Advances in Use of Nanomaterials for Musculoskeletal Regeneration

. 2021 Nov 24 ; 13 (12) : . [epub] 20211124

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34959276

Grantová podpora
APVV-17-0373 Slovak Research and Development Agency
CZ.02.1.01/0.0/0.0/17\_049/0008441 Operational Program Research & Development of the Czech Republic

Odkazy

PubMed 34959276
PubMed Central PMC8703496
DOI 10.3390/pharmaceutics13121994
PII: pharmaceutics13121994
Knihovny.cz E-zdroje

Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.

Zobrazit více v PubMed

WHO Musculoskeletal Conditions. 2021. [(accessed on 27 June 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions.

Sozen T., Ozisik L., Basaran N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017;4:46–56. doi: 10.5152/eurjrheum.2016.048. PubMed DOI PMC

Nakamura K., Ogata T. Locomotive syndrome: Definition and management. Clin. Rev. Bone Miner. Metab. 2016;14:56–67. doi: 10.1007/s12018-016-9208-2. PubMed DOI PMC

Föger-Samwald U., Dovjak P., Azizi-Semrad U., Kerschan-Schindl K., Pietschmann P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J. 2020;19:1017–1037. PubMed PMC

Gibofsky A. Epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis: A synopsis. Am. J. Manag. Care. 2014;20:128–135. PubMed

Song Y., Zhang J., Xu H., Lin Z., Chang H., Liu W., Kong L. Mesenchymal stem cells in knee osteoarthritis treatment: A systematic review and meta-analysis. J. Orthop. Translat. 2020;24:121–130. doi: 10.1016/j.jot.2020.03.015. PubMed DOI PMC

Van den Bergh J.P., van Geel T.A., Geusens P.P. Osteoporosis, frailty and fracture: Implications for case finding and therapy. Nat. Rev. Rheumatol. 2012;8:163–172. doi: 10.1038/nrrheum.2011.217. PubMed DOI

Hendrickx G., Boudin E., Van Hul W. A look behind the scenes: The risk and pathogenesis of primary osteoporosis. Nat. Rev. Rheumatol. 2015;11:462–474. doi: 10.1038/nrrheum.2015.48. PubMed DOI

Zhang Y., Jordan J.M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 2010;26:355–369. doi: 10.1016/j.cger.2010.03.001. PubMed DOI PMC

Melrose J., Fuller E.S., Little C.B. The biology of meniscal pathology in osteoarthritis and its contribution to joint disease: Beyond simple mechanics. Connect. Tissue Res. 2017;58:282–294. doi: 10.1080/03008207.2017.1284824. PubMed DOI

Melrose J. The importance of the knee joint meniscal fibrocartilages as stabilizing weight bearing structures providing global protection to human knee-joint tissues. Cells. 2019;8:324. doi: 10.3390/cells8040324. PubMed DOI PMC

He Y., Li Z., Alexander P.G., Ocasio-Nieves B.D., Yocum L., Lin H., Tuan R.S. Pathogenesis of osteoarthritis: Risk factors, regulatory pathways in chondrocytes, and experimental models. Biology. 2020;9:194. doi: 10.3390/biology9080194. PubMed DOI PMC

Grassel S., Zaucke F., Madry H. Osteoarthritis: Novel molecular mechanisms increase our understanding of the disease pathology. J. Clin. Med. 2021;10:1938. doi: 10.3390/jcm10091938. PubMed DOI PMC

Almutairi K., Nossent J., Preen D., Keen H., Inderjeeth C. The global prevalence of rheumatoid arthritis: A meta-analysis based on a systematic review. Rheumatol. Int. 2021;41:863–877. doi: 10.1007/s00296-020-04731-0. PubMed DOI

Smolen J.S., Aletaha D., McInnes I.B. Rheumatoid arthritis. Lancet. 2016;388:2023–2038. doi: 10.1016/S0140-6736(16)30173-8. PubMed DOI

Guo Q., Wang Y., Xu D., Nossent J., Pavlos N.J., Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15. doi: 10.1038/s41413-018-0016-9. PubMed DOI PMC

Chen J., Zheng J., Chen M., Lin S., Lin Z. The efficacy and safety of Chinese herbal medicine xianling gubao capsule combined with alendronate in the treatment of primary osteoporosis: A systematic review and meta-analysis of 20 randomized controlled trials. Front. Pharmacol. 2021;12:695832. doi: 10.3389/fphar.2021.695832. PubMed DOI PMC

Tanaka Y. Managing osteoporosis and joint damage in patients with rheumatoid arthritis: An overview. J. Clin. Med. 2021;10:1241. doi: 10.3390/jcm10061241. PubMed DOI PMC

Tu K.N., Lie J.D., Wan C.K.V., Cameron M., Austel A.G., Nguyen J.K., Van K., Hyun D. Osteoporosis: A Review of treatment options. Pharm. Ther. 2018;43:92–104. PubMed PMC

Zeng L., Yu G., Yang K., Hao W., Chen H. The improving effect and safety of probiotic supplements on patients with osteoporosis and osteopenia: A systematic review and meta-analysis of 10 randomized controlled trials. Evid. Based Complement. Altern. Med. 2021;2021:9924410. doi: 10.1155/2021/9924410. PubMed DOI PMC

Abbasi M., Mousavi M.J., Jamalzehi S., Alimohammadi R., Bezvan M.H., Mohammadi H., Aslani S. Strategies toward rheumatoid arthritis therapy; the old and the new. J. Cell. Physiol. 2019;234:10018–10031. doi: 10.1002/jcp.27860. PubMed DOI

Smolen J.S., Landewe R.B.M., Bijlsma J.W.J., Burmester G.R., Dougados M., Kerschbaumer A., McInnes I.B., Sepriano A., van Vollenhoven R.F., de Wit M., et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020;79:685–699. doi: 10.1136/annrheumdis-2019-216655. PubMed DOI

Kohler B.M., Gunther J., Kaudewitz D., Lorenz H.M. Current therapeutic options in the treatment of rheumatoid arthritis. J. Clin. Med. 2019;8:938. doi: 10.3390/jcm8070938. PubMed DOI PMC

Grassel S., Muschter D. Recent advances in the treatment of osteoarthritis. F1000Research. 2020;9:325. doi: 10.12688/f1000research.22115.1. PubMed DOI PMC

Oo W.M., Little C., Duong V., Hunter D.J. The development of disease-modifying therapies for osteoarthritis (DMOADs): The evidence to date. Drug Des. Dev. Ther. 2021;15:2921–2945. doi: 10.2147/DDDT.S295224. PubMed DOI PMC

Makarczyk M.J., Gao Q., He Y., Li Z., Gold M.S., Hochberg M.C., Bunnell B.A., Tuan R.S., Goodman S.B., Lin H. Current models for development of disease-modifying osteoarthritis drugs. Tissue Eng. C Meth. 2021;27:124–138. doi: 10.1089/ten.tec.2020.0309. PubMed DOI PMC

Ferro M., Charneca S., Dourado E., Guerreiro C.S., Fonseca J.E. Probiotic supplementation for rheumatoid arthritis: A promising adjuvant therapy in the gut microbiome era. Front. Pharmacol. 2021;12:711788. doi: 10.3389/fphar.2021.711788. PubMed DOI PMC

Cao J.H., Feng D.G., Wang Y.Z., Zhang H.Y., Zhao Y.D., Sun Z.H., Feng S.G., Chen Y., Zhu M.S. Chinese herbal medicine Du-Huo-Ji-Sheng-decoction for knee osteoarthritis: A protocol for systematic review and meta-analysis. Medicine. 2021;100:e24413. doi: 10.1097/MD.0000000000024413. PubMed DOI PMC

Fernandez-Martin S., Gonzalez-Cantalapiedra A., Munoz F., Garcia-Gonzalez M., Permuy M., Lopez-Pena M. Glucosamine and chondroitin sulfate: Is there any scientific evidence for their effectiveness as disease-modifying drugs in knee osteoarthritis preclinical studies? A systematic review from 2000 to 2021. Animals. 2021;11:1608. doi: 10.3390/ani11061608. PubMed DOI PMC

Dennis J.E., Splawn T., Kean T.J. High-throughput, temporal and dose dependent, effect of vitamins and minerals on chondrogenesis. Front. Cell Dev. Biol. 2020;8:92. doi: 10.3389/fcell.2020.00092. PubMed DOI PMC

Liu G., Tao W., Mei L. Emerging Advances in Bio-Nano Engineered Approaches toward Intelligent Nanomedicine. Frontiers Media; Lausanne, Swizerland: 2021. PubMed PMC

Pisarcik M., Lukac M., Jampilek J., Bilka F., Bilkova A., Paskova L., Devinsky F., Horakova R., Brezina M., Opravil T. Silver nanoparticles stabilised with phosphorus-containing heterocyclic surfactants: Synthesis, physico-chemical properties, and biological activity determination. Nanomaterials. 2021;11:1883. doi: 10.3390/nano11081883. PubMed DOI PMC

Placha D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC

Jampilek J., Kralova K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials. 2021;14:1059. doi: 10.3390/ma14051059. PubMed DOI PMC

Skrlova K., Malachova K., Munoz-Bonilla A., Merinska D., Rybkova Z., Fernandez-Garcia M., Placha D. Biocompatible polymer materials with antimicrobial properties for preparation of stents. Nanomaterials. 2019;9:1548. doi: 10.3390/nano9111548. PubMed DOI PMC

Siafaka P.I., Okur N.U., Karantas I.D., Okur M.E., Gundogdu E.A. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J. Pharm. Sci. 2021;16:24–46. doi: 10.1016/j.ajps.2020.03.003. PubMed DOI PMC

Mohammadinejad R., Ashrafizadeh M., Pardakhty A., Uzieliene I., Denkovskij J., Bernotiene E., Janssen L., Lorite G.S., Saarakkala S., Mobasheri A. Nanotechnological strategies for osteoarthritis diagnosis, monitoring, clinical management, and regenerative medicine: Recent advances and future opportunities. Curr. Rheumatol. Rep. 2020;22:12. doi: 10.1007/s11926-020-0884-z. PubMed DOI PMC

Oliveira I.M., Fernandes D.C., Cengiz I.F., Reis R.L., Oliveira J.M. Hydrogels in the treatment of rheumatoid arthritis: Drug delivery systems and artificial matrices for dynamic in vitro models. J. Mater. Sci. Mater. Med. 2021;32:74. doi: 10.1007/s10856-021-06547-1. PubMed DOI PMC

Jampilek J., Kos J., Kralova K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials. 2019;9:296. doi: 10.3390/nano9020296. PubMed DOI PMC

Jampilek J., Kralova K. Potential of nanonutraceuticals in increasing immunity. Nanomaterials. 2020;10:2224. doi: 10.3390/nano10112224. PubMed DOI PMC

Placha D., Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13:64. doi: 10.3390/pharmaceutics13010064. PubMed DOI PMC

Pham T.T., Nguyen H.T., Phung C.D., Pathak S., Regmi S., Ha D.H., Kim J.O., Yong C.S., Kim S.K., Choi J.E., et al. Targeted delivery of doxorubicin for the treatment of bone metastasis from breast cancer using alendronate-functionalized graphene oxide nanosheets. J. Ind. Eng. Chem. 2019;76:310–317. doi: 10.1016/j.jiec.2019.03.055. DOI

Li S., Su J., Cai W., Liu J.X. Nanomaterials manipulate macrophages for rheumatoid arthritis treatment. Front. Pharmacol. 2021;12:699245. doi: 10.3389/fphar.2021.699245. PubMed DOI PMC

Lawson T.B., Makela J.T.A., Klein T., Snyder B.D., Grinstaff M.W. Nanotechnology and osteoarthritis; part 1: Clinical landscape and opportunities for advanced diagnostics. J. Orthop. Res. 2021;39:465–472. doi: 10.1002/jor.24817. PubMed DOI

Lawson T.B., Makela J.T.A., Klein T., Snyder B.D., Grinstaff M.W. Nanotechnology and osteoarthritis. Part 2: Opportunities for advanced devices and therapeutics. J. Orthop. Res. 2021;39:473–484. doi: 10.1002/jor.24842. PubMed DOI

Wu T., Sun J., Tan L., Yan Q., Li L., Chen L., Liu X., Bin S. Enhanced osteogenesis and therapy of osteoporosis using simvastatin loaded hybrid system. Bioact. Mater. 2020;5:348–357. doi: 10.1016/j.bioactmat.2020.03.004. PubMed DOI PMC

Zhou K., Yu P., Shi X., Ling T., Zeng W., Chen A., Yang W., Zhou Z. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13:9595–9606. doi: 10.1021/acsnano.9b04723. PubMed DOI

National Science Foundation—Tissue Engineering. [(accessed on 10 November 2021)];2000 Available online: https://www.nsf.gov/about/history/nifty50/tissueengineering.jsp.

Zheng X., Zhang P., Fu Z., Meng S., Dai L., Yang H. Applications of nanomaterials in tissue engineering. RSC Adv. 2021;11:19041–19058. doi: 10.1039/D1RA01849C. PubMed DOI PMC

Hasan A., Morshed M., Memic A., Hassan S., Webster T.J., Marei H.E. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomed. 2018;13:5637–5655. doi: 10.2147/IJN.S153758. PubMed DOI PMC

Kwon S.G., Kwon Y.W., Lee T.W., Park G.T., Kim J.H. Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater. Res. 2018;22:36. doi: 10.1186/s40824-018-0148-4. PubMed DOI PMC

Hayes A.J., Melrose J. Glycosaminoglycan and proteoglycan biotherapeutics in articular cartilage protection and repair strategies: Novel approaches to visco-supplementation in orthobiologics. Adv. Ther. 2019;2:1900034. doi: 10.1002/adtp.201900034. DOI

Farrugia B.L., Lord M.S., Whitelock J.M., Melrose J. Harnessing chondroitin sulphate in composite scaffolds to direct progenitor and stem cell function for tissue repair. Biomater. Sci. 2018;6:947–957. doi: 10.1039/C7BM01158J. PubMed DOI

Bhagyaraj S.M., Oluwafemi O.S., Kalarikkal N., Thomas S. Applications of Nanomaterials: Advances and Key Technologies (Micro and Nano Technologies) Woodhead Publishing; Sawston, UK: Elsevier; Amsterdam, The Netherlands: 2018.

Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Gupta R., Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. 2018;37:209–230. doi: 10.1615/JEnvironPatholToxicolOncol.2018026009. PubMed DOI PMC

Beshchasna N., Saqib M., Kraskiewicz H., Wasyluk L., Kuzmin O., Duta O.C., Ficai D., Ghizdavet Z., Marin A., Ficai A., et al. Recent advances in manufacturing innovative stents. Pharmaceutics. 2020;12:349. doi: 10.3390/pharmaceutics12040349. PubMed DOI PMC

Cherian A.M., Nair S.V., Maniyal V., Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng. 2021;5:021508. doi: 10.1063/5.0037298. PubMed DOI PMC

Domsta V., Seidlitz A. 3D-Printing of drug-eluting implants: An overview of the current developments described in the literature. Molecules. 2021;26:4066. doi: 10.3390/molecules26134066. PubMed DOI PMC

Jampilek J., Kralova K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol. Chem. Eng. S. 2015;22:321–361. doi: 10.1515/eces-2015-0018. DOI

Pala R., Pattnaik S., Busi S., Nauli S.M. Nanomaterials as novel cardiovascular theranostics. Pharmaceutics. 2021;13:348. doi: 10.3390/pharmaceutics13030348. PubMed DOI PMC

Sosna T., Mikeska M., Dutko O., Simha Martynkova G., Skrlova K., Dedkova K., Peikertova P., Placha D. Micronization of ibuprofen particles using supercritical fluid technology. J. Nanosci. Nanotechnol. 2019;19:2814–2820. doi: 10.1166/jnn.2019.15874. PubMed DOI

Vaculikova E., Grunwaldova V., Kral V., Dohnal J., Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules. 2012;17:13221–13234. doi: 10.3390/molecules171113221. PubMed DOI PMC

Vaculikova E., Placha D., Pisarcik M., Peikertova P., Dedkova K., Devinsky F., Jampilek J. Preparation of risedronate nanoparticles by solvent evaporation technique. Molecules. 2014;19:17848–17861. doi: 10.3390/molecules191117848. PubMed DOI PMC

Vaculikova E., Cernikova A., Placha D., Pisarcik M., Dedkova K., Peikertova P., Devinsky F., Jampilek J. Cimetidine nanoparticles for permeability enhancement. J. Nanosci. Nanotechnol. 2016;16:7840–7843. doi: 10.1166/jnn.2016.12562. DOI

Vaculikova E., Cernikova A., Placha D., Pisarcik M., Peikertova P., Dedkova K., Devinsky F., Jampilek J. Preparation of hydrochlorothiazide nanoparticles for solubility enhancement. Molecules. 2016;21:1005. doi: 10.3390/molecules21081005. PubMed DOI PMC

Vaculikova E., Pokorna A., Placha D., Pisarcik M., Dedkova K., Peikertova P., Devinský F., Jampilek J. Improvement of glibenclamide water solubility by nanoparticle preparation. J. Nanosci. Nanotechnol. 2019;19:3031–3034. doi: 10.1166/jnn.2019.15876. PubMed DOI

Albalawi F., Hussein M.Z., Fakurazi S., Masarudin M.J. Engineered Nanomaterials: The challenges and opportunities for nanomedicines. Int. J. Nanomed. 2021;16:161–184. doi: 10.2147/IJN.S288236. PubMed DOI PMC

Velu R., Calais T., Jayakumar A., Raspall F. A Comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials. 2020;13:92. doi: 10.3390/ma13010092. PubMed DOI PMC

Choi A.H., Karacan I., Ben-Nissan B. Surface modifications of titanium alloy using nanobioceramic-based coatings to improve osseointegration: A review. Mater. Technol. 2020;35:742–751. doi: 10.1080/10667857.2018.1490848. DOI

Bramhill J., Ross S., Ross G. Bioactive nanocomposites for tissue repair and regeneration: A review. Int. J. Environ. Res. Public Health. 2017;14:66. doi: 10.3390/ijerph14010066. PubMed DOI PMC

Eivazzadeh-Keihan R., Maleki A., de la Guardia M., Salimi Bani M., Chenab K.K., Pashazadeh-Panahi P., Baradaran B., Mokhtarzadeh A., Hamblin M.R. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res. 2019;18:185–201. doi: 10.1016/j.jare.2019.03.011. PubMed DOI PMC

Rahmanian M., Seyfoori A., Dehghan M.M., Eini L., Naghib S.M., Gholami H., Mohajeri S.F., Mamaghani K.R., Majidzadeh A.K. Multifunctional gelatin-tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: In vitro and in vivo studies. J. Taiwan Inst. Chem. Eng. 2019;101:214–220. doi: 10.1016/j.jtice.2019.04.028. DOI

Kunrath M.F., Diz F.M., Magini R., Galarraga-Vinueza M.E. Nanointeraction: The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. Adv. Colloid Interface Sci. 2020;284:102265. doi: 10.1016/j.cis.2020.102265. PubMed DOI

Russell U., Deepanjan G., Inam R., Kaushal R. Inorganic nanomaterials for soft tissue repair and regeneration. Annu. Rev. Biomed. Eng. 2018;20:353–374. PubMed

Jackson R.J., Patrick P.S., Page K., Powell M.J., Lythgoe M.F., Miodownik M.A., Parkin I.P., Carmalt C.J., Kalber T.L., Bear J.C. Chemically treated 3D printed polymer scaffolds for biomineral formation. ACS Omega. 2018;3:4342–4351. doi: 10.1021/acsomega.8b00219. PubMed DOI PMC

Shafiei S.S., Shavandi M., Ahangari G., Shokrolahi F. Electrospun layered double hydroxide/poly(epsilon-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells. Appl. Clay Sci. 2016;127:52–63. doi: 10.1016/j.clay.2016.04.004. DOI

Haw-Ming H. Medical Application of Polymer-Based Composites. Polymers. 2020;12:2560. PubMed PMC

Holmes B., Fang X.Q., Zarate A., Keidar M., Zhang L.G. Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon. 2016;97:1–13. doi: 10.1016/j.carbon.2014.12.035. DOI

Hu X., Man Y., Li W., Li L., Xu J., Parungao R., Wang Y., Zheng S., Nie Y., Liu T., et al. 3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds. Polymers. 2019;11:1601. doi: 10.3390/polym11101601. PubMed DOI PMC

Deepthi S., Jayakumar R. Prolonged release of TGF-beta from polyelectrolyte nanoparticle loaded macroporous chitin-poly(caprolactone) scaffold for chondrogenesis. Int. J. Biol. Macromol. 2017;93:1402–1409. doi: 10.1016/j.ijbiomac.2016.03.068. PubMed DOI

Chen Y.T., Lee H.S., Hsieh D.J., Periasamy S., Yeh Y.C., Lai Y.P., Tarng Y.W. 3D composite engineered using supercritical CO2 decellularized porcine cartilage scaffold, chondrocytes, and PRP: Role in articular cartilage regeneration. J. Tissue Eng. Regen. Med. 2021;15:163–175. doi: 10.1002/term.3162. PubMed DOI

Zhong C., Li X., Diao W., Hu J., Wang S., Lin X., Wu J. Potential use of 3D-printed graphene oxide scaffold for construction of the cartilage layer. J. Nanobiotechnol. 2020;18:97. PubMed PMC

Rajzer I., Kurowska A., Jabłoński A., Kwiatkowski R., Piekarczyk W., Hajduga M.B., Kopeć J., Sidzina M., Menaszek A. Scaffolds modified with graphene as future implants for nasal cartilage. J. Mater. Sci. 2020;55:4030–4042. doi: 10.1007/s10853-019-04298-7. DOI

Gong M., Sun J., Guoming L., Li L., Wu S., Xiang Z. Graphene oxide-modified 3D acellular cartilage extracellular matrix scaffold for cartilage regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;119:111603. doi: 10.1016/j.msec.2020.111603. PubMed DOI

Yuan Y.R., Liu H.Z., Zheng N., Gao L.G., Liu F.Y., Guan G.F., Zhang G.L. Simple fabrication of sericin/graphene nanocomposites for application in articular cartilage repair in knee joints in nursing care. Appl. Nanosci. 2020;10:695–702. doi: 10.1007/s13204-019-01150-x. DOI

Zhou X., Nowicki M., Cui H.T., Zhu W., Fang X.Q., Miao S.D., Lee S.J., Keidar M., Zhang L.J.G. 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon. 2017;116:615–624. doi: 10.1016/j.carbon.2017.02.049. DOI

Deliormanli A.M. Direct write assembly of graphene/poly(epsilon-caprolactone) composite scaffolds and evaluation of their biological performance using mouse bone marrow mesenchymal stem cells. Appl. Biochem. Biotechnol. 2019;188:1117–1133. doi: 10.1007/s12010-019-02976-5. PubMed DOI

Wang X.D., Wan X.C., Liu A.F., Li R., Wei Q. Effects of umbilical cord mesenchymal stem cells loaded with graphene oxide granular lubrication on cytokine levels in animal models of knee osteoarthritis. Int. Orthop. 2021;45:381–390. doi: 10.1007/s00264-020-04584-z. PubMed DOI

Shamekhi A.M., Mirzadeh H., Mahdavi H., Rabiee A., Mohebbi-Kalhori D., Baghaban Eslaminejad M. Graphene oxide containing chitosan scaffolds for cartilage tissue engine. Int. J. Biol. Macromol. 2019;127:396–405. doi: 10.1016/j.ijbiomac.2019.01.020. PubMed DOI

Su W., Wang Z.Y., Jiang J., Liu X.Y., Zhao J.Z., Zhang Z.J. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane. Int. J. Nanomed. 2019;14:1835–1847. doi: 10.2147/IJN.S183842. PubMed DOI PMC

Lu Z., Liu S., Le Y., Qin Z., He M., Xu F., Zhu Y., Zhao J., Mao C., Zheng L. An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials. 2019;218:119190. doi: 10.1016/j.biomaterials.2019.05.001. PubMed DOI

Su J.Y., Chen S.H., Chen Y.P., Chen W.C. Evaluation of magnetic nanoparticle-labeled chondrocytes cultivated on a type II collagen-chitosan/poly(lactic-co-glycolic) acid biphasic scaffold. Int. J. Mol. Sci. 2017;18:87. doi: 10.3390/ijms18010087. PubMed DOI PMC

Moreira C.D.F., Carvalho S.M., Mansur H.S., Pereira M.M. Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;58:1207–1216. doi: 10.1016/j.msec.2015.09.075. PubMed DOI

Gan S., Lin W., Zou Y., Xu B., Zhang X., Zhao J., Rong J. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair. Carbohydr. Polym. 2020;229:115523. doi: 10.1016/j.carbpol.2019.115523. PubMed DOI

Cao L., Wu X.F., Wang Q.G., Wang J.D. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material. J. Photochem. Photobiol. B Biol. 2017;178:440–446. doi: 10.1016/j.jphotobiol.2017.10.026. PubMed DOI

Dumont V.C., Mansur H.S., Mansur A.A.P., Carvalho S.M., Capanema N.S.V., Barrioni B.R. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 2016;93:1465–1478. doi: 10.1016/j.ijbiomac.2016.04.030. PubMed DOI

Moreira C.D.F., Carvalho S.M., Sousa R.G., Mansur H.S., Pereira M.M. Nanostructured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injectable matrix for bone tissue engineering. Mater. Chem. Phys. 2018;218:304–316. doi: 10.1016/j.matchemphys.2018.07.039. DOI

Radhakrishnan J., Subramanian A., Sethuraman S. Injectable glycosaminoglycan–protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration. Carbohydr. Polym. 2017;175:63–74. doi: 10.1016/j.carbpol.2017.07.063. PubMed DOI

Yang W., Zhu P., Huang H.L., Zheng Y.Y., Liu J., Feng L.B., Guo H.M., Tang S., Guo R. Functionalization of novel theranostic hydrogels with kartogenin-grafted USPIO nanoparticles to enhance cartilage regeneration. ACS Appl. Mater. Interface. 2019;11:34744–34754. doi: 10.1021/acsami.9b12288. PubMed DOI

Zhao X.F., Li L.F., Chen M.K., Xu Y.F., Zhang S.O., Chen W.Z., Liang W.Q. Nanotechnology assisted targeted drug delivery for bone disorders: Potentials and clinical perspectives. Curr. Top. Med. Chem. 2020;20:2801–2819. doi: 10.2174/1568026620666201019110459. PubMed DOI

Ye G., Bao F.Y., Zhang X.Z., Song Z., Liao Y.G., Fei Y., Bunpetch V., Heng B.C., Shen W.L., Liu H. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine. 2020;15:1995–2017. doi: 10.2217/nnm-2020-0112. PubMed DOI

Khan M.U.A., Raza M.A., Mehboob H., Kadir M.R.A., Abd Razak S.I., Shah S.A., Iqbal M.Z., Amin R. Development and in vitro evaluation of kappa-carrageenan based polymeric hybrid nanocomposite scaffolds for bone tissue engineering. RSC Adv. 2020;10:40529–40542. doi: 10.1039/D0RA07446B. PubMed DOI PMC

De Armentia S.L., del Real J.C., Paz E., Dunne N. Advances in biodegradable 3D printed scaffolds with carbon-based nanomaterials for bone regeneration. Materials. 2020;13:5083. doi: 10.3390/ma13225083. PubMed DOI PMC

Bordea I.R., Candrea S., Alexescu G.T., Bran S., Baciut M., Baciut G., Lucaciu O., Dinu C.M., Todea D.A. Nano-hydroxyapatite use in dentistry: A systematic review. Drug Metabol. Rev. 2020;52:319–332. doi: 10.1080/03602532.2020.1758713. PubMed DOI

Lowe B., Hardy J.G., Walsh L.J. Optimizing nanohydroxyapatite nanocomposites for bone tissue engineering. ACS Omega. 2020;5:1–9. doi: 10.1021/acsomega.9b02917. PubMed DOI PMC

Sharifianjazi F., Esmaeilkhanian A., Moradi M., Pakseresht A., Shahedi Asl M., Karimi-Maleh H., Jang H.W., Shokouhimehr M., Varma R.S. Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. B. 2021;264:114950. doi: 10.1016/j.mseb.2020.114950. DOI

Ma L., Su W., Ran Y.Q., Ma X.M., Yi Z., Chen G.C., Chen X.Y., Deng Z.W., Tong Q.L., Wang X.L. Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan. Int. J. Biol. Macromol. 2020;165:1164–1174. doi: 10.1016/j.ijbiomac.2020.10.004. PubMed DOI

Chuan D., Fan R.R., Wang Y.L., Ren Y.M., Wang C., Du Y., Zhou L.X., Yu J., Gu Y.C., Chen H.F. Stereocomplex poly(lactic acid)-based composite nanofiber membranes with highly dispersed hydroxyapatite for potential bone tissue engineering. Compos. Sci. Technol. 2020;192:108107. doi: 10.1016/j.compscitech.2020.108107. DOI

Shuai C.J., Xu Y., Feng P., Xu L., Peng S.P., Deng Y.W. Co-enhance bioactive of polymer scaffold with mesoporous silica and nano-hydroxyapatite. J. Biomater. Sci. Pol. Ed. 2019;30:1097–1113. doi: 10.1080/09205063.2019.1622221. PubMed DOI

Yang Y.H., Zhang Q., Xu T.P., Zhang H.Y., Zhang M., Lu L., Hao Y.F., Fuh J.Y.H., Zhao X. Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Biomaterials. 2020;263:120378. doi: 10.1016/j.biomaterials.2020.120378. PubMed DOI

Li L., Xincui S., Wang Z., Guo M., Wang Y., Jiao Z., Zhang P. Porous Scaffolds of Poly(lactic-co-glycolic acid) and mesoporous hydroxyapatite surface modified by poly(gamma-benzyl-L-glutamate) (PBLG) for in vivo bone repair. ACS Biomater. Sci. Eng. 2019;5:2466–2481. doi: 10.1021/acsbiomaterials.8b01614. PubMed DOI

Mondal D., Willett T.L. Mechanical properties of nanocomposite biomaterials improved by extrusion during direct ink writing. J. Mech. Behav. Biomed. Mater. 2020;104:103653. doi: 10.1016/j.jmbbm.2020.103653. PubMed DOI

Ren P.F., Wang F.M., Zhan T.T., Hu W.J., Zhou N.Z., Zhang T.Z., Ye J.H. A biomimetic nano-ydroxyapatite/chitosan/ poly(methyl vinyl ether-alt-maleic anhydride) composite with excellent biocompatibility. Mater. Let. 2020;261:127102. doi: 10.1016/j.matlet.2019.127102. DOI

Shi X.C., Wu H.T., Yan H.H., Wang Y., Wang Z.L., Zhang P.B. Electroactive nanocomposite porous scaffolds of PAP(n)/op-HA/PLGA enhance osteogenesis in vivo. ACS Appl. Biomater. 2019;2:1464–1476. doi: 10.1021/acsabm.8b00716. PubMed DOI

McGough M.A.P., Boller L.A., Groff D.M., Schoenecker J.G., Nyman J.S., Wenke J.C., Rhodes C., Shimko D., Duvall C.L., Guelcher S.A. Nanocrystalline hydroxyapatite-poly(thioketal urethane) nanocomposites stimulate a combined intramembranous and endochondral ossification response in rabbits. ACS Biomater. Sci. Eng. 2020;6:564–574. doi: 10.1021/acsbiomaterials.9b01378. PubMed DOI PMC

Silva A.D., Rodrigues B.V.M., Oliveira F.C., Carvalho J.O., de Vasconcellos L.M.R., de Araujo J.C.R., Marciano F.R., Lobo A.O. Characterization and In Vitro and In Vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J. Polym. Res. 2019;26:53. doi: 10.1007/s10965-019-1706-8. PubMed DOI

Liang H., Xu X.M., Feng X.B., Ma L., Deng X.Y., Wu S.L., Liu X.M., Yang C. Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/beta-catenin signaling pathway. Int. J. Nanomed. 2019;14:6151–6163. doi: 10.2147/IJN.S213889. PubMed DOI PMC

Dalavi P.A., Prabhu A., Shastry R.P., Venkatesan J. Microspheres containing biosynthesized silver nanoparticles with alginate-nano hydroxyapatite for biomedical applications. J. Biomater. Sci. Polym. Ed. 2020;31:2025–2043. doi: 10.1080/09205063.2020.1793464. PubMed DOI

Martinez-Zelaya V.R., Zarranz L., Herrera E.Z., Alves A.T., Uzeda M.J., Mavropoulos E., Rossi A.L., Mello A., Granjeiro J.M., Calasans-Maia M.D. In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: Zinc and calcium bioavailability and bone regeneration. Int. J. Nanomed. 2019;14:3471–3490. doi: 10.2147/IJN.S197157. PubMed DOI PMC

Cao Y., Shi T.S., Jiao C., Liang X., Chen R.Y., Tian Z.J., Zou A.C., Yang Y.W., Wei Z., Wang C.J. Fabrication and properties of zirconia/hydroxyapatite composite scaffold based on digital light processing. Ceram. Int. 2020;46:2300–2308. doi: 10.1016/j.ceramint.2019.09.219. DOI

Zhu Y., Jiang P.P., Luo B., Lan F., He J., Wu Y. Dynamic protein corona influences immune-modulating osteogenesis in magnetic nanoparticle (MNP)-infiltrated bone regeneration scaffolds in vivo. Nanoscale. 2019;11:6817–6827. doi: 10.1039/C8NR08614A. PubMed DOI

Torgbo S., Sukyai P. Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Mater. Chem. Phys. 2019;237:121868. doi: 10.1016/j.matchemphys.2019.121868. DOI

Mushtaq A., Zhao R.B., Luo D.D., Dempsey E., Wang X.M., Iqbal M.Z., Kong X.D. Magnetic hydroxyapatite nanocomposites: The advances from synthesis to biomedical applications. Mater. Des. 2021;197:109269. doi: 10.1016/j.matdes.2020.109269. DOI

Scialla S., Palazzo B., Sannino A., Verri T., Gervaso F., Barca A. Evidence of modular responsiveness of osteoblast-like cells exposed to hydroxyapatite-containing magnetic nanostructures. Biology. 2020;9:357. doi: 10.3390/biology9110357. PubMed DOI PMC

Munir K.S., Wen C., Li Y. Carbon nanotubes and graphene as nanoreinforcements in metallic biomaterials: A review. Adv. Biosyst. 2019;3:e1800212. doi: 10.1002/adbi.201800212. PubMed DOI

Wang G., Qi F., Yang W., Yang Y., He C., Peng S., Shuai C. Crystallinity and reinforcement in poly-l-lactic acid scaffold induced by carbon nanotubes. Adv. Polym. Technol. 2019;2019:8625325. doi: 10.1155/2019/8625325. DOI

Oliveira F.C., Oliveira C.J., Magalhaes L.S.S.M., Marques da Silva J., Pereira S.R., Gomes Júnior A.L., Soares L.M., Cruz Cariman L.I., da Silva R.I., Viana B.C., et al. Biomineralization inspired engineering of nanobiomaterials promoting bone repair. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;120:111776. doi: 10.1016/j.msec.2020.111776. PubMed DOI

Liu L., Yang B., Wang L.Q., Huang J.P., Chen W.Y., Ban Q., Zhang Y., You R., Yin L., Guan Y.Q. Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs. J. Mater. Chem. B. 2020;8:558–567. doi: 10.1039/C9TB01804B. PubMed DOI

Wang C., Cao G., Zhao T., Wang X., Niu X., Fan Y., Li X. Terminal Group Modification of Carbon Nanotubes Determines Covalently Bound Osteogenic Peptide Performance. ACS Biomater. Sci. Eng. 2020;6:865–878. doi: 10.1021/acsbiomaterials.9b01501. PubMed DOI

Liu X., George M.N., Li L., Gamble D., Millerli A.L., Gaihre B., Waletzki B.E., Lu L. Injectable electrical conductive and phosphate releasing gel with two-dimensional black phosphorus and carbon nanotubes for bone tissue engineering. ACS Biomater. Sci. Eng. 2020;6:4653–4665. doi: 10.1021/acsbiomaterials.0c00612. PubMed DOI PMC

Du Z., Feng X., Cao G., She Z., Tan R., Aifantis K.E., Zhang R., Li X. The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism. Bioact. Mater. 2021;6:333–345. doi: 10.1016/j.bioactmat.2020.08.015. PubMed DOI PMC

E Silva E.P., Huang B., Helaehil J.V., Nalesso P.R.L., Bagne L., de Oliveira M.A., Albiazetti G.C.C., Aldalbahi A., El-Newehy M., Santamaria M., Jr., et al. In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering. Bio-Des. Manuf. 2021;4:190–202. doi: 10.1007/s42242-020-00116-1. DOI

Huang B., Vyas C., Byun J.J., El-Newehy M., Huang Z., Bártolo P. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;108:110374. doi: 10.1016/j.msec.2019.110374. PubMed DOI

Zhang P., Xin Y., Ai F., Cao C. Preparation and properties of multi-walled carbon nanotubes and eggshell dual-modified polycaprolactone composite scaffold. J. Polym. Eng. 2019;39:343–350. doi: 10.1515/polyeng-2018-0246. DOI

Cui H., Yu Y., Li X., Sun Z., Ruan J., Wu Z., Qian J., Yin J. Direct 3D printing of a tough hydrogel incorporated with carbon nanotubes for bone regeneration. J. Mater. Chem. B. 2019;7:7207–7217. doi: 10.1039/C9TB01494B. PubMed DOI

Nur I.S.M., Nur S.M., Nor H.A.N., Yusof N.H., Idris A. Review on nanocrystalline cellulose in bone tissue engineering applications. Polymers. 2020;12:2818 PubMed PMC

Zhang X., Yin X., Luo J., Zheng X., Wang H., Wang J., Xi Z., Liao X., Machuki J.O., Guo K., et al. Novel hierarchical nitrogen-doped multiwalled carbon nanotubes/cellulose/nanohydroxyapatite nanocomposite as an osteoinductive scaffold for enhancing bone regeneration. ACS Biomater. Sci. Eng. 2019;5:294–307. doi: 10.1021/acsbiomaterials.8b00908. PubMed DOI

Dinescu S., Ionita M., Ignat S.R., Costache M., Hermenean A. Graphene oxide enhances chitosan-based 3D scaffold properties for bone tissue engineering. Int. J. Mol. Sci. 2019;20:5077. doi: 10.3390/ijms20205077. PubMed DOI PMC

Wang P.J., Yu T.B., Lv Q.L., Li S.K., Ma X.X., Yang G.P., Xu D.X., Liu X., Wang G.T., Chen Z.Q. Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to cell behavior toward bone reconstruction engineering. Colloids Surf. B Biointerfaces. 2019;173:512–520. doi: 10.1016/j.colsurfb.2018.10.027. PubMed DOI

Huang H.Y., Fan F.Y., Shen Y.K., Wang C.H., Huang Y.T., Chern M.J., Wang Y.H., Wang L. 3D poly-epsilon-caprolactone/graphene porous scaffolds for bone tissue engineering. Colloids Surf. A Physicochem. Eng. Asp. 2020;606:125393. doi: 10.1016/j.colsurfa.2020.125393. DOI

He M.M., Zhu C., Xu H., Sun D., Chen C., Feng G.J., Liu L.M., Li Y.B., Zhang L. Conducting polyetheretherketone nanocomposites with an electrophoretically deposited bioactive coating for bone tissue regeneration and multimodal therapeutic applications. ACS Appl. Mater. Interfaces. 2020;12:56924–56934. doi: 10.1021/acsami.0c20145. PubMed DOI

He M.M., Chen X.C., Guo Z.J., Qiu X.T., Yang Y.T., Su C.L., Jiang N., Li Y.B., Sun D., Zhang L. Super tough graphene oxide reinforced polyetheretherketone for potential hard tissue repair applications. Compos. Sci. Technol. 2019;174:194–201. doi: 10.1016/j.compscitech.2019.02.028. DOI

Huang Z., Wan Y., Zhu X., Zhang P., Yang Z., Yao F., Lu H. Simultaneous engineering of nanofillers and patterned surface macropores of graphene/hydroxyapatite/polyetheretherketone ternary composites for potential bone implants. Mater. Sci. Eng. C. 2021;123:111967. doi: 10.1016/j.msec.2021.111967. PubMed DOI

Lopes C.C., Pinheiro W.A., da Rocha D.N., Neves J.G., Correr A.B., Ferreira J.R.M., Barbosa R.M., Soares J.R.F., Santos J.L., Prado da Silva M.H. Nanocomposite powders of hydroxyapatite-graphene oxide for biological applications. Ceram. Int. 2021;47:7653–7665. doi: 10.1016/j.ceramint.2020.11.107. DOI

Zhao Y., Chen J., Zou L., Xu G., Geng Y. Facile one-step bioinspired mineralization by chitosan functionalized with graphene oxide to activate bone endogenous regeneration. Chem. Eng. J. 2019;378:122174. doi: 10.1016/j.cej.2019.122174. DOI

Ghorai S.K., Maji S., Subramanian B., Maiti T.K., Chattopadhyay S. Coining attributes of ultra-low concentration graphene oxide and spermine: An approach for high strength, anti-microbial and osteoconductive nanohybrid scaffold for bone tissue regeneration. Carbon. 2019;141:370–389. doi: 10.1016/j.carbon.2018.09.062. DOI

Zhang Y., Hu J. Isocyanate modified go shape-memory polyurethane composite. Polymers. 2020;12:118. doi: 10.3390/polym12010118. PubMed DOI PMC

Oliveira F.C., Carvalho J.O., Gusmao S.B.S., Goncalves L.D., Mendes L.M.S., Freitas S.A.P., Gusmao G.O.D., Bartolomeu Cruz V., Marciano F.R., Anderson Oliveira L. High loads of nano-hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model. Int. J. Nanomed. 2019;14:865–874. doi: 10.2147/IJN.S192456. PubMed DOI PMC

Wu T., Li B., Wang W., Chen L., Li Z., Wang M., Zha Z., Lin Z., Xia H., Zhang T. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomater. Sci. 2020;8:4603–4615. doi: 10.1039/D0BM00523A. PubMed DOI

Chen Y.H., Zheng Z.W., Zhou R.P., Zhang H.Z., Chen C.S., Xiong Z.Z., Liu K., Wang X.S. Developing a strontium-releasing graphene oxide-/collagen-based organic inorganic nanobiocomposite for large bone defect regeneration via MAPK signaling pathway. ACS Appl. Mater. Interfaces. 2019;11:15986–15997. doi: 10.1021/acsami.8b22606. PubMed DOI

Liu S., Zhou C., Mou S., Li J., Zhou M., Zeng Y., Luo C., Sun J., Wang Z., Xu W. Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;105:110137. doi: 10.1016/j.msec.2019.110137. PubMed DOI

Zhang Y.D., Wang C., Fu L., Ye S., Wang M., Zhou Y.M. Fabrication and application of novel porous scaffold in situ-loaded graphene oxide and osteogenic peptide by cryogenic 3D printing for repairing critical-sized bone defect. Molecules. 2019;24:1669. doi: 10.3390/molecules24091669. PubMed DOI PMC

Wu J.N., Zheng A., Liu Y., Jiao D.L., Zeng D.L., Wang X., Cao L.Y., Jiang X.Q. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Int. J. Nanomed. 2019;14:733–750. doi: 10.2147/IJN.S187664. PubMed DOI PMC

Ou L.L., Lan Y., Feng Z.A., Feng L.B., Yang J.J., Liu Y., Bian L.M., Tan J.L., Lai R.F., Guo R. Functionalization of SF/HAP scaffold with GO-PEI-miRNA inhibitor complexes to enhance bone regeneration through activating transcription factor 4. Theranostics. 2019;9:4525–4541. doi: 10.7150/thno.34676. PubMed DOI PMC

Zhang J., Eyisoylu H., Qin X.H., Rubert M., Müller R. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater. 2021;121:637–652. doi: 10.1016/j.actbio.2020.12.026. PubMed DOI

Wang W., Liu Y., Yang C., Qi X., Li S.W., Liu C.S., Li X.L. Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. Int. J. Biol. Sci. 2019;15:2156–2169. doi: 10.7150/ijbs.35670. PubMed DOI PMC

Yan F.F., Liu Z.B., Zhang T., Zhang Q., Chen Y., Xie Y.L., Lei J., Cai L. Biphasic injectable bone cement with Fe3O4/GO nanocomposites for the minimally invasive treatment of tumor-induced bone destruction. ACS Biomater. Sci. Eng. 2019;5:5833–5843. doi: 10.1021/acsbiomaterials.9b00472. PubMed DOI

Chopra V., Thomas J., Sharma A., Panwar V., Kaushik S., Sharma S., Porwal K., Kulkarni C., Rajput S., Singh H., et al. Synthesis and evaluation of a zinc eluting rGO/hydroxyapatite nanocomposite optimized for bone augmentation. ACS Biomater. Sci. Eng. 2020;6:6710–6725. doi: 10.1021/acsbiomaterials.0c00370. PubMed DOI

Zhang Y.C., Hu J.L., Zhao X., Xie R.Q., Qin T.W., Ji F.L. Mechanically robust shape memory polyurethane nanocomposites for minimally invasive bone repair. ACS Appl. Biomater. 2019;2:1056–1065. doi: 10.1021/acsabm.8b00655. PubMed DOI

Jiao D.L., Cao L.Y., Liu Y., Wu J.N., Zheng A., Jiang X.Q. Synergistic osteogenesis of biocompatible reduced graphene oxide with methyl vanillate in BMSCs. ACS Biomater. Sci. Eng. 2019;5:1920–1936. doi: 10.1021/acsbiomaterials.8b01264. PubMed DOI

Senthil R., Basaran B., Vijayan S., Mert A., Bayraktar O., Wilson A.A. Electrospun nano-bio membrane for bone tissue engineering application- a new approach. Mater. Chem. Phys. 2020;249:123010.

Bu W., Xu X., Wang Z., Jin N., Liu L., Liu J., Zhu S., Zhang K., Jelinek R., Zhou D., et al. Ascorbic acid-PEI carbon dots with osteogenic effects as miR-2861 carriers to effectively enhance bone regeneration. ACS Appl. Mater. Interfaces. 2020;12:50287–50302. doi: 10.1021/acsami.0c15425. PubMed DOI

Wang B., Yang M., Liu L., Yan G., Yan H., Feng J., Li Z., Li D., Sun H., Yang B. Osteogenic potential of Zn2+-passivated carbon dots for bone regeneration In Vivo. Biomater. Sci. 2019;7:5414–5423. doi: 10.1039/C9BM01181A. PubMed DOI

Lai L., Song H., Zhen J., Qiu Y., Liu X., Xu W., Zhang S. Study on the bone morphogenetic protein 2 loaded synergistic hierarchical porous silk/carbon nanocage scaffold for the repair of bone defect. Mater. Des. 2020;196:109105. doi: 10.1016/j.matdes.2020.109105. DOI

Nekounam H., Allahyari Z., Gholizadeh S., Mirzaei E., Shokrgozar M.A., Faridi-Majidi R. Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications. Mater. Sci. Eng. C. 2020;117:111226. doi: 10.1016/j.msec.2020.111226. PubMed DOI

Swaminathan P.D., Uddin M.N., Wooley P., Asmatulu R. Fabrication and biological analysis of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for biological applications. Molecules. 2020;25:3572. doi: 10.3390/molecules25163572. PubMed DOI PMC

Wang Y., Cui W.G., Zhao X., Wen S.Z., Sun Y.L., Han J.M., Zhang H.Y. Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale. 2019;11:60–71. doi: 10.1039/C8NR07329E. PubMed DOI

Kao C.T., Chen Y.J., Huang T.H., Lin Y.H., Hsu T.T., Ho C.C. Assessment of the release profile of fibroblast growth factor-2-load mesoporous calcium silicate/poly-epsilon-caprolactone 3D scaffold for regulate bone regeneration. Processes. 2020;8:1249. doi: 10.3390/pr8101249. DOI

Liang H., Jin C., Ma L., Feng X.B., Deng X.Y., Wu S.L., Liu X.M., Yang C. Accelerated bone regeneration by gold-nanoparticle-loaded mesoporous silica through stimulating immunomodulation. ACS Appl. Mater. Interfaces. 2019;11:41758–41769. doi: 10.1021/acsami.9b16848. PubMed DOI

Chen M., Zhang Y., Xie Q., Zhang W., Pan X., Gu P., Zhou H., Gao Y., Walther A., Fan X. Long-term bone regeneration enabled by a polyhedral oligomeric silsesquioxane (POSS)-enhanced biodegradable hydrogel. ACS Biomater. Sci. Eng. 2019;5:4612–4623. doi: 10.1021/acsbiomaterials.9b00642. PubMed DOI

Carrow J.K., Di Luca A., Dolatshahi-Pirouz A., Moroni L., Gaharwar A.K. 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regen. Biomater. 2019;6:29–37. doi: 10.1093/rb/rby024. PubMed DOI PMC

Gao C.D., Yao M., Shuai C.J., Peng S.P., Deng Y.W. Nano-SiC reinforced Zn biocomposites prepared via laser melting: Microstructure, mechanical properties and biodegradability. J. Mater. Sci. Technol. 2019;35:2608–2617. doi: 10.1016/j.jmst.2019.06.010. DOI

Pang L.B., Shen Y.F., Hu H.R., Zeng X.Q., Huang W.H., Gao H., Wang H., Wang D.P. Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration. Mater. Sci. Eng. C. 2019;105:110076. doi: 10.1016/j.msec.2019.110076. PubMed DOI

Zhao C.C., Shen A.F., Zhang L.Z., Lin K.L., Wang X.D. Borocarbonitrides nanosheets engineered 3D-printed scaffolds for integrated strategy of osteosarcoma therapy and bone regeneration. Chem. Eng. J. 2020;401:125989. doi: 10.1016/j.cej.2020.125989. DOI

Liu Y.H., Zhu Z., Pei X.B., Zhang X., Cheng X.T., Hu S.S., Gao X.M., Wang J., Chen J.Y., Wan Q.B. ZIF-8-modified multifunctional bone-adhesive hydrogels promoting angiogenesis and osteogenesis for bone regeneration. ACS Appl. Mater. Interfaces. 2020;12:36978–36995. doi: 10.1021/acsami.0c12090. PubMed DOI

Cidonio G., Glinka M., Kim Y.H., Kanczler J.M., Lanham S.A., Ahlfeld T., Lode A., Dawson J.I., Gelinsky M., Oreffo R.O.C. Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue In Vitro and In Vivo. Biofabrication. 2020;12:035010. doi: 10.1088/1758-5090/ab8753. PubMed DOI

Zhang Y., Chen M., Dai Z., Cao H., Li J., Zhang W. Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomater. Sci. 2020;8:682–693. doi: 10.1039/C9BM01455A. PubMed DOI

Ibrahim D.M., Sani E.S., Soliman A.M., Zandi N., Mostafavi E., Youssef A.M., Allam N.K., Annabi N. Bioactive and elastic nanocomposites with antimicrobial properties for bone tissue regeneration. ACS Appl. Biomater. 2020;3:3313–3325. doi: 10.1021/acsabm.0c00250. PubMed DOI

Zhao H.B., Zhang X.M., Zhou D., Weng Y.P., Qin W., Pan F., Lv S.W., Zhao X.B. Collagen, polycaprolactone and attapulgite composite scaffolds forin vivobone repair in rabbit models. Biomed. Mater. 2020;15:045022. doi: 10.1088/1748-605X/ab843f. PubMed DOI

Kundu K., Afshar A., Katti D.R., Edirisinghe M., Katti K.S. Composite nanoclay-hydroxyapatite-polymer fiber scaffolds for bone tissue engineering manufactured using pressurized gyration. Compos. Sci. Technol. 2021;202:108598. doi: 10.1016/j.compscitech.2020.108598. DOI

Doostmohammadi A., Esfahani Z.K., Ardeshirylajimi A., Dehkordi Z.R. Zirconium modified calcium-silicate-based nanoceramics: An in vivo evaluation in a rabbit tibial defect model. Int. J. Appl. Ceram. Technol. 2019;16:431–437. doi: 10.1111/ijac.13076. DOI

Liu K., Li W.Y., Chen S.T., Wen W., Lu L., Liu M.X., Zhou C.R., Luo B.H. The design, fabrication and evaluation of 3D printed gHNTs/gMgO whiskers/PLLA composite scaffold with honeycomb microstructure for bone tissue engineering. Compos. Part B Eng. 2020;192:108001. doi: 10.1016/j.compositesb.2020.108001. DOI

Tian Q., Lin J., Rivera-Castaneda L., Tsanhani A., Dunn Z.S., Rodrriguez A., Aslani A., Liu H. Nano-to-submicron hydroxyapatite coatings for magnesium-based bioresorbable implants—Deposition, characterization, degradation, mechanical properties, and cytocompatibility. Sci. Rep. 2019;9:810. doi: 10.1038/s41598-018-37123-3. PubMed DOI PMC

Safari N., Golafshan N., Kharaziha M., Toroghinejad M.R., Utomo L., Malda J., Castilho M. Stable and antibacterial magnesium-graphene nanocomposite-based implants for bone repair. ACS Biomater. Sci. Eng. 2020;6:6253–6262. doi: 10.1021/acsbiomaterials.0c00613. PubMed DOI

Parande G., Manakari V., Prasadh S., Chauhan D., Rahate S., Wong R., Gupta M. Strength retention, corrosion control and biocompatibility of Mg-Zn-Si/HA nanocomposites. J. Mech. Behav. Biomed. Mater. 2020;103:103584. doi: 10.1016/j.jmbbm.2019.103584. PubMed DOI

Khalili V., Frenzel J., Eggeler G. Degradation behavior of the MgO/HA surface ceramic nano-composites in the simulated body fluid and its use as a potential bone implant. Mater. Chem. Phys. 2021;258:123965. doi: 10.1016/j.matchemphys.2020.123965. DOI

Kumar S., Gautam C., Chauhan B.S., Srikrishna S., Yadav R.S., Rai S.B. Enhanced mechanical properties and hydrophilic behavior of magnesium oxide added hydroxyapatite nanocomposite: A bone substitute material for load bearing applications. Ceram. Int. 2020;46:16235–16248. doi: 10.1016/j.ceramint.2020.03.180. DOI

Shuai C., Zan J., Yang Y., Peng S., Yang W., Qi F., Shen L., Tian Z. Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Mater. Sci. Eng. C. 2020;108:110486. doi: 10.1016/j.msec.2019.110486. PubMed DOI

Zhao Y., Liang H., Zhang S.Q., Qu S.W., Jiang Y., Chen M.F. Effects of magnesium oxide (MgO) shapes on in vitro and in vivo degradation behaviors of PLA/MgO composites in long term. Polymers. 2020;12:1074. doi: 10.3390/polym12051074. PubMed DOI PMC

Go E.J., Kang E.Y., Lee S.K., Park S., Kim J.H., Park W., Kim I.H., Choi B., Han D.K. An osteoconductive PLGA scaffold with bioactive beta-TCP and anti-inflammatory Mg(OH)(2) to improve in vivo bone regeneration. Biomater. Sci. 2020;8:937–948. doi: 10.1039/C9BM01864F. PubMed DOI

Zhao Q.H., Tang H.M., Ren L.S., Wei J. In vitro apatite mineralization, degradability, cytocompatibility and in vivo new bone formation and vascularization of bioactive scaffold of polybutylene succinate/magnesium phosphate/wheat protein ternary composite. Int. J. Nanomed. 2020;15:7279–7295. doi: 10.2147/IJN.S255477. PubMed DOI PMC

Huang Y.Z., Ji Y.R., Kang Z.W., Li F., Ge S.F., Yang D.P., Ruan J., Fan X.Q. Integrating eggshell-derived CaCO3/MgO nanocomposites and chitosan into a biomimetic scaffold for bone regeneration. Chem. Eng. J. 2020;395:125098. doi: 10.1016/j.cej.2020.125098. DOI

Hussain A., Gautam C., Jafri A., Mishra V.K., Madheshiya A., Gautam A., Singh M.K., Gautam R.K., Gupta M., Arshad M. Formation of multifunctional ZrO2-MgO-hBN nanocomposite for enhanced bone regeneration and E. coli bacteria filtration applications. Ceram. Int. 2020;46:23006–23020. doi: 10.1016/j.ceramint.2020.06.077. DOI

Zheng Z., Chen Y., Hong H., Shen Y., Wang Y., Sun J., Wang X. The “Yin and Yang” of immunomodulatory magnesium-enriched graphene oxide nanoscrolls decorated biomimetic scaffolds in promoting bone regeneration. Adv. Healthc. Mater. 2021;10:2000631. doi: 10.1002/adhm.202000631. PubMed DOI

Li B., Xia X., Guo M., Jiang Y., Li Y., Zhang Z., Liu S., Li H., Liang C., Wang H. Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Sci. Rep. 2019;9:14052. doi: 10.1038/s41598-019-49941-0. PubMed DOI PMC

Ren B., Wan Y., Liu C., Wang H., Yu M., Zhang X., Huang Y. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An In Vitro and In Vivo study. Mater. Sci. Eng. C. 2021;118:111505. doi: 10.1016/j.msec.2020.111505. PubMed DOI

Wang R., Shi M., Xu F., Qiu Y., Zhang P., Shen K., Zhao Q., Yu J., Zhang Y. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat. Commun. 2020;11:4465. doi: 10.1038/s41467-020-18267-1. PubMed DOI PMC

Yigit O., Dikici B., Cagri Senocak T., Ozdemir N. One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses. Surf. Coat. Technol. 2020;394:125858. doi: 10.1016/j.surfcoat.2020.125858. DOI

Tümer D., Güngörürler M., Havıtçıoğlu H., Arman Y. Investigation of effective coating of the Ti–6Al–4V alloy and 316L stainless steel with graphene or carbon nanotubes with finite element methods. J. Mater. Res. Technol. 2020;9:15880–15893. doi: 10.1016/j.jmrt.2020.11.052. DOI

Zalnezhad E., Musharavati F., Chen T., Jaber F., Uzun K., Chowdury M.E.H., Khandakar A., Liu J., Bae S. Tribo-mechanical properties evaluation of HA/TiO2/CNT nanocomposite. Sci. Rep. 2021;11:1867. doi: 10.1038/s41598-021-81187-7. PubMed DOI PMC

Rafieerad A.R., Bushroa A.R., Nasiri-Tabrizi B., Baradaran S., Amiri A., Saber-Samandari S., Khanahmadi S., Zeimaran E., Basirun W.J., Kalaiselvam K., et al. Simultaneous enhanced antibacterial and osteoblast cytocompatibility performance of Ti6Al7Nb implant by nano-silver/graphene oxide decorated mixed oxide nanotube composite. Surf. Coat. Technol. 2019;360:181–195. doi: 10.1016/j.surfcoat.2018.12.119. DOI

Kawaguchi M., Segawa A., Shintani K., Nakamura Y., Ishigaki Y., Yonezawa K., Sasamoto T., Kaneuji A., Kawahara N. Bone formation at Ti-6Al-7Nb scaffolds consisting of 3D honeycomb frame and diamond-like carbon coating implanted into the femur of beagles. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021;109:1283–1291. doi: 10.1002/jbm.b.34789. PubMed DOI

Yılmaz E., Çakıroğlu B., Gökçe A., Findik F., Gulsoy H.O., Gulsoy N., Mutlu Ö., Özacar M. Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;101:292–305. doi: 10.1016/j.msec.2019.03.078. PubMed DOI

Cao H., Qin H., Zhao Y., Jin G., Lu T., Meng F., Zhang X., Liu X. Nano-thick calcium oxide armed titanium: Boosts bone cells against MRSA. Sci. Rep. 2016;6:21761. doi: 10.1038/srep21761. PubMed DOI PMC

Lu M., Liao J., Dong J., Wu J., Qiu H., Zhou X., Li J., Jiang D., He T.C., Quan Z. An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials. Sci. Rep. 2016;6:39174. doi: 10.1038/srep39174. PubMed DOI PMC

Wang P., Hao L.L., Wang Z.L., Wang Y., Guo M., Zhang P.B. Gadolinium-doped BTO-functionalized nanocomposites with enhanced MRI and X-ray dual imaging to simulate the electrical properties of bone. ACS Appl. Mater. Interfaces. 2020;12:49464–49479. doi: 10.1021/acsami.0c15837. PubMed DOI

Garino N., Sanvitale P., Dumontel B., Laurenti M., Colilla M., Izquierdo-Barba I., Cauda V., Vallet-Regi M. Zinc oxide nanocrystals as a nanoantibiotic and osteoinductive agent. RSC Adv. 2019;9:11312–11321. doi: 10.1039/C8RA10236H. PubMed DOI PMC

Bejarano J., Boccaccini A.R., Covarrubias C., Palza H. Effect of Cu- and Zn-doped bioactive glasses on the in vitro bioactivity, mechanical and degradation behavior of biodegradable PDLLA scaffolds. Materials. 2020;13:2908. doi: 10.3390/ma13132908. PubMed DOI PMC

He J., Ye H.X., Li Y.L., Fang J., Mei Q.S., Lu X., Ren F.Z. Cancellous-bone-like porous iron scaffold coated with strontium incorporated octacalcium phosphate nanowhiskers for bone regeneration. ACS Biomater. Sci. Eng. 2019;5:509–518. doi: 10.1021/acsbiomaterials.8b01188. PubMed DOI

Govindan R., Karthi S., Kumar G.S., Girija E.K. Development of Fe3O4 integrated polymer/phosphate glass composite scaffolds for bone tissue engineering. Mater. Adv. 2020;1:3466–3475. doi: 10.1039/D0MA00525H. DOI

Purohit S.D., Singh H., Bhaskar R., Yadav I., Chou C.F., Gupta M.K., Mishra N.C. Gelatin-alginate-cerium oxide nanocomposite scaffold for bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;116:111111. doi: 10.1016/j.msec.2020.111111. PubMed DOI

Xue X., Hu Y., Deng Y.H., Su J.C. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater. 2021;31:2009432. doi: 10.1002/adfm.202009432. DOI

Garcia-Garcia P., Ruiz M., Reyes R., Delgado A., Evora C., Riancho J.A., Rodriguez-Rey J.C., Perez-Campo F.M. Smurf1 silencing using a LNA-ASOs/lipid nanoparticle system to promote bone regeneration. Stem Cells Ttransl. Med. 2019;8:1306–1317. doi: 10.1002/sctm.19-0145. PubMed DOI PMC

Jin H., Liu Z.S., Li W., Jiang Z.L., Li Y., Zhang B. Polyethylenimine-alginate nanocomposites based bone morphogenetic protein 2 gene-activated matrix for alveolar bone regeneration. RSC Adv. 2019;9:26598–26608. doi: 10.1039/C9RA05164C. PubMed DOI PMC

Zeng Y., Zhou M., Mou S., Yang J., Yuan Q., Guo L., Zhong A., Wang J., Sun J., Wang Z. Sustained delivery of alendronate by engineered collagen scaffold for the repair of osteoporotic bone defects and resistance to bone loss. J. Biomed. Mater. Res. Part A. 2020;108:2460–2472. doi: 10.1002/jbm.a.36997. PubMed DOI

Wu J.J., Zheng K., Huang X.T., Liu J.Y., Liu H.M., Boccaccini A.R., Wan Y., Guo X.D., Shao Z.W. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater. 2019;91:60–71. doi: 10.1016/j.actbio.2019.04.023. PubMed DOI

Xu J.X., Feng Y.H., Wu Y.X., Li Y.J., Ouyang M., Zhang X.P., Wang Y., Wang Y.Y., Xu L.J. Noninvasive monitoring of bone regeneration using NaYF4: Yb3+, Er3+ upconversion hollow microtubes supporting PLGA-PEG-PLGA hydrogel. React. Funct. Polym. 2019;143:104333. doi: 10.1016/j.reactfunctpolym.2019.104333. DOI

Mani M.P., Jaganathan S.K. Engineered multicomponent electrospun nanocomposite scaffolds comprising polyurethane loaded with ghee and propolis for bone tissue repair. J. Ind. Text. 2020 doi: 10.1177/1528083720908802. DOI

Li Y., Liao C., Tjong S.C. Electrospun polyvinylidene fluoride-based fibrous scaffolds with piezoelectric characteristics for bone and neural tissue engineering. Nanomaterials. 2019;9:952. doi: 10.3390/nano9070952. PubMed DOI PMC

Fernandes M.M., Correia D.M., Ribeiro C., Castro N., Correia V., Lanceros-Mendez S. Bioinspired three-dimensional magnetoactive scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces. 2019;11:45265–45275. doi: 10.1021/acsami.9b14001. PubMed DOI

He Y., Li Q.Y., Ma C.Y., Xie D.H., Li L.M., Zhao Y.T., Shan D.Y., Chomos S.K., Dong C., Tierney J.W. Development of osteopromotive poly(octamethylene citrate glycerophosphate) for enhanced bone regeneration. Acta Biomater. 2019;93:180–191. doi: 10.1016/j.actbio.2019.03.050. PubMed DOI PMC

Cai W., Gu Y., Cui H., Cao Y., Wang X., Yao Y., Wang M. The efficacy and safety of mainstream medications for patients with cDMARD-naive rheumatoid arthritis: A network meta-analysis. Front. Pharmacol. 2018;9:138. doi: 10.3389/fphar.2018.00138. PubMed DOI PMC

Umemura M. Challenging the problem of ‘fit’: Advancing the regenerative medicine industries in the United States, Britain and Japan. Bus. Hist. 2019;61:456–480. doi: 10.1080/00076791.2018.1476496. DOI

Umemura M., Morrison M. Comparative lessons in regenerative medicine readiness: Learning from the UK and Japanese experience. Regen. Med. 2021;16:269–282. doi: 10.2217/rme-2020-0136. PubMed DOI

Faulkner A., Kent J., Geesink I., Fitzpatrick D. Purity and the dangers of regenerative medicine: Regulatory innovation of human tissue-engineered technology. Soc. Sci. Med. 2006;63:2277–2288. doi: 10.1016/j.socscimed.2006.06.006. PubMed DOI PMC

Europe Tissue Engineering Market 2020. Research and Markets; Dublin, Ireland: 2020.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...