Primary investigation of the preparation of nanoparticles by precipitation
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
22976470
PubMed Central
PMC6269072
DOI
10.3390/molecules170911067
PII: molecules170911067
Knihovny.cz E-resources
- MeSH
- Chemical Precipitation MeSH
- Cholestenones chemistry MeSH
- Cholesterol chemistry MeSH
- Technology, Pharmaceutical MeSH
- Nanoparticles analysis chemistry MeSH
- Drug Carriers MeSH
- Excipients MeSH
- Pregnenolone chemistry MeSH
- Solubility MeSH
- Particle Size MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cholestenones MeSH
- Cholesterol MeSH
- Drug Carriers MeSH
- Excipients MeSH
- Pregnenolone MeSH
The absorption, distribution, biotransformation and excretion of a drug involve its transport across cell membranes. This process is essential and influenced by the characteristics of the drug, especially its molecular size and shape, solubility at the site of its absorption, relative lipid solubility, etc. One of the progressive ways for increasing bioavaibility is a nanoparticle preparation technique. Cholesterol, cholestenolone and pregnenolone acetate as model active pharmaceutical ingredients and some of the commonly used excipients as nanoparticle stabilizers were used in the investigated precipitation method that was modified and simplified and can be used as an effective and an affordable technique for the preparation of nanoparticles. All 120 prepared samples were analyzed by means of dynamic light scattering (Nanophox). The range of the particle size of the determined 100 nanoparticle samples was from 1 nm to 773 nm, whereas 82 samples contained nanoparticles of less than 200 nm. Relationships between solvents and used excipients and their amount are discussed.
See more in PubMed
Kerns E.H., Li D. Drug-Like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.
Junghanns J.U.A.H., Muller R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008;3:295–309. PubMed PMC
Komarek P., Rabiskova M. Pharmaceutics. 3rd. Galén; Praha, Czech Republic: 2006.
Kral V., Oktabec Z., Jampilek J., Pekarek T., Proksa B., Dohnal J., Malovikova A., Ebringerova A., Rezacova A. Pectin complexes of steroids and pharmaceutical compositions based thereon. WO/2011/063774 A2. PCT Int. Appl. 2011 Jun 3; (Zentiva, a.s.)
Kral V., Oktabec Z., Jampilek J., Pekarek T., Proksa B., Dohnal J., Malovikova A., Ebringerova A., Rezacova A. Pectin complexes of sartans and pharmaceutical compositions based thereon. WO/2011/063775 A2. PCT Int. Appl. 2011 Jun 3; (Zentiva, a.s.)
Bawa R. Nanopharmaceuticals for drug delivery—A review. Drug Deliv. 2009;3:122–127.
Mihranyan A., Stromme M. Solubility of fractal nanoparticles. Surf. Sci. 2007;601:315–319. doi: 10.1016/j.susc.2006.09.037. DOI
Sahoo N.G., Abbas A., Li C.M. Micro/Nanoparticles design and fabrication for pharmaceutical drug preparation and delivery applications. Curr. Drug Ther. 2008;3:78–97. doi: 10.2174/157488508784221253. DOI
Vijaykumar N., Venkateswarlu V., Raviraj P. Development of oral tablet dosage form incorporating drug nanoparticles. Res. J. Pharm. Biol. Chem. Sci. 2010;1:952–963.
Konan Y.N., Berton M., Gurny R., Allemand E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci. 2003;18:241–249. doi: 10.1016/S0928-0987(03)00017-4. PubMed DOI
Kral V., Kralova J., Flieger M., Jampilek J., Rezacova A., Dohnal J., Oktabec Z., Zaruba K., Grunwaldova V., Pouckova P., et al. Route of drug administration in nanoparticle form to enable penetration through the brain blood barrier. 2011-366. CZ Patent Appl. PV. 2011 Jun 21;
Kral V., Rak J., Zagora J., Grunwaldova V., Rezacova A., Jampilek J., Kutkova B. Preparation, stabilization and application of API nanoparticles for development of modern drug formulations. 2011-353. CZ Patent Appl. PV. 2011 Jun 13; (Zentiva,a.s.)
Bhushan B. Handbook of Nanotechnology, Part A. Springer-Verlag; Berlin/Heidelberg, Germany: 2004.
Rao C., Muller A., Cheetham A.K. The Chemistry of Nanomaterials, Synthesis, Properties and Applications. Wiley-VCH; Weinheim, Germany: 2005.
Nalwa H.S. Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publisher; Valencia, CA, USA: pp. 2004–2011.
Singh S., Nalwa H.S. Nanotechnology and health safety—toxicity and risk assessments of nanostructured materials on human health. J. Nanosci. Nanotechnol. 2007;7:3048–3070. doi: 10.1166/jnn.2007.922. PubMed DOI
Lewinski N., Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49. PubMed
Suh W.H., Suslick K.S., Stucky G.D., Suh Y.H. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 2009;87:133–170. PubMed PMC
Verma A., Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21. doi: 10.1002/smll.200901158. PubMed DOI
Raab C., Simko M., Fiedeler U., Nentwich M., Gazso A. Production of nanoparticles and nanomaterials. Nano Trust Dossier. 2011;6:1998–7293.
Zielinska-Jurek A., Reszczynska J., Grabowska E., Zaleska A. Nanoparticles preparation using microemulsion systems. In: Najjar R., editor. Microemulsions—An Introduction to Properties and Applications. InTech; Rijeka, Croatia: 2012. pp. 229–250.
Lopez-Quintela M.A. Synthesis of nanomaterials in microemulsions: Formation mechanism and growth control. Curr. Opin. Coll. Int. Sci. 2003;8:137–144. doi: 10.1016/S1359-0294(03)00019-0. DOI
Shah P., Bhalodia D., Shelat P. Nanoemulsion: A pharmaceutical review. Syst. Rev. Pharm. 2010;1:24–32. doi: 10.4103/0975-8453.59509. DOI
Sonawane R.S., Dongare M.K. Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J. Mol. Cat. A. 2006;243:68–76. doi: 10.1016/j.molcata.2005.07.043. DOI
Turk M., Bolten D. Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): Results for naproxen. J. Supercrit. Fluids. 2010;55:778–785. doi: 10.1016/j.supflu.2010.09.023. DOI
Hezave A.Z., Esmaeilzadeh F. Micronization of drug particles via RESS process. J. Supercrit. Fluids. 2010;52:84–98. doi: 10.1016/j.supflu.2009.09.006. DOI
Sanggu K., Waikiong N., Yuancai D., Surajit D., Tan R.B.H. Preparation and physicochemical characterization of trans-resveratrol nanoparticle by temperature-controlled antisolvent precipitation. J. Food Eng. 2012;108:37–44. doi: 10.1016/j.jfoodeng.2011.07.034. DOI
Bayal N., Jeevanandam P. Synthesis of CuO@NiO core-shell nanoparticles by homogeneous precipitation method. J. Alloys Comp. 2012;537:232–241. doi: 10.1016/j.jallcom.2012.05.086. DOI
Chin S.F., Pang S.C., Tay S.H. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 2011;86:1817–1819. doi: 10.1016/j.carbpol.2011.07.012. DOI
Merkus H.G. Particle Size Measurements: Fundamentals, Practice, Quality. Springer Science+Business Media B.V.; Dordrecht, The Netherlands: 2009.
Preparation of Hydrochlorothiazide Nanoparticles for Solubility Enhancement
Preparation of risedronate nanoparticles by solvent evaporation technique
Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation