Preparation of risedronate nanoparticles by solvent evaporation technique
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25375330
PubMed Central
PMC6271162
DOI
10.3390/molecules191117848
PII: molecules191117848
Knihovny.cz E-zdroje
- MeSH
- biologická dostupnost MeSH
- dextrany chemie MeSH
- diferenciální skenovací kalorimetrie metody MeSH
- dodecylsíran sodný chemie MeSH
- farmaceutická technologie metody MeSH
- kyselina etidronová analogy a deriváty chemie MeSH
- kyselina risedronová MeSH
- mikroskopie elektronová rastrovací metody MeSH
- nanočástice chemie MeSH
- nosiče léků chemie MeSH
- permeabilita MeSH
- polyethylenglykoly chemie MeSH
- polysorbáty chemie MeSH
- pomocné látky chemie MeSH
- rozpouštědla chemie MeSH
- rozpustnost MeSH
- sodná sůl karboxymethylcelulosy chemie MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- carboxymethyl dextran MeSH Prohlížeč
- dextrany MeSH
- dodecylsíran sodný MeSH
- kyselina etidronová MeSH
- kyselina risedronová MeSH
- nosiče léků MeSH
- polyethylenglykoly MeSH
- polysorbáty MeSH
- pomocné látky MeSH
- rozpouštědla MeSH
- sodná sůl karboxymethylcelulosy MeSH
One approach for the enhancement of oral drug bioavailability is the technique of nanoparticle preparation. Risedronate sodium (Biopharmaceutical Classification System Class III) was chosen as a model compound with high water solubility and low intestinal permeability. Eighteen samples of risedronate sodium were prepared by the solvent evaporation technique with sodium dodecyl sulfate, polysorbate, macrogol, sodium carboxymethyl cellulose and sodium carboxymethyl dextran as nanoparticle stabilizers applied in three concentrations. The prepared samples were characterized by dynamic light scattering and scanning electron microscopy. Fourier transform mid-infrared spectroscopy was used for verification of the composition of the samples. The particle size of sixteen samples was less than 200 nm. Polysorbate, sodium carboxymethyl dextran and macrogol were determined as the most favourable excipients; the particle size of the samples of risedronate with these excipients ranged from 2.8 to 10.5 nm.
Zobrazit více v PubMed
Lipinski C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods. 2000;44:239–245. PubMed
Lipinski C.A., Lombardo F. Experimental and computational approaches to estimated solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. PubMed
Kerns E.H., Li D. Drug-Like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.
Sivasankar M., Kumar B.P. Role of nanoparticles in drug delivery system. Int. J. Res. Pharm. Biol. Sci. 2010;1:41–66.
Shaikh M.S., Nikita D. Permeability enhancement techniques for poorly permeable drugs: A review. J. Appl. Pharm. Sci. 2012;2:34–39.
Onoue S., Yamada S., Chan H.K. Nanodrugs: Pharmacokinetics and safety. Int. J. Nanomed. 2014;9:1025–1037. PubMed PMC
Nehoff H., Parayath N.N., Domanovitch L., Taurin S., Greish K. Nanomedicine for drug targeting: Strategies beyond the enhanced permeability and retention effect. Int. J. Nanomed. 2014;9:2539–2555. PubMed PMC
Delie F., Blanco-Prieto M.J. Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules. 2005;10:65–80. PubMed PMC
Konan Y.N., Berton M., Gurny R., Allemand E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci. 2003;18:241–249. PubMed
Bawa R. Nanoparticle-based therapeutics in humans: A survey. Nanotechnol. Law Bus. 2008;5:135–155.
Bawa R. Nanopharmaceuticals for drug delivery–A review. Drug Deliv. 2009;3:122–127.
Ezra A., Golomb G. Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption. Adv. Drug Del. Rev. 2000;42:175–195. PubMed
Aft R., Perez J.R., Raje N., Hirsh V., Saad F. Could targeting bone delay cancer progression? Potential mechanisms of action of bisphosphonates. Crit. Rev. Oncol. Hematol. 2012;82:233–248. PubMed
Van Beek E.R., Lowik C.W., Ebetino F.H., Papapoulos S.E. Binding and antiresorptive properties of heterocycle-containing bisphosphonate analogs: Structure-activity relationships. Bone. 1998;23:437–442. PubMed
MedicineNet. [(accessed on 5 August 2014)]. Available online: http://www.medicinenet.com/risedronate/article.htm.
eMedTV–Health Information Brought to Life™. [(accessed on 5 August 2014)]. Available online: http://osteoporosis.emedtv.com/
Risedronate: Drug Bank Online–drugbank.ca. [(accessed on 5 August 2014)]. Available online: http://www.drugbank.ca/drugs/DB00884.
Mitchel D.Y., Barr W.H., Eusebio R.A., Stevens K.A., Duke F.P., Rusell D.A., Nesbitt J.D., Powell J.A., Thompson G.A. Risedronate pharmacokinetics intra- and inter-subject variability upon single-dose intravenous and oral administration. Pharm. Res. 2001;18:166–170. PubMed
Dissette V., Bozzi P., Bignozzi C.A., Dalpiaz A., Ferraro L., Beggiato S., Leo E., Vighi E., Pasti L. Particulate adducts based on sodium risedronate and titanium dioxide for the bioavailability enhancement of oral administered bisphosphonates. Eur. J. Pharm. Sci. 2010;41:328–336. PubMed
Oktabec Z., Kos J., Mandelova Z., Havelkova L., Pekarek T., Rezacova A., Placek L., Tkadlecova M., Havlicek J., Dohnal J., et al. Preparation and properties of new co-crystals of ibandronate with gluco- or galactopyranoside derivatives. Molecules. 2010;15:8973–8987. PubMed PMC
Kos J., Pentakova M., Oktabec Z., Krejcik L., Harokova P., Hruskova J., Pekarek T., Dammer O., Havlicek J., Kral V., et al. Crystallization products of risedronate with carbohydrates and their substituted derivatives. Molecules. 2011;16:3740–3760. PubMed PMC
Jung I.W., Han H.K. Effective mucoadhesive liposomal delivery system for risedronate: Preparation and in vitro/in vivo characterization. Int. J. Nanomed. 2014;9:2299–2306. PubMed PMC
Vaculikova E., Grunwaldova V., Kral V., Dohnal J., Jampilek J. Primary investigation of the preparation of nanoparticles by precipitation. Molecules. 2012;17:11067–11078. PubMed PMC
Vaculikova E., Grunwaldova V., Kral V., Dohnal J., Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules. 2012;17:13221–13234. PubMed PMC
Vaculikova E., Placha D., Cech-Barabaszova K., Jampilek J. Cimetidine nanoparticles study. Adv. Sci. Eng. Med. 2014;6:477–481.
Thorat A.A., Dalvi S.V. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem. Eng. J. 2012;181/182:1–34.
U.S. Food and Drug Administration–Generally Recognized as Safe (GRAS) [(accessed on 5 August 2014)]; Available online: http://www.fda.gov/food/IngredientspackagingLabeling/GRAS/
Merkus H.G. Particle Size Measurements: Fundamentals, Practice, Quality. Springer Science+Business Media B.V.; Dordrecht, The Netherlands: 2009.
Win K.Y., Feng S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722. PubMed
Malvern Instruments Ltd: Dynamic Light Scattering Common Terms Defined. [(accessed on 5 August 2014)]. Available online: http://www.biophysics.bioc.cam.ac.uk/wp-content/uploads/2011/02/DLS_Terms_defined_Malvern.pdf.
Advances in Use of Nanomaterials for Musculoskeletal Regeneration
Preparation of Hydrochlorothiazide Nanoparticles for Solubility Enhancement