PubMed PMC
Li Y., Wang X., Wang R., Bo M., Fan E., Duan S., et al. (2014). The expression of epithelial intercellular junctional proteins in the sinonasal tissue of subjects with chronic rhinosinusitis: a histopathologic study. ORL J. Otorhinolaryngol. Relat. Spec. 76 110–119. 10.1159/000362246 PubMed DOI
Li Y. Y., Li C. W., Chao S. S., Yu F. G., Yu X. M., Liu J., et al. (2014). Impairment of cilia architecture and ciliogenesis in hyperplastic nasal epithelium from nasal polyps. J. Allergy Clin. Immunol. 134 1282–1292. 10.1016/j.jaci.2014.07.038 PubMed DOI
Li Z., Zeng M., Deng Y., Zhao J., Zhou X., Trudeau J. B., et al. (2019). 15-Lipoxygenase 1 in nasal polyps promotes CCL26/eotaxin 3 expression through extracellular signal-regulated kinase activation. J. Allergy Clin. Immunol. 144 1228–1241.e9. 10.1016/j.jaci.2019.06.037 PubMed DOI PMC
Liao B., Hu C. Y., Liu T., Liu Z. (2014). Respiratory viral infection in the chronic persistent phase of chronic rhinosinusitis. Laryngoscope 124 832–837. 10.1002/lary.24348 PubMed DOI PMC
Licona-Limon P., Kim L. K., Palm N. W., Flavell R. A. (2013). TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 14 536–542. 10.1038/ni.2617 PubMed DOI
Lin H., Li Z., Lin D., Zheng C., Zhang W. (2016). Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation 39 2045–2052. 10.1007/s10753-016-0442-z PubMed DOI
Lisspers K., Janson C., Larsson K., Johansson G., Telg G., Thuresson M., et al. (2018). Comorbidity, disease burden and mortality across age groups in a Swedish primary care asthma population: an epidemiological register study (PACEHR). Respir. Med. 136 15–20. 10.1016/j.rmed.2018.01.020 PubMed DOI
Liu C., Li Y., Yu J., Feng L., Hou S., Liu Y., et al. (2013). Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 8:e54841. 10.1371/journal.pone.0054841 PubMed DOI PMC
London N. R., Jr., Ramanathan M., Jr. (2017). The role of the sinonasal epithelium in allergic rhinitis. Otolaryngol. Clin. North Am. 50 1043–1050. 10.1016/j.otc.2017.08.002 PubMed DOI PMC
Lopez-Souza N., Favoreto S., Wong H., Ward T., Yagi S., Schnurr D., et al. (2009). In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J. Allergy Clin. Immunol. 123 1384–1390.e2. 10.1016/j.jaci.2009.03.010 PubMed DOI PMC
Luukkainen A., Puan K. J., Yusof N., Lee B., Tan K. S., Liu J., et al. (2018). A co-culture model of PBMC and stem cell derived human nasal epithelium reveals rapid activation of NK and innate T cells upon influenza A virus infection of the nasal epithelium. Front. Immunol. 9:2514. 10.3389/fimmu.2018.02514 PubMed DOI PMC
Ma Y., Sun Y., Jiang L., Zuo K., Chen H., Guo J., et al. (2017). WDPCP regulates the ciliogenesis of human sinonasal epithelial cells in chronic rhinosinusitis. Cytoskeleton 74 82–90. 10.1002/cm.21351 PubMed DOI
Maeda Y., Chen G., Xu Y., Haitchi H. M., Du L., Keiser A. R., et al. (2011). Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation. Am. J. Respir. Crit. Care Med. 184 421–429. 10.1164/rccm.201101-0106OC PubMed DOI PMC
Malinsky R. R., Valera F. C., Cavallari F. E., Kupper D. S., Milaneze C., Silva J. S., et al. (2013). Matrix metalloproteinases and their impact on sinusal extension in chronic rhinosinusitis with nasal polyps. Eur. Arch. Otorhinolaryngol. 270 1345–1348. 10.1007/s00405-012-2219-9 PubMed DOI
Martin F. J., Prince A. S. (2008). TLR2 regulates gap junction intercellular communication in airway cells. J. Immunol. 180 4986–4993. 10.4049/jimmunol.180.7.4986 PubMed DOI PMC
Mattila P., Renkonen J., Toppila-Salmi S., Parviainen V., Joenvaara S., Alff-Tuomala S., et al. (2010). Time-series nasal epithelial transcriptomics during natural pollen exposure in healthy subjects and allergic patients. Allergy 65 175–183. 10.1111/j.1398-9995.2009.02181.x PubMed DOI
McDougall C. M., Blaylock M. G., Douglas J. G., Brooker R. J., Helms P. J., Walsh G. M. (2008). Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies. Am. J. Respir. Cell Mol. Biol. 39 560–568. 10.1165/rcmb.2007-0325OC PubMed DOI PMC
McKiernan P. J., Molloy K., Cryan S. A., McElvaney N. G., Greene C. M. (2014). Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium. Int. J. Biochem. Cell Biol. 52 184–191. 10.1016/j.biocel.2014.02.022 PubMed DOI
Mésidor M., Benedetti A., El-Zein M., Menzies D., Parent M. -É, Rousseau M.-C. (2019). Asthma phenotypes based on health services use for allergic diseases in a province-wide birth cohort. Ann. Allergy Asthma Immunol. 122 50–57.e2. 10.1016/j.anai.2018.09.453 PubMed DOI
Milonski J., Zielinska-Blizniewska H., Przybylowska K., Pietkiewicz P., Korzycka-Zaborowska B., Majsterek I., et al. (2015). Significance of CYCLOOXYGENASE-2(COX-2), PERIOSTIN (POSTN) and INTERLEUKIN-4(IL-4) gene expression in the pathogenesis of chronic rhinosinusitis with nasal polyps. Eur. Arch. Otorhinolaryngol. 272 3715–3720. 10.1007/s00405-014-3481-9 PubMed DOI PMC
Monick M. M., Yarovinsky T. O., Powers L. S., Butler N. S., Carter A. B., Gudmundsson G., et al. (2003). Respiratory syncytial virus up-regulates TLR4 and sensitizes airway epithelial cells to endotoxin. J. Biol. Chem. 278 53035–53044. 10.1074/jbc.m308093200 PubMed DOI
Morris A., Beck J. M., Schloss P. D., Campbell T. B., Crothers K., Curtis J. L., et al. (2013). Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187 1067–1075. PubMed PMC
Muluk N. B., Arikan O. K., Atasoy P., Kilic R., Yalcinozan E. T. (2015). The role of MMP-2, MMP-9, and TIMP-1 in the pathogenesis of nasal polyps: immunohistochemical assessment at eight different levels in the epithelial, subepithelial, and deep layers of the mucosa. Ear Nose Throat J. 94 E1–E13. PubMed
Numata M., Chu H. W., Dakhama A., Voelker D. R. (2010). Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc. Natl. Acad. Sci. USA 107 320–325. 10.1073/pnas.0909361107 PubMed DOI PMC
Nunes C., Pereira A. M., Morais-Almeida M. (2017). Asthma costs and social impact. Asthma Res. Pract. 3:1. PubMed PMC
Ohta N., Ishida A., Kurakami K., Suzuki Y., Kakehata S., Ono J., et al. (2014). Expressions and roles of periostin in otolaryngological diseases. Allergol. Int. 63 171–180. 10.2332/allergolint.13-RAI-0673 PubMed DOI
Ordovas-Montanes J., Dwyer D. F., Nyquist S. K., Buchheit K. M., Vukovic M., Deb C., et al. (2018). Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560 649–654. 10.1038/s41586-018-0449-8 PubMed DOI PMC
Osorio F., Lambrecht B., Janssens S. (2013). The UPR and lung disease. Semin. Immunopathol. 35 293–306. 10.1007/s00281-013-0368-6 PubMed DOI
Oyer S. L., Nagel W., Mulligan J. K. (2013). Differential expression of adhesion molecules by sinonasal fibroblasts among control and chronic rhinosinusitis patients. Am. J. Rhinol. Allergy 27 381–386. 10.2500/ajra.2013.27.3934 PubMed DOI
Pace E., Ferraro M., Siena L., Melis M., Montalbano A. M., Johnson M., et al. (2008). Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 124 401–411. 10.1111/j.1365-2567.2007.02788.x PubMed DOI PMC
Pallasaho P., Ronmark E., Haahtela T., Sovijarvi A. R., Lundback B. (2006). Degree and clinical relevance of sensitization to common allergens among adults: a population study in Helsinki, Finland. Clin. Exp. Allergy 36 503–509. 10.1111/j.1365-2222.2006.02460.x PubMed DOI
Park S. K., Jin S. Y., Yeon S. H., Lee S. B., Xu J., Yoon Y. H., et al. (2018). Role of Toll-like receptor 9 signaling on activation of nasal polyp-derived fibroblasts and its association with nasal polypogenesis. Int. Forum Allergy Rhinol. 8 1001–1012. 10.1002/alr.22155 PubMed DOI
Peric A., Mirkovic C. S., Vojvodic D. (2018). Clara cell protein 16 release from the nasal mucosa in allergic rhinitis, chronic rhinosinusitis, and exposure to air pollutants. Arh. Hig. Rada. Toksikol. 69 215–219. 10.2478/aiht-2018-69-3081 PubMed DOI
Peterson S., Poposki J. A., Nagarkar D. R., Chustz R. T., Peters A. T., Suh L. A., et al. (2012). Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 129 119–127.e1–9. 10.1016/j.jaci.2011.08.021 PubMed DOI PMC
Pividori M., Schoettler N., Nicolae D. L., Ober C., Im H. K. (2019). Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. Lancet Respir. Med. 7 509–522. 10.1016/S2213-2600(19)30055-4 PubMed DOI PMC
Polosa R., Thomson N. C. (2013). Smoking and asthma: dangerous liaisons. Eur. Respir. J. 41 716–726. 10.1183/09031936.00073312 PubMed DOI
Pols D. H. J., Wartna J. B., Moed H., van Alphen E. I., Bohnen A. M., Bindels P. J. E. (2016). Atopic dermatitis, asthma and allergic rhinitis in general practice and the open population: a systematic review. Scand. J. Prim. Health Care 34 143–150. 10.3109/02813432.2016.1160629 PubMed DOI PMC
Poole A., Urbanek C., Eng C., Schageman J., Jacobson S., O’Connor B. P., et al. (2014). Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. J. Allergy Clin. Immunol. 133 670–678.e12. 10.1016/j.jaci.2013.11.025 PubMed DOI PMC
Popatia R., Haver K., Casey A. (2014). Primary ciliary dyskinesia: an update on new diagnostic modalities and review of the literature. Pediatr. Allergy Immunol. Pulmonol. 27 51–59. 10.1089/ped.2013.0314 PubMed DOI PMC
Pothoven K. L., Norton J. E., Hulse K. E., Suh L. A., Carter R. G., Rocci E., et al. (2015). Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J. Allergy Clin. Immunol. 136 737–746.e4. 10.1016/j.jaci.2015.01.043 PubMed DOI PMC
Pothoven K. L., Schleimer R. P. (2017). The barrier hypothesis and oncostatin M: restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease. Tissue Barriers 5:e1341367. 10.1080/21688370.2017.1341367 PubMed DOI PMC
Ramezanpour M., Moraitis S., Smith J. L., Wormald P. J., Vreugde S. (2016). Th17 cytokines disrupt the airway mucosal barrier in chronic rhinosinusitis. Mediators Inflamm. 2016:9798206. 10.1155/2016/9798206 PubMed DOI PMC
Rehl R. M., Balla A. A., Cabay R. J., Hearp M. L., Pytynia K. B., Joe S. A. (2007). Mucosal remodeling in chronic rhinosinusitis. Am. J. Rhinol. 21 651–657. 10.2500/ajr.2007.21.3096 PubMed DOI
Renkonen J., Toppila-Salmi S., Joenvaara S., Mattila P., Parviainen V., Hagstrom J., et al. (2015). Expression of Toll-like receptors in nasal epithelium in allergic rhinitis. APMIS 123 716–725. 10.1111/apm.12408 PubMed DOI PMC
Roberts N., Al Mubarak R., Francisco D., Kraft M., Chu H. W. (2018). Comparison of paired human nasal and bronchial airway epithelial cell responses to rhinovirus infection and IL-13 treatment. Clin. Transl. Med. 7:13. 10.1186/s40169-018-0189-2 PubMed DOI PMC
Roschmann K. I., Luiten S., Jonker M. J., Breit T. M., Fokkens W. J., Petersen A., et al. (2011). Timothy grass pollen extract-induced gene expression and signalling pathways in airway epithelial cells. Clin. Exp. Allergy 41 830–841. 10.1111/j.1365-2222.2011.03713.x PubMed DOI
Roscioli E., Jersmann H. P., Lester S., Badiei A., Fon A., Zalewski P., et al. (2017). Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 12 3503–3510. 10.2147/COPD.S149589 PubMed DOI PMC
Ryu G., Kim D. W. (2020). Th2 inflammatory responses in the development of nasal polyps and chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 20 1–8. 10.1097/aci.0000000000000588 PubMed DOI
Saulyte J., Regueira C., Montes-Martinez A., Khudyakov P., Takkouche B. (2014). Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: a systematic review and meta-analysis. PLoS Med. 11:e1001611. 10.1371/journal.pmed.1001611 PubMed DOI PMC
Scadding G. (2014). Cytokine profiles in allergic rhinitis. Curr. Allergy Asthma Rep.o 14:435. PubMed
Schleimer R. P. (2017). Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu. Rev. Pathol. 12 331–357. 10.1146/annurev-pathol-052016-100401 PubMed DOI PMC
Schleimer R. P., Berdnikovs S. (2017). Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J. Allergy Clin. Immunol. 139 1752–1761. 10.1016/j.jaci.2017.04.010 PubMed DOI PMC
Schoettler N., Rodriguez E., Weidinger S., Ober C. (2019). Advances in asthma and allergic disease genetics – is bigger always better? J. Allergy Clin. Immunol. 144 1495–1506. 10.1016/j.jaci.2019.10.023 PubMed DOI PMC
Seshadri S., Lin D. C., Rosati M., Carter R. G., Norton J. E., Suh L., et al. (2012). Reduced expression of antimicrobial PLUNC proteins in nasal polyp tissues of patients with chronic rhinosinusitis. Allergy 67 920–928. 10.1111/j.1398-9995.2012.02848.x PubMed DOI PMC
Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S. A., Mardani F., et al. (2018). Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233 6425–6440. 10.1002/jcp.26429 PubMed DOI
Sharma N., Akkoyunlu M., Rabin R. L. (2017). Macrophages-common culprit in obesity and asthma. Allergy. 73 1196–1205. 10.1111/all.13369 PubMed DOI
Shi L. L., Xiong P., Zhang L., Cao P. P., Liao B., Lu X., et al. (2013). Features of airway remodeling in different types of Chinese chronic rhinosinusitis are associated with inflammation patterns. Allergy 68 101–109. 10.1111/all.12064 PubMed DOI
Shimizu S., Kouzaki H., Kato T., Tojima I., Shimizu T. (2016). HMGB1-TLR4 signaling contributes to the secretion of interleukin 6 and interleukin 8 by nasal epithelial cells. Am. J. Rhinol. Allergy 30 167–172. 10.2500/ajra.2016.30.4300 PubMed DOI
Shimizu S., Ogawa T., Takezawa K., Tojima I., Kouzaki H., Shimizu T. (2015). Tissue factor and tissue factor pathway inhibitor in nasal mucosa and nasal secretions of chronic rhinosinusitis with nasal polyp. Am. J. Rhinol. Allergy 29 235–242. 10.2500/ajra.2015.29.4183 PubMed DOI
Shimizu S., Tojima I., Takezawa K., Matsumoto K., Kouzaki H., Shimizu T. (2017). Thrombin and activated coagulation factor X stimulate the release of cytokines and fibronectin from nasal polyp fibroblasts via protease-activated receptors. Am. J. Rhinol. Allergy 31 13–18. 10.2500/ajra.2017.31.4400 PubMed DOI
Shin S. H., Kim Y. H., Jin H. S., Kang S. H. (2016a). Alternaria induces production of thymic stromal lymphopoietin in nasal fibroblasts through toll-like receptor 2. Allergy Asthma Immunol. Res. 8 63–68. 10.4168/aair.2016.8.1.63 PubMed DOI PMC
Shin S. H., Ye M. K., Kim Y. H., Kim J. K. (2016b). Role of TLRs in the production of chemical mediators in nasal polyp fibroblasts by fungi. Auris Nasus Larynx 43 166–170. 10.1016/j.anl.2015.07.003 PubMed DOI
Shiono O., Sakuma Y., Komatsu M., Hirama M., Yamashita Y., Ishitoya J., et al. (2015). Differential expression of periostin in the nasal polyp may represent distinct histological features of chronic rhinosinusitis. Auris Nasus Larynx 42 123–127. 10.1016/j.anl.2014.09.003 PubMed DOI
Sica A., Mantovani A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122 787–795. 10.1172/JCI59643 PubMed DOI PMC
Sigurs N., Bjarnason R., Sigurbergsson F., Kjellman B. (2000). Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med. 161 1501–1507. 10.1164/ajrccm.161.5.9906076 PubMed DOI
Soyka M. B., Wawrzyniak P., Eiwegger T., Holzmannm D., Treis A., Wanke K., et al. (2012). Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J. Allergy Clin. Immunol. 130 1087–1096.e10. 10.1016/j.jaci.2012.05.052 PubMed DOI
Stentzel S., Teufelberger A., Nordengrun M., Kolata J., Schmidt F., van Crombruggen K., et al. (2017). Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J. Allergy Clin. Immunol. 139 492–500.e8. 10.1016/j.jaci.2016.03.045 PubMed DOI
Sterner T., Uldahl A., Svensson A., Bjork J., Svedman C., Nielsen C., et al. (2019). The southern Sweden adolescent allergy-cohort: prevalence of allergic diseases and cross-sectional associations with individual and social factors. J. Asthma 56 227–235. 10.1080/02770903.2018.1452033 PubMed DOI
Sun Y., Zhou B., Wang C., Huang Q., Zhang Q., Han Y., et al. (2012). Biofilm formation and Toll-like receptor 2, Toll-like receptor 4, and NF-kappaB expression in sinus tissues of patients with chronic rhinosinusitis. Am. J. Rhinol. Allergy 26 104–109. 10.2500/ajra.2012.26.3718 PubMed DOI
Suzuki H., Koizumi H., Ikezaki S., Tabata T., Ohkubo J., Kitamura T., et al. (2016). Electrical impedance and expression of tight junction components of the nasal turbinate and polyp. ORL J. Otorhinolaryngol. Relat. Spec. 78 16–25. 10.1159/000442024 PubMed DOI
Suzuki M., Itoh M., Ohta N., Nakamura Y., Moriyama A., Matsumoto T., et al. (2006). Blocking of protease allergens with inhibitors reduces allergic responses in allergic rhinitis and other allergic diseases. Acta Otolaryngol. 126 746–751. 10.1080/00016480500475625 PubMed DOI
Suzuki M., Ramezanpour M., Cooksley C., Li J., Nakamaru Y., Homma A., et al. (2018). Sirtuin-1 controls Poly (I:C)-dependent matrix metalloproteinase 9 activation in primary human nasal epithelial cells. Am. J. Respir. Cell Mol. Biol. 59 500–510. 10.1165/rcmb.2017-0415OC PubMed DOI
Takabayashi T., Kato A., Peters A. T., Hulse K. E., Suh L. A., Carter R., et al. (2013). Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am. J. Respir. Crit. Care Med. 187 49–57. 10.1164/rccm.201207-1292OC PubMed DOI PMC
Takabayashi T., Tanaka Y., Susuki D., Yoshida K., Tomita K., Sakashita M., et al. (2019). Increased expression of L-plastin in nasal polyp of patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. Allergy 74 1307–1316. 10.1111/all.13677 PubMed DOI PMC
Tan A. M., Chen H. C., Pochard P., Eisenbarth S. C., Herrick C. A., Bottomly H. K. (2010). TLR4 signaling in stromal cells is critical for the initiation of allergic Th2 responses to inhaled antigen. J. Immunol. 184 3535–3544. 10.4049/jimmunol.0900340 PubMed DOI
Tengroth L., Arebro J., Kumlien Georen S., Winqvist O., Cardell L. O. (2014a). Deprived TLR9 expression in apparently healthy nasal mucosa might trigger polyp-growth in chronic rhinosinusitis patients. PLoS One 9:e105618. 10.1371/journal.pone.0105618 PubMed DOI PMC
Tengroth L., Millrud C. R., Kvarnhammar A. M., Kumlien Georen S., Latif L., Cardell L. O. (2014b). Functional effects of Toll-like receptor (TLR)3, 7, 9, RIG-I and MDA-5 stimulation in nasal epithelial cells. PLoS One 9:e98239. 10.1371/journal.pone.0098239 PubMed DOI PMC
Thai P., Loukoianov A., Wachi S., Wu R. (2008). Regulation of airway mucin gene expression. Annu. Rev. Physiol. 70 405–429. 10.1146/annurev.physiol.70.113006.100441 PubMed DOI PMC
Tharakan A., Halderman A. A., Lane A. P., Biswal S., Ramanathan M., Jr. (2016). Reversal of cigarette smoke extract-induced sinonasal epithelial cell barrier dysfunction through Nrf2 Activation. Int. Forum Allergy Rhinol. 6 1145–1150. 10.1002/alr.21827 PubMed DOI PMC
Tieu D. D., Peters A. T., Carter R. G., Suh L., Conley D. B., Chandra R., et al. (2010). Evidence for diminished levels of epithelial psoriasin and calprotectin in chronic rhinosinusitis. J. Allergy Clin. Immunol. 125 667–675. 10.1016/j.jaci.2009.11.045 PubMed DOI PMC
Tipirneni K. E., Zhang S., Cho D. Y., Grayson J., Skinner D. F., Mackey C., et al. (2018). Submucosal gland mucus strand velocity is decreased in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 8 509–512. 10.1002/alr.22065 PubMed DOI PMC
Tokunaga Y., Imaoka H., Kaku Y., Kawayama T., Hoshino T. (2019). The significance of CD163-expressing macrophages in asthma. Ann. Allergy Asthma Immunol. 123 263–270. 10.1016/j.anai.2019.05.019 PubMed DOI
Tomassen P., Vandeplas G., Van Zele T., Cardell L. O., Arebro J., Olze H., et al. (2016). Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J. Allergy Clin. Immunol. 137 1449–1456.e4. 10.1016/j.jaci.2015.12.1324 PubMed DOI
Tomaszewska M., Sarnowska E., Rusetska N., Kowalik K., Sierdzinski J., Siedlecki J. A., et al. (2019). Role of vitamin D and its receptors in the pathophysiology of chronic rhinosinusitis. J. Am. Coll. Nutr. 38 108–118. 10.1080/07315724.2018.1503102 PubMed DOI
Toppila-Salmi S., Chanoine S., Karjalainen J., Pekkanen J., Bousquet J., Siroux V. (2019). Risk of adult-onset asthma increases with the number of allergic multimorbidities and decreases with age. Allergy 74 2406–2416. 10.1111/all.13971 PubMed DOI
Toppila-Salmi S., van Drunen C. M., Fokkens W. J., Golebski K., Mattila P., Joenvaara S., et al. (2015). Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis. Curr. Allergy Asthma Rep. 15:495. PubMed PMC
Toskala E., Kennedy D. W. (2015). Asthma risk factors. Int. Forum Allergy Rhinol. 5(Suppl. 1) S11–S16. PubMed PMC
Tourdot S., Mathie S., Hussell T., Edwards L., Wang H., Openshaw P. J., et al. (2008). Respiratory syncytial virus infection provokes airway remodelling in allergen-exposed mice in absence of prior allergen sensitization. Clin. Exp. Allergy 38 1016–1024. 10.1111/j.1365-2222.2008.02974.x PubMed DOI PMC
Tsai Y. J., Chi J. C., Hao C. Y., Wu W. B. (2018). Peptidoglycan induces bradykinin receptor 1 expression through Toll-like receptor 2 and NF-kappaB signaling pathway in human nasal mucosa-derived fibroblasts of chronic rhinosinusitis patients. J. Cell. Physiol. 233 7226–7238. 10.1002/jcp.26553 PubMed DOI
Tsybikov N. N., Egorova E. V., Kuznik B. I., Fefelova E. V., Magen E. (2016). Biomarker assessment in chronic rhinitis and chronic rhinosinusitis: endothelin-1, TARC/CCL17, neopterin, and alpha-defensins. Allergy Asthma Proc. 37 35–42. 10.2500/aap.2016.37.3899 PubMed DOI
Tyner J. W., Kim E. Y., Ide K., Pelletier M. R., Roswit W. T., Morton J. D., et al. (2006). Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J. Clin. Invest. 116 309–321. 10.1172/jci25167 PubMed DOI PMC
Van Bruaene N., Bachert C. (2011). Tissue remodeling in chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 11 8–11. 10.1097/aci.0b013e32834233ef PubMed DOI
Vercelli D., Bleecker E. R. (2019). Strength in numbers: the quest for asthma genes. J. Allergy Clin. Immunol. 144 413–415. 10.1016/j.jaci.2019.06.007 PubMed DOI
Vonk J. M., Nieuwenhuis M. A. E., Dijk F. N., Boudier A., Siroux V., Bouzigon E., et al. (2018). Novel genes and insights in complete asthma remission: a genome-wide association study on clinical and complete asthma remission. Clin. Exp. Allergy 48 1286–1296. 10.1111/cea.13181 PubMed DOI
Voynow J. A., Rubin B. K. (2009). Mucins, mucus, and sputum. Chest 135 505–512. 10.1378/chest.08-0412 PubMed DOI
Wagener A. H., Zwinderman A. H., Luiten S., Fokkens W. J., Bel E. H., Sterk P. J., et al. (2014). dsRNA-induced changes in gene expression profiles of primary nasal and bronchial epithelial cells from patients with asthma, rhinitis and controls. Respir. Res. 15:9. 10.1186/1465-9921-15-9 PubMed DOI PMC
Wang L. F., Chien C. Y., Chiang F. Y., Chai C. Y., Tai C. F. (2012). Corelationship between matrix metalloproteinase 2 and 9 expression and severity of chronic rhinosinusitis with nasal polyposis. Am. J. Rhinol. Allergy 26 e1–e4. 10.2500/ajra.2012.26.3724 PubMed DOI
Wang M., Wang X., Zhang N., Wang H., Li Y., Fan E., et al. (2015). Association of periostin expression with eosinophilic inflammation in nasal polyps. J. Allergy Clin. Immunol. 136 1700–1703.e9. 10.1016/j.jaci.2015.09.005 PubMed DOI
Wang X., Moylan B., Leopold D. A., Kim J., Rubenstein R. C., Togias A., et al. (2000). Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA 284 1814–1819. PubMed
Wei Y., Ma R., Zhang J., Wu X., Yu G., Hu X., et al. (2018). Excessive periostin expression and Th2 response in patients with nasal polyps: association with asthma. J. Thorac. Dis. 10 6585–6597. 10.21037/jtd.2018.11.12 PubMed DOI PMC
Wenzel S. E. (2012). Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18 716–725. 10.1038/nm.2678 PubMed DOI
Westphalen K., Gusarova G. A., Islam M. N., Subramanian M., Cohen T. S., Prince A. S., et al. (2014). Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506 503–506. 10.1038/nature12902 PubMed DOI PMC
Whitsett J. A., Alenghat T. (2015). Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 16 27–35. 10.1038/ni.3045 PubMed DOI PMC
Whitsett J. A., Wert S. E., Weaver T. E. (2010). Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu. Rev. Med. 61 105–119. 10.1146/annurev.med.60.041807.123500 PubMed DOI PMC
Wiksten J., Toppila-Salmi S., Makela M. (2018). Primary prevention of airway allergy. Curr. Treat. Options Allergy 5 347–355. 10.1007/s40521-018-0190-4 PubMed DOI PMC
Willis-Owen S. A. G., Cookson W. O. C., Moffatt M. F. (2018). The genetics and genomics of asthma. Annu. Rev. Genomics Hum. Genet. 19 223–246. 10.1146/annurev-genom-083117-021651 PubMed DOI
Wise S. K., Lin S. Y., Toskala E., Orlandi R. R., Akdis C. A., Alt J. A., et al. (2018). International consensus statement on allergy and rhinology: allergic rhinitis. Int. Forum Allergy Rhinol. 8 108–352. PubMed PMC
Wu D., Wei Y., Bleier B. S. (2018). Emerging role of proteases in the pathogenesis of chronic rhinosinusitis with nasal polyps. Front. Cell. Infect. Microbiol. 7:538. 10.3389/fcimb.2017.00538 PubMed DOI PMC
Xiang R., Zhang Q. P., Zhang W., Kong Y. G., Tan L., Chen S. M., et al. (2019). Different effects of allergic rhinitis on nasal mucosa remodeling in chronic rhinosinusitis with and without nasal polyps. Eur. Arch. Otorhinolaryngol. 276 115–130. 10.1007/s00405-018-5195-x PubMed DOI PMC
Xu J., Lee J. W., Park S. K., Lee S. B., Yoon Y. H., Yeon S. H., et al. (2014). Toll-like receptor 9 ligands increase type I interferon induced B-cell activating factor expression in chronic rhinosinusitis with nasal polyposis. Clin. Immunol. 197 19–26. 10.1016/j.clim.2018.07.014 PubMed DOI
Xu M., Chen D., Zhou H., Zhang W., Xu J., Chen L. (2017). The role of periostin in the occurrence and progression of eosinophilic chronic sinusitis with nasal polyps. Sci. Rep. 7:9479. 10.1038/s41598-017-08375-2 PubMed DOI PMC
Yamin M., Holbrook E. H., Gray S. T., Busaba N. Y., Lovett B., Hamilos D. L. (2015). Profibrotic transforming growth factor beta 1 and activin A are increased in nasal polyp tissue and induced in nasal polyp epithelium by cigarette smoke and Toll-like receptor 3 ligation. Int. Forum Allergy Rhinol. 5 573–582. 10.1002/alr.21516 PubMed DOI
Yang H. W., Park J. H., Shin J. M., Lee H. M. (2018). Glucocorticoids ameliorate periostin-induced tissue remodeling in chronic rhinosinusitis with nasal polyps. Clin. Exp. Allergy 10 10. 10.1111/cea.13267 [Epub ahead of print]. PubMed DOI
Yang L. Y., Li X., Li W. T., Huang J. C., Wang Z. Y., Huang Z. Z., et al. (2017). Vgamma1+ gammadeltaT cells are correlated with increasing expression of eosinophil cationic protein and metalloproteinase-7 in chronic rhinosinusitis with nasal polyps inducing the formation of edema. Allergy Asthma Immunol. Res. 9 142–151. 10.4168/aair.2017.9.2.142 PubMed DOI PMC
Yeo N. K., Eom D. W., Oh M. Y., Lim H. W., Song Y. J. (2013). Expression of matrix metalloproteinase 2 and 9 and tissue inhibitor of metalloproteinase 1 in nonrecurrent vs recurrent nasal polyps. Ann. Allergy Asthma Immunol. 111 205–210. 10.1016/j.anai.2013.06.023 PubMed DOI
Yilmaz O. H., Katajisto P., Lamming D. W., Gultekin Y., Bauer-Rowe K. E., Sengupta S., et al. (2012). mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486 490–495. 10.1038/nature11163 PubMed DOI PMC
Yoo F., Suh J. D. (2017). What is the evidence for genetics in chronic rhinosinusitis? Curr. Opin. Otolaryngol. Head Neck Surg. 25 54–63. 10.1097/MOO.0000000000000329 PubMed DOI
Yu X. M., Li C. W., Li Y. Y., Liu J., Lin Z. B., Li T. Y., et al. (2013). Down-regulation of EMP1 is associated with epithelial hyperplasia and metaplasia in nasal polyps. Histopathology 63 686–695. 10.1111/his.12211 PubMed DOI
Zhang Y. L., Chen P. X., Guan W. J., Guo H. M., Qiu Z. E., Xu J. W., et al. (2018). Increased intracellular Cl concentration promotes ongoing inflammation in airway epithelium. Mucosal Immunol. 11 1149–1157. 10.1038/s41385-018-0013-8 PubMed DOI