Potential of Nanonutraceuticals in Increasing Immunity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-17-0373
Slovak Research and Development Agency
APVV-14-0547
Slovak Research and Development Agency
VEGA 1/0787/18
Slovak Grant Agency for Science
PubMed
33182343
PubMed Central
PMC7695278
DOI
10.3390/nano10112224
PII: nano10112224
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, bioactive agents, curcumin, dietary supplements, encapsulation, foods, immunity, minerals, nanoformulations, nanoparticles, nutraceuticals, omega-3 fatty acids, probiotics, vitamins,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nutraceuticals are defined as foods or their extracts that have a demonstrably positive effect on human health. According to the decision of the European Food Safety Authority, this positive effect, the so-called health claim, must be clearly demonstrated best by performed tests. Nutraceuticals include dietary supplements and functional foods. These special foods thus affect human health and can positively affect the immune system and strengthen it even in these turbulent times, when the human population is exposed to the COVID-19 pandemic. Many of these special foods are supplemented with nanoparticles of active substances or processed into nanoformulations. The benefits of nanoparticles in this case include enhanced bioavailability, controlled release, and increased stability. Lipid-based delivery systems and the encapsulation of nutraceuticals are mainly used for the enrichment of food products with these health-promoting compounds. This contribution summarizes the current state of the research and development of effective nanonutraceuticals influencing the body's immune responses, such as vitamins (C, D, E, B12, folic acid), minerals (Zn, Fe, Se), antioxidants (carotenoids, coenzyme Q10, polyphenols, curcumin), omega-3 fatty acids, and probiotics.
Zobrazit více v PubMed
Elgert K.D. Immunology: Understanding the Immune System. Wiley-Blackwell; Hoboken, NJ, USA: 2009.
Neuschlova M., Novakova E., Kompanikova J. Immunology—How the Immune System Works. Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Bratislava, Slovakia: 2017. (In Slovak)
Abbas A.K., Lichtman A.H., Pillai S. Basic Immunology: Functions and Disorders of the Immune System. 6th ed. Elsevier; Amsterdam, The Netherlands: 2019.
Rao C.V. An Introduction to Immunology. Alpha Science International; Pangbourne, India: 2002.
Calder P.C., Yaqoob P. Nutrient regulation of the immune response. In: Marriott B.P., Birt D.F., Stallings V.A., Yates A.A., editors. Present Knowledge in Nutrition. 11th ed. Academic Press; Cambridge, MA, USA: 2020. pp. 625–664.
Redondo N., Nova E., Gomez-Martinez S., Diaz-Prieto L.E., Marcos A. Diet, nutrition and the immune system. In: Ferranti P., Berry E.M., Anderson J.R., editors. Encyclopedia of Food Security and Sustainability. Elsevier; Amsterdam, The Netherlands: 2019. pp. 250–255.
Lapik I.A., Galchenko A.V., Gapparova K.M. Micronutrient status in obese patients: A narrative review. Obes. Med. 2020;18:100224. doi: 10.1016/j.obmed.2020.100224. DOI
Ashaolu T.J. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomed. Pharmacother. 2020;130:110625. doi: 10.1016/j.biopha.2020.110625. PubMed DOI
Kersiene M., Jasutiene I., Eisinaite V., Venskutonis P.R., Leskauskaite D. Designing multiple bioactives loaded emulsions for the formulations for diets of elderly. Food Funct. 2020;11:2195–2207. doi: 10.1039/D0FO00021C. PubMed DOI
Nasri H., Baradaran A., Shirzad H., Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014;5:1487–1499. PubMed PMC
Kohout P. Possibilities of affecting the immune system with nutraceutics. Intern. Med. 2010;12:140–144. (In Czech)
Vergallo C. Nutraceutical vegetable oil nanoformulations for prevention and management of diseases. Nanomaterials. 2020;10:1232. doi: 10.3390/nano10061232. PubMed DOI PMC
Sachdeva V., Roy A., Bharadvaja N. Current prospects of nutraceuticals: A review. Curr. Pharm. Biotechnol. 2020;21:884–896. doi: 10.2174/1389201021666200130113441. PubMed DOI
Das L., Bhaumik E., Raychaudhuri U., Chakraborty R. Role of nutraceuticals in human health. J. Food Sci. Technol. 2012;49:173–183. doi: 10.1007/s13197-011-0269-4. PubMed DOI PMC
Aronson J.K. Defining ‘nutraceuticals’: Neither nutritious nor pharmaceutical. Br. J. Clin. Pharmacol. 2017;8:19. doi: 10.1111/bcp.12935. PubMed DOI PMC
EU Register of Nutrition and Health Claims Made on Foods. [(accessed on 6 October 2020)]; Available online: https://ec.europa.eu/food/safety/labelling_nutrition/claims/register/public/?event=register.home.
European Commission—Health Claims. [(accessed on 6 October 2020)]; Available online: https://ec.europa.eu/food/safety/labelling_nutrition/claims/health_claims_en.
Jayawardena R., Sooriyaarachchi P., Chourdakis M., Jeewandara C., Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. 2020;14:367–382. doi: 10.1016/j.dsx.2020.04.015. PubMed DOI PMC
Shakoor H., Feehan J., Al Dhaheri A.S., Ali H.I., Platat C., Ismail L.C., Apostolopoulos V., Stojanovska L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021;143:1–9. doi: 10.1016/j.maturitas.2020.08.003. PubMed DOI PMC
Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12:988. doi: 10.3390/nu12040988. PubMed DOI PMC
Martineau A.R., Forouhi N.G. Vitamin D for COVID-19: A case to answer? Lancet Diabetes Endocrinol. 2020;8:735–736. doi: 10.1016/S2213-8587(20)30268-0. PubMed DOI PMC
Jovic T.H., Ali S.R., Ibrahim N., Jessop Z.M., Tarassoli S.P., Dobbs T.D., Holford P., Thornton C.A., Whitaker I.S. Could vitamins help in the fight against COVID-19? Nutrients. 2020;12:2550. doi: 10.3390/nu12092550. PubMed DOI PMC
Alkhatib A. Antiviral functional foods and exercise lifestyle prevention of Coronavirus. Nutrients. 2020;12:2633. doi: 10.3390/nu12092633. PubMed DOI PMC
Calder P.C., Carr A.C., Gombart A.F., Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020;12:1181. doi: 10.3390/nu12041181. PubMed DOI PMC
Morais A.H.A., Passos T.S., Maciel B.L.L., da Silva-Maia J.K. Can probiotics and diet promote beneficial immune modulation and purine control in Coronavirus infection? Nutrients. 2020;12:1737. doi: 10.3390/nu12061737. PubMed DOI PMC
Baud D., Agri V.D., Gibson G.R., Reid G., Giannoni E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front. Public Health. 2020;8:186. doi: 10.3389/fpubh.2020.00186. PubMed DOI PMC
Jampilek J., Kralova K. Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Sharma A.K., Keservani R.K., Kesharwani R.K., editors. Nanobiomaterials: Applications in Drug Delivery. CRC Press; Warentown, NJ, USA: 2018. pp. 131–208.
Jampilek J., Kralova K. Recent Advances in lipid nanocarriers applicable in the fight against cancer. In: Grumezescu A.M., editor. Nanoarchitectonics in Biomedicine. Elsevier; Amsterdam, The Netherlands: 2019. pp. 219–294.
Jampilek J., Kralova K. Nanotechnology based formulations for drug targeting to central nervous system. In: Keservani R.K., Sharma A.K., editors. Nanoparticulate Drug Delivery Systems. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2019. pp. 151–220.
Jampilek J., Kralova K., Campos E.V.R., Fraceto L.F. Bio-based nanoemulsion formulations applicable in agriculture, medicine and food industry. In: Prasad R., Kumar V., Kumar M., Choudhary D.K., editors. Nanobiotechnology in Bioformulations. Springer; Cham, Switzerland: 2019. pp. 33–84.
Pentak D., Kozik V., Bak A., Dybal P., Sochanik A., Jampilek J. Methotrexate and cytarabine—Loaded nanocarriers for multidrug cancer therapy. Spectroscopic study. Molecules. 2016;21:1689. doi: 10.3390/molecules21121689. PubMed DOI PMC
Placha D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC
Jampilek J., Kralova K. Natural biopolymeric nanoformulations for brain drug delivery. In: Raj K., Keservani A.K., Rajesh S., Kesharwani K., editors. Nanocarriers for Brain Targetting: Principles and Applications. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2020. pp. 131–203.
Jampilek J., Kralova K. Nanoweapons against tuberculosis. In: Talegaonkar S., Rai. M., editors. Nanoformulations in Human Health—Challenges and Approaches. Springer Nature; Cham, Switzerland: 2020. pp. 469–502.
Jampilek J., Kralova K. Nanoformulations—Valuable tool in therapy of viral diseases attacking humans and animals. In: Rai M., Jamil B., editors. Nanotheranostic—Applications and Limitations. Springer Nature; Cham, Switzerland: 2019. pp. 137–178.
Jampilek J., Kralova K., Novak P., Novak M. Nanobiotechnology in neurodegenerative diseases. In: Rai M., Yadav A., editors. Nanobiotechnology in Neurodegenerative Diseases. Springer Nature; Cham, Switzerland: 2019. pp. 65–138.
Jampilek J., Kos J., Kralova K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials. 2019;9:296. doi: 10.3390/nano9020296. PubMed DOI PMC
Human Regulatory—Nanomedicines. [(accessed on 25 October 2020)];2020 European Medicines Agency. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines/multidisciplinary/multidisciplinary-nanomedicines.
FDA’s Approach to Regulation of Nanotechnology Products. [(accessed on 25 October 2020)]; Available online: https://www.fda.gov/science-research/nanotechnology-programs-fda/fdas-approach-regulation-nanotechnology-products.
Nanotechnology Guidance Documents. [(accessed on 25 October 2020)]; Available online: https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-guidance-documents.
Som C., Schmutz M., Borges O., Jesus S., Borchard G., Nguyen V., Perale G., Casalini T., Zinn M., Amstutz V., et al. Guidelines for Implementing a Safe-by-Design Approach for Medicinal Polymeric Nanocarriers, Empa St. Gallen. [(accessed on 25 October 2020)];2019 Available online: https://www.empa.ch/documents/56164/10586277/Guidelines/b0f2b20b-29d1-426b-8263-8d031b819c61.
Guidelines for Evaluation of Nanopharmaceuticals in India. [(accessed on 25 October 2020)];2019 Department of Biotechnology, Indian Society of Nanomedicine. Available online: https://www.birac.nic.in/webcontent/1550639649_guidelines_for_evaluation_of_Nanopharmaceuticals_in_India_20_02_2019.pdf.
Zainal Abidin H.F., Hassan K.H., Zainol Z.A. Regulating risk of nanomaterials for workers through soft law approach. Nanoethics. 2020;14:155–167. doi: 10.1007/s11569-020-00363-7. DOI
Souto E.B., Silva G.F., Dias-Ferreira J., Zielinska A., Ventura F., Durazzo A., Lucarini M., Novellino E., Santini A. Nanopharmaceutics: Part I—Clinical trials legislation and Good Manufacturing Practices (GMP) of nanotherapeutics in the EU. Pharmaceutics. 2020;12:146. doi: 10.3390/pharmaceutics12020146. PubMed DOI PMC
Souto E.B., Silva G.F., Dias-Ferreira J., Zielinska A., Ventura F., Durazzo A., Lucarini M., Novellino E., Santini A. Nanopharmaceutics: Part II-production scales and clinically compliant production methods. Nanomaterials. 2020;10:455. doi: 10.3390/nano10030455. PubMed DOI PMC
Jampilek J., Kralova K. Impact of nanoparticles on toxigenic fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology—Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2020. pp. 309–348.
Jampilek J., Kralova K. Nanocomposites: Synergistic nanotools for management mycotoxigenic fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology—Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2020. pp. 349–383.
Jampilek J., Kralova K., Fedor P. Bioactivity of nanoformulated synthetic and natural insecticides and their impact on the environment. In: Fraceto L.F., de Castro V.L., Grillo R., Avila D., Oliveira H.C., de Lima R., editors. Nanopesticides—From Research and Development to Mechanisms of Action and Sustainable Use in Agriculture. Springer Nature; Cham, Switzerland: 2020. pp. 165–225.
Su S., Kang P.M. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials. 2020;10:656. doi: 10.3390/nano10040656. PubMed DOI PMC
Zielinska A., Costa B., Ferreira M.V., Migueis D., Louros J.M.S., Durazzo A., Lucarini M., Eder P., Chaud M.V., Morsink M., et al. Nanotoxicology and nanosafety: Safety-by-design and testing at a glance. Int. J. Environ. Res. Public Health. 2020;17:4657. doi: 10.3390/ijerph17134657. PubMed DOI PMC
De Stefano D., Carnuccio R., Maiuri M.C. Nanomaterials toxicity and cell death modalities. J. Drug Deliv. 2012;2012:167896. doi: 10.1155/2012/167896. PubMed DOI PMC
Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A., Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 2018;13:44. doi: 10.1186/s11671-018-2457-x. PubMed DOI PMC
European Food Safety Authority Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 2018;16:5327. PubMed PMC
Jampilek J., Kralova K. Benefits and potential risks of nanotechnology applications in crop protection. In: Abd-Elsalam K.A., Prasad R., editors. Nanobiotechnology Applications in Plant Protection, Nanotechnology in the Life Sciences. Springer International Publishing; Singapore: 2018. pp. 189–246.
Subramani T., Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. Mys. 2020;57:3545–3555. doi: 10.1007/s13197-020-04360-2. PubMed DOI PMC
Aswathanarayan J.B., Vittal R.R. Nanoemulsions and their potential applications in food industry. Front. Sustain. Food Syst. 2019;3:95. doi: 10.3389/fsufs.2019.00095. DOI
Haider M., Abdin S.M., Kamal L., Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics. 2020;12:288. doi: 10.3390/pharmaceutics12030288. PubMed DOI PMC
Zhong Q.X., Zhang L.H. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv. Colloid Interface Sci. 2019;273:102033. doi: 10.1016/j.cis.2019.102033. PubMed DOI
Assadpour E., Jafari S.M. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit. Rev. Food Sci. Nutr. 2019;59:3129–3151. doi: 10.1080/10408398.2018.1484687. PubMed DOI
Katouzian I., Jafari S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol. 2016;53:34–48. doi: 10.1016/j.tifs.2016.05.002. DOI
Ezhilarasi P.N., Karthik P., Chhanwal N., Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol. 2013;6:628–647. doi: 10.1007/s11947-012-0944-0. DOI
Fathi M., Mozafari M.R., Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol. 2012;23:13–27. doi: 10.1016/j.tifs.2011.08.003. DOI
Arenas-Jal M., Sune-Negre J.M., Garcia-Montoya E. An overview of microencapsulation in the food industry: Opportunities, challenges, and innovations. Eur. Food Res. Technol. 2020;246:1371–1382. doi: 10.1007/s00217-020-03496-x. DOI
Zam W. Microencapsulation: A prospective to protect probiotics. Curr. Nutr. Food Sci. 2020;16:891–899. doi: 10.2174/1573401315666190712222623. DOI
Naidu K.A. Vitamin C in human health and disease is still a mystery? An overview. Nutr. J. 2003;2:7. doi: 10.1186/1475-2891-2-7. PubMed DOI PMC
Timoshnikov V.A., Kobzeva T.V., Polyakov N.E., Kontoghiorghes G.J. Redox interactions of vitamin C and iron: Inhibition of the pro-oxidant activity by deferiprone. Int. J. Mol. Sci. 2020;21:3967. doi: 10.3390/ijms21113967. PubMed DOI PMC
Nantel G., Tontisirin K. Human Vitamin and Mineral Requirements. FAO & WHO; Rome, Italy: 2002. [(accessed on 3 October 2020)]. Available online: http://www.fao.org/3/y2809e/y2809e00.pdf.
Jiao Z., Wang X.D., Yin Y.T., Xia J.X. Preparation and evaluation of vitamin C and folic acid-coloaded antioxidant liposomes. Particul. Sci. Technol. 2019;37:449–455. doi: 10.1080/02726351.2017.1391907. DOI
Parhizkar E., Rashedinia M., Karimi M., Alipour S. Design and development of vitamin C-encapsulated proliposome with improved in-vitro and ex-vivo antioxidant efficacy. J. Microencapsul. 2018;35:301–311. doi: 10.1080/02652048.2018.1477845. PubMed DOI
Jiao Z., Wang X.D., Yin Y.T., Xia J.X., Mei Y.N. Preparation and evaluation of a chitosan-coated antioxidant liposome containing vitamin C and folic acid. J. Microencapsul. 2018;35:272–280. doi: 10.1080/02652048.2018.1467509. PubMed DOI
Liu W.L., Tian M.M., Kong Y.Y., Lu J.M., Li N., Han J.Z. Multilayered vitamin C nanoliposomes by self-assembly of alginate and chitosan: Long-term stability and feasibility application in mandarin juice. LWT Food Sci. Technol. 2017;75:608–615. doi: 10.1016/j.lwt.2016.10.010. DOI
Gautam M., Santhiya D. Pectin/PEG food grade hydrogel blend for the targeted oral co-delivery of nutrients. Colloids Surf. A Physicochem. Eng. Asp. 2019;577:637–644. doi: 10.1016/j.colsurfa.2019.06.027. DOI
Salaheldin T.A., Regheb E.M. In-vivo nutritional and toxicological evaluation of nano iron fortified biscuits as food supplement for iron deficient anemia. J. Nanomed. Res. 2016;3:00049. doi: 10.15406/jnmr.2016.03.00049. DOI
Charoenngam N., Holick M.F. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020;12:2097. doi: 10.3390/nu12072097. PubMed DOI PMC
O’Leary D., Samman S. Vitamin B12 in health and disease. Nutrients. 2010;2:299–316. doi: 10.3390/nu2030299. PubMed DOI PMC
Gröber U., Kisters K., Schmidt J. Neuroenhancement with vitamin B12–underestimated neurological significance. Nutrients. 2013;5:5031–5045. doi: 10.3390/nu5125031. PubMed DOI PMC
Zhu K., Chen X.Y., Yu D., He Y., Song G.L. Preparation and characterisation of a novel hydrogel based on Auricularia polytricha β-glucan and its bio-release property for vitamin B12 delivery. J. Sci. Food Agric. 2018;98:2617–2623. doi: 10.1002/jsfa.8754. PubMed DOI
Liu G.Y., Yang J.Q., Wang Y.X., Liu X.H., Guan L.L., Chen L.Y. Protein-lipid composite nanoparticles for the oral delivery of vitamin B12: Impact of protein succinylation on nanoparticle physicochemical and biological properties. Food Hydrocoll. 2019;92:189–197. doi: 10.1016/j.foodhyd.2018.12.020. DOI
Mazzocato M.C., Thomazini M., Favaro-Trindade C.S. Improving stability of vitamin B12 (Cyanocobalamin) using microencapsulation by spray chilling technique. Food Res. Int. 2019;126:108663. doi: 10.1016/j.foodres.2019.108663. PubMed DOI
Camilli G., Tabouret G., Quintin J. The complexity of fungal β-glucan in health and disease: Effects on the mononuclear phagocyte system. Front. Immunol. 2018;9:673. doi: 10.3389/fimmu.2018.00673. PubMed DOI PMC
Stanger O. Physiology of folic acid in health and disease. Curr. Drug Metab. 2002;3:211–223. doi: 10.2174/1389200024605163. PubMed DOI
Crnivec I.G.O., Istenic K., Skrt M., Ulrih N.P. Thermal protection and pH-gated release of folic acid in microparticles and nanoparticles for food fortification. Food Funct. 2020;11:1467–1477. doi: 10.1039/C9FO02419K. PubMed DOI
Acevedo-Fani A., Soliva-Fortuny R., Martin-Belloso O. Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. J. Food Eng. 2016;229:72–82. doi: 10.1016/j.jfoodeng.2017.03.024. DOI
Perez-Masia R., Lopez-Nicolas R., Periago M.J., Ros G., Lagaron J.M., Lopez-Rubio A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem. 2015;168:124–133. doi: 10.1016/j.foodchem.2014.07.051. PubMed DOI
do Evangelho J.A., Crizel R.L., Chaves F.C., Prietto L., Pinto V.Z., de Miranda M.Z., Dias A.R.G., Zavareze E.D. Thermal and irradiation resistance of folic acid encapsulated in zein ultrafine fibers or nanocapsules produced by electrospinning and electrospraying. Food Res. Int. 2019;124:137–146. doi: 10.1016/j.foodres.2018.08.019. PubMed DOI
Assadpour E., Maghsoudlou Y., Jafari S.M., Ghorbani M., Aalami M. Evaluation of folic acid nano-encapsulation by double emulsions. Food Bioprocess Technol. 2016;9:2024–2032. doi: 10.1007/s11947-016-1786-y. PubMed DOI
Ochnio M.E., Martinez J.H., Allievi M.C., Palavecino M., Martinez K.D., Perez O.E. Proteins as nano-carriers for bioactive compounds. The case of 7S and 11S soy globulins and folic acid complexation. Polymers. 2018;10:149. doi: 10.3390/polym10020149. PubMed DOI PMC
Zema P., Pilosof A.M.R. On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers. Food Hydrocoll. 2018;79:509–517. doi: 10.1016/j.foodhyd.2018.01.021. DOI
Perez-Esteve E., Ruiz-Rico M., de la Torre C., Villaescusa L.A., Sancenon F., Marcos M.D., Amoros P., Martinez-Manez R., Barat J.M. Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chem. 2016;196:66–75. doi: 10.1016/j.foodchem.2015.09.017. PubMed DOI
Perez-Esteve E., Fuentes A., Coll C., Acosta C., Bernardos A., Amoros P., Marcos M.D., Sancenon F., Martinez-Manez R., Barat J.M. Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Micropor. Mesopor. Mat. 2015;202:124–132. doi: 10.1016/j.micromeso.2014.09.049. DOI
Perez-Esteve E., Ruiz-Rico M., Fuentes A., Marcos M.D., Sancenon F., Martinez-Manez R., Barat J.M. Enrichment of stirred yogurts with folic acid encapsulated in pH-responsive mesoporous silica particles: Bioaccessibility modulation and physico-chemical characterization. LWT Food Sci. Technol. 2016;72:351–360. doi: 10.1016/j.lwt.2016.04.061. DOI
Ruiz-Rico M., Perez-Esteve E., Lerma-Garcia M.J., Marcos M.D., Martinez-Manez R., Barat J.M. Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices. Food Chem. 2017;218:471–478. doi: 10.1016/j.foodchem.2016.09.097. PubMed DOI
Pagano C., Tiralti M.C., Perioli L. Nanostructured hybrids for the improvement of folic acid biopharmaceutical properties. J. Pharm. Pharmacol. 2016;68:1384–1395. doi: 10.1111/jphp.12634. PubMed DOI
Lips O. Vitamin D physiology. Prog. Biophys. Mol. Biol. 2006;92:4–8. doi: 10.1016/j.pbiomolbio.2006.02.016. PubMed DOI
Maurya V.K., Bashir K., Aggarwal M. Vitamin D microencapsulation and fortification: Trends and technologies. J. Steroid Biochem. Mol. Biol. 2020;196:105489. doi: 10.1016/j.jsbmb.2019.105489. PubMed DOI
Guttoff M., Saberi A.H., McClements D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chem. 2015;171:117–122. doi: 10.1016/j.foodchem.2014.08.087. PubMed DOI
Kadappan A.S., Guo C., Gumus C.E., Bessey A., Wood R.J., McClements D.J., Liu Z.H. The efficacy of nanoemulsion-based delivery to improve vitamin D absorption: Comparison of in vitro and in vivo studies. Mol. Nutr. Food Res. 2018;62:1700836. doi: 10.1002/mnfr.201700836. PubMed DOI
Teng Z., Luo Y.C., Wang Q. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chem. 2013;141:524–532. doi: 10.1016/j.foodchem.2013.03.043. PubMed DOI
Li W.J., Peng H.L., Ning F.J., Yao L.H., Luo M., Zhao Q., Zhu X.M., Xiong H. Amphiphilic chitosan derivative-based core-shell micelles: Synthesis, characterisation and properties for sustained release of vitamin D3. Food Chem. 2014;152:307–315. doi: 10.1016/j.foodchem.2013.11.147. PubMed DOI
Xiang C.Y., Gao J., Ye H.X., Ren G.R., Ma X.J., Xie H.J., Fang S., Lei Q.F., Fang W.J. Development of ovalbumin-pectin nanocomplexes for vitamin D3 encapsulation: Enhanced storage stability and sustained release in simulated gastrointestinal digestion. Food Hydrocoll. 2020;106:105926. doi: 10.1016/j.foodhyd.2020.105926. DOI
Hasanvand E., Fathi M., Bassiri A., Javanmard M., Abbaszadeh R. Novel starch based nanocarrier for vitamin D fortification of milk: Production and characterization. Food Bioprod. Process. 2015;96:264–277. doi: 10.1016/j.fbp.2015.09.007. DOI
Winuprasith T., Khomein P., Mitbumrung W., Suphantharika M., Nitithamyong A., McClements D.J. Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocoll. 2018;83:153–164. doi: 10.1016/j.foodhyd.2018.04.047. DOI
Mitbumrung W., Suphantharika M., McClements D.J., Winuprasith T. Encapsulation of vitamin D3 in Pickering emulsion stabilized by nanofibrillated mangosteen cellulose: Effect of environmental stresses. J. Food Sci. 2019;84:3213–3221. doi: 10.1111/1750-3841.14835. PubMed DOI
Tan Y.B., Liu J.N., Zhou H.L., Mundo J.M., McClements D.J. Impact of an indigestible oil phase (mineral oil) on the bioaccessibility of vitamin D3 encapsulated in whey protein-stabilized nanoemulsions. Food Res. Int. 2019;120:264–274. doi: 10.1016/j.foodres.2019.02.031. PubMed DOI
Ozturk B., Argin S., Ozilgen M., McClements D.J. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chem. 2015;187:499–506. doi: 10.1016/j.foodchem.2015.04.065. PubMed DOI
Maurya V.K., Aggarwal M. Fabrication of nano-structured lipid carrier for encapsulation of vitamin D3 for fortification of ‘Lassi’; A milk based beverage. J. Steroid Biochem. Mol. Biol. 2019;193:105429. doi: 10.1016/j.jsbmb.2019.105429. PubMed DOI
Dalmoro A., Bochicchio S., Lamberti G., Bertoncin P., Janssens B., Barba A.A. Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Adv. 2019;9:19800–19812. doi: 10.1039/C9RA03022K. PubMed DOI PMC
Mohammadi M., Pezeshki A., Abbasi M.M., Ghanbarzadeh B., Hamishehkar H. Vitamin D3-loaded nanostructured lipid carriers as a potential approach for fortifying food beverages; in vitro and in vivo evaluation. Adv. Pharm. Bull. 2017;7:61–71. doi: 10.15171/apb.2017.008. PubMed DOI PMC
Berino R.P., Baez G.D., Ballerini G.A., Llopart E.E., Busti P.A., Moro A., Delorenzi N.J. Interaction of vitamin D3 with beta-lactoglobulin at high vitamin/protein ratios: Characterization of size and surface charge of nanoparticles. Food Hydrocoll. 2019;90:182–188. doi: 10.1016/j.foodhyd.2018.11.027. DOI
Moeller H., Martin D., Schrader K., Hoffmann W., Lorenzen P.C. Spray- or freeze-drying of casein micelles loaded with Vitamin D2: Studies on storage stability and in vitro digestibility. LWT Food Sci. Technol. 2018;97:87–93. doi: 10.1016/j.lwt.2018.04.003. DOI
Loewen A., Chan B., Li-Chan E.C.Y. Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage. Food Chem. 2018;240:472–481. doi: 10.1016/j.foodchem.2017.07.126. PubMed DOI
Cohen Y., Levi M., Lesmes U., Margier M., Reboul E., Livney Y.D. Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model. Food Funct. 2017;8:2133–2141. doi: 10.1039/C7FO00323D. PubMed DOI
David S., Livney Y.D. Potato protein based nanovehicles for health promoting hydrophobic bioactives in clear beverages. Food Hydrocoll. 2016;57:229–235. doi: 10.1016/j.foodhyd.2016.01.027. DOI
Walia N., Chen L.Y. Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chem. 2020;305:125475. doi: 10.1016/j.foodchem.2019.125475. PubMed DOI
Jiang S.S., Yildiz G., Ding J.Z., Andrade J., Rababahb T.M., Almajwalc A., Abulmeatyc M.M., Feng H. Pea protein nanoemulsion and nanocomplex as carriers for protection of cholecalciferol (vitamin D3) Food Bioprocess Technol. 2019;12:1031–1040. doi: 10.1007/s11947-019-02276-0. DOI
Almajwal A.M., Abulmeaty M.M.A., Feng H., Alruwaili N.W., Dominguez-Uscanga A., Andrade J.E., Razak S., ElSadek M.F. Stabilization of vitamin D in pea protein isolate nanoemulsions increases its bioefficacy in rats. Nutrients. 2019;11:75. doi: 10.3390/nu11010075. PubMed DOI PMC
Salvia-Trujillo L., Fumiaki B., Park Y., McClements D.J. The influence of lipid droplet size on the oral bioavailability of vitamin D2 encapsulated in emulsions: An in vitro and in vivo study. Food Funct. 2017;8:767–777. doi: 10.1039/C6FO01565D. PubMed DOI
Mehmood T., Ahmed A. Tween 80 and soya-lecithin-based food-grade nanoemulsions for the effective delivery of vitamin D. Langmuir. 2020;36:2886–2892. doi: 10.1021/acs.langmuir.9b03944. PubMed DOI
Mehmood T., Ahmed A., Ahmed Z., Ahmad M.S. Optimization of soya lecithin and Tween 80 based novel vitamin D nanoemulsions prepared by ultrasonication using response surface methodology. Food Chem. 2019;289:664–670. doi: 10.1016/j.foodchem.2019.03.112. PubMed DOI
Gahruie H.H., Niakousari M., Parastouei K., Mokhtarian M., Es I., Khaneghah A.M. Co-encapsulation of vitamin D3 and saffron petals’ bioactive compounds in nanoemulsions: Effects of emulsifier and homogenizer types. J. Food Process. Preserv. 2020;44:14629. doi: 10.1111/jfpp.14629. DOI
Zhou H.L., Tan Y.B., Lv S.S., Liu J.N., Mundo J.L.M., Bai L., Rojas O.J., McClements D.J. Nanochitin-stabilized pickering emulsions: Influence of nanochitin on lipid digestibility and vitamin bioaccessibility. Food Hydrocoll. 2020;106:105878. doi: 10.1016/j.foodhyd.2020.105878. DOI
Golfomitsou I., Mitsou E., Xenakis A., Papadimitriou V. Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. J. Mol. Liq. 2018;268:734–742. doi: 10.1016/j.molliq.2018.07.109. DOI
Otani H., Kihara Y., Park M. The immunoenhancing property of a dietary casein phosphopeptide preparation in mice. Food Agric. Immunol. 2000;12:165–173. doi: 10.1080/095401000404102. DOI
Rizvi S., Raza S.T., Ahmed F., Ahmad A., Abbas S., Mahdi F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ. Med. J. 2014;14:e157–e165. PubMed PMC
Dietary Supplement Fact Sheets: Vitamin E, Office of Dietary Supplements, NIH, USA. [(accessed on 3 October 2020)]; Available online: https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/
Parthasarathi S., Anandharamakrishnan C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food Bioprod. Process. 2016;100:469–476.
Jaberi N., Anarjan N., Jafarizadeh-Malmiri H. Optimization the formulation parameters in preparation of α-tocopherol nanodispersions using low-energy solvent displacement technique. Int. J. Vitam. Nutr. Res. 2020;90:5–16. doi: 10.1024/0300-9831/a000441. PubMed DOI
Hategekirnana J., Masamba K.G., Ma J.G., Zhong F. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydr. Polym. 2015;124:172–179. doi: 10.1016/j.carbpol.2015.01.060. PubMed DOI
Xia S.Q., Tan C., Xue J., Lou X.W., Zhang X.M., Feng B.A. Chitosan/tripolyphosphate-nanoliposomes core-shell nanocomplexes as vitamin E carriers: Shelf-life and thermal properties. Int. J. Food Sci. Technol. 2014;49:1367–1374. doi: 10.1111/ijfs.12438. DOI
Huang Z.G., Brennan C.S., Zhao H., Liu J.F., Guan W.Q., Mohan M.S., Stipkovits L., Zheng H.T., Kulasiri D. Fabrication and assessment of milk phospholipid-complexed antioxidant phytosomes with vitamin C and E: A comparison with liposomes. Food Chem. 2020;324:126837. doi: 10.1016/j.foodchem.2020.126837. PubMed DOI
Saratale R.G., Lee H.S., Koo Y.E., Saratale G.D., Kim Y.J., Imm J.Y., Park Y. Absorption kinetics of vitamin E nanoemulsion and green tea microstructures by intestinal in situ single perfusion technique in rats. Food Res. Int. 2018;106:149–155. doi: 10.1016/j.foodres.2017.12.076. PubMed DOI
Hategekimana J., Chamba M.V.M., Shoemaker C.F., Majeed H., Zhong F. Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids Surf. A Physicochem. Eng. Asp. 2015;483:70–80. doi: 10.1016/j.colsurfa.2015.03.020. DOI
Saxena V., Hasan A., Sharma S., Pandey L.M. Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. Int. J. Polym. Mater. Polym. Biomater. 2018;67:410–419. doi: 10.1080/00914037.2017.1332625. DOI
He J.B., Shi H., Huang S.S., Han L.J., Zhang W.N., Zhong Q.X. Core-shell nanoencapsulation of α-tocopherol by blending sodium oleate and rebaudioside A: Preparation, characterization, and antioxidant activity. Molecules. 2018;23:3183. doi: 10.3390/molecules23123183. PubMed DOI PMC
Parthasarathi S., Muthukumar S.P., Anandharamakrishnan C. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions. Food Funct. 2016;7:2294–2302. doi: 10.1039/C5FO01517K. PubMed DOI
Lv S.S., Gu J.Y., Zhang R.J., Zhang Y.H., Tan H.Y., McClements D.J. Vitamin E encapsulation in plant-based nanoemulsions fabricated using dual-channel microfluidization: Formation, stability, and bioaccessibility. J. Agric. Food Chem. 2018;66:10532–10542. doi: 10.1021/acs.jafc.8b03077. PubMed DOI
Ozturk B., Argin S., Ozilgen M., McClements D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. J. Food Eng. 2014;142:57–63. doi: 10.1016/j.jfoodeng.2014.06.015. PubMed DOI
Fang Z., Wusigale, Bao H.Y., Ni Y.Z., Choijilsuren N., Liang L. Partition and digestive stability of α-tocopherol and resveratrol/naringenin in whey protein isolate emulsions. Int. Dairy J. 2019;93:116–123. doi: 10.1016/j.idairyj.2019.01.017. DOI
Schroder A., Sprakel J., Schroen K., Berton-Carabin C.C. Chemical stability of α-tocopherol in colloidal lipid particles with various morphologies. Eur. J. Lipid Sci. Technol. 2020;122:2000012. doi: 10.1002/ejlt.202000012. DOI
Sharif H.R., Goff H.D., Majeed H., Liu F., Nsor-Atindana J., Haider J., Liang R., Zhong F. Physicochemical stability of β-carotene and α-tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids Surf. A Physicochem. Eng. Asp. 2017;529:550–559. doi: 10.1016/j.colsurfa.2017.05.076. DOI
Liu Y.Q., Hou Z.Q., Yang J., Gao Y.X. Effects of antioxidants on the stability of β-carotene in O/W emulsions stabilized by gum arabic. J. Food Sci. Technol. Mys. 2015;52:3300–3311. doi: 10.1007/s13197-014-1380-0. PubMed DOI PMC
Kaur K., Kaur J., Kumar R., Mehta S.K. Formulation and physiochemical study of α-tocopherol based oil in water nanoemulsion stabilized with non-toxic, biodegradable surfactant: Sodium stearoyl lactate. Ultrason. Sonochem. 2017;38:570–578. doi: 10.1016/j.ultsonch.2016.08.026. PubMed DOI
Ramos O.L., Pereira R.N., Martins A., Rodrigues R., Fucinos C., Teixeira J.A., Pastrana L., Malcata F.X., Vicente A.A. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Crit. Rev. Food Sci. Nutr. 2017;57:1377–1393. doi: 10.1080/10408398.2014.993749. PubMed DOI
Martin M., Kopaliani I., Jannasch A., Mund C., Todorov V., Henle T., Deussen A. Antihypertensive and cardioprotective effects of the dipeptide isoleucine–tryptophan and whey protein hydrolysate. Acta Physiol. 2015;215:167–176. doi: 10.1111/apha.12578. PubMed DOI
Corrochano A.R., Buckin V., Kelly P.M., Giblin L. Whey proteins as antioxidants and promoters of cellular antioxidant pathways. J. Dairy Sci. 2018;101:4747–4761. doi: 10.3168/jds.2017-13618. PubMed DOI
Abbaspour N., Hurrell R., Kelishadi R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014;19:164–174. PubMed PMC
Tsykhanovska I., Evlash V., Oleksandrov O., Gontar T. Mechanism of fat-binding and fat-contenting of the nanoparticles of a food supplement on the basis of double oxide of two- and trivalent iron. Ukr. Food J. 2018;7:702–715. doi: 10.24263/2304-974X-2018-7-4-14. DOI
Kruhlova O., Yevlash T., Evlash V., Tsykhanovska I., Potapov V. Comprehensive analysis of food production efficiency using nanoparticles of nutritional supplements on the basis of oxides of two and three valence iron “Magnetofood”. Ukr. Food J. 2019;8:400–416. doi: 10.24263/2304-974X-2019-8-2-17. DOI
Zimmermann M.B., Hilty F.M. Nanocompounds of iron and zinc: Their potential in nutrition. Nanoscale. 2011;3:2390–2398. doi: 10.1039/c0nr00858c. PubMed DOI
Rayman M.P. Selenium and human health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9. PubMed DOI
Michalke B. Molecular and Integrative Toxicology. Springer; Cham, Switzerland: 2018. Selenium.
Gangadoo S., Bauer B.W., Bajagai Y.S., Van T.T.H., Moore R.J., Stanley D. In vitro growth of gut microbiota with selenium nanoparticles. Anim. Nutr. 2019;5:424–431. doi: 10.1016/j.aninu.2019.06.004. PubMed DOI PMC
Mates I., Antoniac I., Laslo V., Vicas S., Brocks M., Fritea L., Milea C., Mohan A., Cavalu S. Selenium nanoparticles: Production, characterization and possible applications in biomedicine and food science. Sci. Bull. B Chem. Mater. Sci. UPB. 2019;81:205–216.
Martinez F.G., Barrientos M.E.C., Mozzi F., Pescuma M. Survival of selenium-enriched lactic acid bacteria in a fermented drink under storage and simulated gastro-intestinal digestion. Food Res. Int. 2019;123:115–124. doi: 10.1016/j.foodres.2019.04.057. PubMed DOI
Chen W.W., Yue L., Jiang Q.X., Xia W.S. Effect of chitosan with different molecular weight on the stability, antioxidant and anticancer activities of well-dispersed selenium nanoparticles. IET Nanobiotechnol. 2019;13:30–35. doi: 10.1049/iet-nbt.2018.5052. PubMed DOI PMC
Bai K.K., Hong B.H., Huang W.W., He J.L. Selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles and their antioxidant potential: A chemical and in vivo investigation. Pharmaceutics. 2020;12:43. doi: 10.3390/pharmaceutics12010043. PubMed DOI PMC
Bai K.K., Hong B.H., Tan R., He J.L., Hong Z. Alcohol-induced gastric mucosal injury in rats: Rapid preparation, oral delivery, and gastroprotective potential of selenium nanoparticles. Int. J. Nanomed. 2020;15:1187–1203. doi: 10.2147/IJN.S237089. PubMed DOI PMC
Qiu W.Y., Wang Y.Y., Wang M., Yan J.K. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Colloids Surf. B Biointerfaces. 2018;170:692–700. doi: 10.1016/j.colsurfb.2018.07.003. PubMed DOI
Wu Y., Liu H., Li Z., Huang D.Y., Nong L.Z., Ning Z.X., Hu Z.Z., Xu C.P., Yan J.K. Pectin-decorated selenium nanoparticles as a nanocarrier of curcumin to achieve enhanced physicochemical and biological properties. IET Nanobiotechnol. 2019;13:880–886. doi: 10.1049/iet-nbt.2019.0144. PubMed DOI PMC
Tang H.Y., Huang Q., Wang Y.L., Yang X.Q., Su D.X., He S., Tan J.C., Zeng Q.Z., Yuan Y. Development, structure characterization and stability of food grade selenium nanoparticles stabilized by tilapia polypeptides. J. Food Eng. 2020;275:109878. doi: 10.1016/j.jfoodeng.2019.109878. DOI
Roohani N., Hurrell R., Kelishadi R., Schulin R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013;18:144–157. PubMed PMC
Livingstone X. Zinc: Physiology, deficiency, and parenteral nutrition. Nutr. Clin. Pract. 2015;30:371–382. doi: 10.1177/0884533615570376. PubMed DOI
Go M.R., Yu J., Bae S.H., Kim H.J., Choi S.J. Effects of interactions between ZnO nanoparticles and saccharides on biological responses. Int. J. Mol. Sci. 2018;19:486. PubMed PMC
Yu J., Kim H.J., Go M.R., Bae S.H., Choi S.J. ZnO interactions with biomatrices: Effect of particle size on ZnO-protein corona. Nanomaterials. 2017;7:377. doi: 10.3390/nano7110377. PubMed DOI PMC
Ebrahiminezhad A., Moeeni F., Taghizadeh S.M., Seifan M., Bautista C., Novin D., Ghasemi Y., Berenjian A. Xanthan gum capped ZnO microstars as a promising dietary zinc supplementation. Foods. 2019;8:88. doi: 10.3390/foods8030088. PubMed DOI PMC
Swain P.S., Rao S.B.N., Rajendran D., Dominic G., Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2016;2:134–141. doi: 10.1016/j.aninu.2016.06.003. PubMed DOI PMC
Hassan M.A., El-Nekeety A.A., Abdel-Aziem S.H., Hassan N.S., Abdel-Wahhab M.A. Zinc citrate incorporation with whey protein nanoparticles alleviate the oxidative stress complication and modulate gene expression in the liver of rats. Food Chem. Toxicol. 2019;125:439–451. doi: 10.1016/j.fct.2019.01.026. PubMed DOI
Lamas B., Breyner N.M., Houdeau E. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: Potential consequences for host health. Part. Fibre Toxicol. 2020;17:19. doi: 10.1186/s12989-020-00349-z. PubMed DOI PMC
Senapati V.A., Gupta G.S., Pandey A.K., Shanker R., Dhawan A., Kumar A. Zinc oxide nanoparticle induced age dependent immunotoxicity in BALB/c mice. Toxicol. Res. 2017;6:342–352. doi: 10.1039/C6TX00439C. PubMed DOI PMC
Akal C. Benefits of whey proteins on human health. In: Watson R.R., Collier R.J., Preedy V.R., editors. Dairy in Human Health and Disease Across the Lifespan. Academic Press; Cambridge, MA, USA: Elsevier; Amsterdam, The Netherlands: 2017. pp. 363–372.
Yamaguchi M. Carotenoids: Food Sources, Production and Health Benefits. NOVA Science Publishers; Hauppauge, NY, USA: 2013.
Eggersdorfer M., Wyss A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018;15:18–26. doi: 10.1016/j.abb.2018.06.001. PubMed DOI
Tan C., Feng B., Zhang X.M., Xia W.S., Xia S.Q. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll. 2016;52:774–784. doi: 10.1016/j.foodhyd.2015.08.016. DOI
Rehman A., Tong Q.Y., Jafari S.M., Assadpour E., Shehzad Q., Aadil R.M., Iqbal M.W., Rashed M.M.A., Mushtaq B.S., Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv. Colloid. Interface Sci. 2020;275:102048. doi: 10.1016/j.cis.2019.102048. PubMed DOI
Choi S.J., McClements D.J. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Sci. Biotechnol. 2020;29:149–168. doi: 10.1007/s10068-019-00731-4. PubMed DOI PMC
Nazemiyeh E., Eskandani M., Sheikhloie H., Nazemiyeh H. Formulation and physicochemical characterization of lycopene-loaded solid lipid nanoparticles. Adv. Pharm. Bull. 2016;6:235–241. doi: 10.15171/apb.2016.032. PubMed DOI PMC
de Campo C., Assis R.Q., da Silva M.M., Costa T.M.H., Paese K., Guterres S.S., Rios A.D., Floresa S.H. Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chem. 2019;301:125230. doi: 10.1016/j.foodchem.2019.125230. PubMed DOI
Saravana P.S., Shanmugapriya K., Gereniu C.R.N., Chae S.J., Kang H.W., Woo H.C., Chun B.S. Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: Process optimization, bio-accessibility and cytotoxicity. Ultrason. Sonochem. 2019;55:105–116. doi: 10.1016/j.ultsonch.2019.03.014. PubMed DOI
Liu X.J., Zhang R.J., McClements D.J., Li F., Liu H., Cao Y., Xiao H. Nanoemulsion-based delivery systems for nutraceuticals: Influence of long-chain triglyceride (LCT) type on in vitro digestion and astaxanthin bioaccessibility. Food Biophys. 2018;13:412–421. doi: 10.1007/s11483-018-9547-2. DOI
Shen X., Fang T.Q., Zheng J., Guo M.R. Physicochemical properties and cellular uptake of astaxanthin-loaded emulsions. Molecules. 2019;24:727. doi: 10.3390/molecules24040727. PubMed DOI PMC
Liu X.J., McClements D.J., Cao Y., Xiao H. Chemical and physical stability of astaxanthin-enriched emulsion-based delivery systems. Food Biophys. 2016;11:302–310. doi: 10.1007/s11483-016-9443-6. DOI
Zhang Z.P., Zhang R.J., McClements D.J. Encapsulation of β-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocoll. 2016;61:1–10. doi: 10.1016/j.foodhyd.2016.04.036. DOI
Liu F.G., Ma C.C., Zhang R.J., Gao Y.X., McClements D.J. Controlling the potential gastrointestinal fate of β-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chem. 2017;221:395–403. doi: 10.1016/j.foodchem.2016.10.057. PubMed DOI
Mao L.K., Wang D., Liu F.G., Gao Y.X. Emulsion design for the delivery of β-carotene in complex food systems. Crit. Rev. Food Sci. Nutr. 2018;58:770–784. doi: 10.1080/10408398.2016.1223599. PubMed DOI
Moeller H., Martin D., Schrader K., Hoffmann W., Lorenzen P.C. Native casein micelles as nanocarriers for β-carotene: pH-and temperature-induced opening of the micellar structure. Int. J. Food Sci. Technol. 2017;52:1122–1130. doi: 10.1111/ijfs.13387. DOI
Zhang J.P., Zhang X.X., Wang X.Y., Huang Y., Yang B.B., Pan X., Wu C.B. The influence of maltodextrin on the physicochemical properties and stabilization of beta-carotene emulsions. AAPS PharmSciTech. 2017;18:821–828. doi: 10.1208/s12249-016-0572-5. PubMed DOI
Gu L.P., Su Y.J., Zhang M.Q., Chang C.H., Li J.H., McClements D.J., Yang Y.J. Protection of β-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates. Food Res. Int. 2017;96:84–93. doi: 10.1016/j.foodres.2017.03.015. PubMed DOI
Salvia-Trujillo L., McClements D.J. Improvement of β-carotene bioaccessibility from dietary supplements using excipient nanoemulsions. J. Agric. Food Chem. 2016;64:4639–4647. doi: 10.1021/acs.jafc.6b00804. PubMed DOI
Liu X., Bi J.F., Xiao H., McClements D.J. Lipid digestion products on bioaccessibility of carotenoids and phenolics from mangoes. J. Food Sci. 2016;81:N754–N761. doi: 10.1111/1750-3841.13227. PubMed DOI
Li Q., Li T., Liu C.M., Dai T.T., Zhang R.J., Zhang Z.P., McClements D.J. Enhancement of carotenoid bioaccessibility from tomatoes using excipient emulsions: Influence of particle size. Food Biophys. 2017;12:172–185. doi: 10.1007/s11483-017-9474-7. DOI
Mehrad B., Ravanfar R., Licker J., Regenstein J.M., Abbaspourrad A. Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey isolate. Food Res. Int. 2018;105:962–969. doi: 10.1016/j.foodres.2017.12.036. PubMed DOI
Molina C.V., Lima J.G., Moraes I.C.F., Pinho S.C. Physicochemical characterization and sensory evaluation of yogurts incorporated with beta-carotene-loaded solid lipid microparticles stabilized with hydrolyzed soy protein isolate. Food Sci. Biotechnol. 2019;28:59–66. doi: 10.1007/s10068-018-0425-y. PubMed DOI PMC
Hernandez-Camacho J.D., Bernier M., Lopez-Lluch G., Navas P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 2018;9:44. doi: 10.3389/fphys.2018.00044. PubMed DOI PMC
Saini R. Coenzyme Q10: The essential nutrient. J. Pharm. Bioallied. Sci. 2011;3:466–467. doi: 10.4103/0975-7406.84471. PubMed DOI PMC
Martelli A., Testai L., Colletti A., Cicero A.F.G. Coenzyme Q10: Clinical applications in cardiovascular diseases. Antioxidants. 2020;9:341. doi: 10.3390/antiox9040341. PubMed DOI PMC
Zaki N.M. Strategies for oral delivery and mitochondrial targeting of CoQ10. Drug Deliv. 2016;23:1868–1881. doi: 10.3109/10717544.2014.993747. PubMed DOI
Kumar S., Rao R., Kumar A., Mahant S., Nanda S. Novel carriers for coenzyme Q10 delivery. Curr. Drug Deliv. 2016;13:1184–1204. doi: 10.2174/1567201813666160104130631. PubMed DOI
Uekaji Y., Terao K. Bioavailability enhancement of hydrophobic nutraceuticals using γ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2019;93:3–15. doi: 10.1007/s10847-018-0856-3. DOI
Wei Y., Yang S.F., Zhang L., Dai L., Tai K.D., Liu J.F., Mao L.K., Yuan F., Gao Y.X., Mackie A. Fabrication, characterization and in vitro digestion of food grade complex nanoparticles for co-delivery of resveratrol and coenzyme Q10. Food Hydrocoll. 2020;105:105791. doi: 10.1016/j.foodhyd.2020.105791. DOI
Chen S., Zhang Y.H., Qing J., Han Y.H., McClements D.J., Gao Y.X. Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core. Food Hydrocoll. 2020;103:105651. doi: 10.1016/j.foodhyd.2020.105651. DOI
Alavi S., Akhlaghi S., Dadashzadeh S., Haeri A. Green formulation of triglyceride/phospholipid-based nanocarriers as a novel vehicle for oral coenzyme Q10 delivery. J. Food Sci. 2019;84:2572–2583. doi: 10.1111/1750-3841.14763. PubMed DOI
Vatsa P., Sanchez L., Clement C., Baillieul F., Dorey S. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int. J. Mol. Sci. 2010;11:5095–5108. doi: 10.3390/ijms11125095. PubMed DOI PMC
Ramirez-Garza S.L., Laveriano-Santos E.P., Marhuenda-Munoz M., Storniolo C.E., Tresserra-Rimbau A., Vallverdu-Queralt A., Lamuela-Raventos R.M. Health effects of resveratrol: Results from human intervention trials. Nutrients. 2018;10:1892. doi: 10.3390/nu10121892. PubMed DOI PMC
Pannu N., Bhatnagar A. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother. 2019;109:2237–2251. doi: 10.1016/j.biopha.2018.11.075. PubMed DOI
De Amicis F., Chimento A., Montalto F.I., Casaburi I., Sirianni R., Pezzi V. Steroid receptor signallings as targets for resveratrol actions in breast and prostate cancer. Int. J. Mol. Sci. 2019;20:1087. doi: 10.3390/ijms20051087. PubMed DOI PMC
Wei Y., Li C., Zhang L., Dai L., Yang S.F., Liu J.F., Mao L.K., Yuan F., Gao Y.X. Influence of calcium ions on the stability, microstructure and in vitro digestion fate of zein-propylene glycol alginate-tea saponin ternary complex particles for the delivery of resveratrol. Food Hydrocoll. 2020;106:105886. doi: 10.1016/j.foodhyd.2020.105886. DOI
Huang X.L., Liu Y., Zou Y., Liang X., Peng Y.Q., McClements D.J., Hu K. Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: Stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocoll. 2019;93:261–269. doi: 10.1016/j.foodhyd.2019.02.039. DOI
Fan Y.T., Zeng X.X., Yi J., Zhang Y.Z. Fabrication of pea protein nanoparticles with calcium-induced cross-linking for the stabilization and delivery of antioxidative resveratrol. Int. J. Biol. Macromol. 2020;152:189–198. doi: 10.1016/j.ijbiomac.2020.02.248. PubMed DOI
Liu Y.X., Fan Y.T., Gao L.Y., Zhang Y.Z., Yi J. Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin. Food Funct. 2018;9:4781–4790. doi: 10.1039/C8FO01172A. PubMed DOI
Xiong W.F., Ren C., Li J., Li B. Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin-carboxymethylcellulose nanocomplexes and nanoparticles. Food Funct. 2018;9:3788–3797. doi: 10.1039/C8FO00300A. PubMed DOI
Wu W.H., Kong X.Z., Zhang C.M., Hua Y.F., Chen Y.M., Li X.F. Fabrication and characterization of resveratrol-loaded gliadin nanoparticles stabilized by gum Arabic and chitosan hydrochloride. LWT Food Sci. Technol. 2020;129:109532. doi: 10.1016/j.lwt.2020.109532. DOI
Qiu C., McClements D.J., Jin Z.Y., Qin Y., Hu Y., Xu X.M., Wang J.P. Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Food Chem. 2020;317:126328. doi: 10.1016/j.foodchem.2020.126328. PubMed DOI
Davidov-Pardo G., McClements D.J. Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem. 2015;167:205–212. doi: 10.1016/j.foodchem.2014.06.082. PubMed DOI
Neves A.R., Lucio M., Martins S., Lima J.L.C., Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomed. 2013;8:177–187. PubMed PMC
Pando D., Beltran M., Gerone I., Matos M., Pazos C. Resveratrol entrapped niosomes as yoghurt additive. Food Chem. 2015;170:281–287. doi: 10.1016/j.foodchem.2014.08.082. PubMed DOI
Seethu B.G., Pushpadass H.A., Emerald F.M.E., Nath B.S., Naik N.L., Subramanian K.S. Electrohydrodynamic encapsulation of resveratrol using food-grade nanofibres: Process optimization, characterization and fortification. Food Bioprocess Technol. 2020;13:341–354. doi: 10.1007/s11947-019-02399-4. DOI
Layman D.K., Lonnerdal B., Fernstrom J.D. Applications for α-lactalbumin in human nutrition. Nutr. Rev. 2018;76:444–460. doi: 10.1093/nutrit/nuy004. PubMed DOI PMC
Salehi B., Machin L., Monzote L., Sharifi-Rad J., Ezzat S.M., Salem M.A., Merghany R.M., El Mahdy N.M., Kılıç C.S., Sytar O., et al. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega. 2020;5:11849–11872. doi: 10.1021/acsomega.0c01818. PubMed DOI PMC
Nam J.S., Sharma A.R., Nguyen L.T., Chakraborty C., Sharma G., Lee S.S. Application of bioactive quercetin in oncotherapy: From nutrition to nanomedicine. Molecules. 2016;21:108. doi: 10.3390/molecules21010108. PubMed DOI PMC
Isemura M. Catechin in human health and disease. Molecules. 2019;24:528. doi: 10.3390/molecules24030528. PubMed DOI PMC
Ni S., Hu C.B., Sun R., Zhao G.D., Xia Q. Nanoemulsions-based delivery systems for encapsulation of quercetin: Preparation, characterization, and cytotoxicity studies. J. Food Process Eng. 2017;40:12374. doi: 10.1111/jfpe.12374. DOI
Aditya N.P., Macedo A.S., Doktorovov S., Souto E.B., Kim S., Chang P.S., Ko S. Development and evaluation of lipid nanocarriers for quercetin delivery: A comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE) LWT Food Sci. Technol. 2014;59:115–121. doi: 10.1016/j.lwt.2014.04.058. DOI
Azzi J., Jraij A., Auezova L., Fourmentin S., Greige-Gerges H. Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocoll. 2018;81:328–340. doi: 10.1016/j.foodhyd.2018.03.006. DOI
Sadeghi-Ghadi Z., Ebrahimnejad P., Talebpour Amiri F., Nokhodchi A. Improved oral delivery of quercetin with hyaluronic acid containing niosomes as a promising formulation. J. Drug Target. 2020 doi: 10.1080/1061186X.2020.1830408. in press. PubMed DOI
Chen S., Han Y.H., Huang J.Y., Dai L., Du J., McClements D.J., Mao L.K., Liu J.F., Gao Y.X. Fabrication and characterization of layer-by-layer composite nanoparticles based on zein and hyaluronic acid for codelivery of curcumin and quercetagetin. ACS Appl. Mater. Interfaces. 2019;11:16922–16933. doi: 10.1021/acsami.9b02529. PubMed DOI
Ghayour N., Hosseini S.M.H., Eskandari M.H., Esteghlal S., Nekoei A.R., Gahruie H.H., Tatar M., Naghibalhossaini F. Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocoll. 2019;87:394–403. doi: 10.1016/j.foodhyd.2018.08.031. DOI
Campbell E.L., Chebib M., Johnston G.A. The dietary flavonoids apigenin and (−)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochem. Pharmacol. 2004;68:1631–1638. doi: 10.1016/j.bcp.2004.07.022. PubMed DOI
Adachi N., Tomonaga S., Tachibana T., Denbow D.M., Furuse M. (−)-Epigallocatechin gallate attenuates acute stress responses through GABAergic system in the brain. Eur. J. Pharmacol. 2006;531:171–175. doi: 10.1016/j.ejphar.2005.12.024. PubMed DOI
Legeay S., Rodier M., Fillon L., Faure S., Clere N. Epigallocatechin gallate: A review of its beneficial properties to prevent metabolic syndrome. Nutrients. 2015;7:5443–5468. doi: 10.3390/nu7075230. PubMed DOI PMC
Granja A., Frias I., Neved A.R., Pinheiro M., Reis S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed. Res. Int. 2017;2017:5813793. doi: 10.1155/2017/5813793. PubMed DOI PMC
Gani A., Benjakul S., ul Ashraf Z. Nutraceutical profiling of surimi gel containing β-glucan stabilized virgin coconut oil with and without antioxidants after simulated gastro-intestinal digestion. J. Food Sci. Technol. Mys. 2020;57:3132–3141. doi: 10.1007/s13197-020-04347-z. PubMed DOI PMC
Shpigelman A., Israeli G., Livney Y.D. Thermally-induced protein-polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocoll. 2010;24:735–743. doi: 10.1016/j.foodhyd.2010.03.015. DOI
Wang Q., Li W.R., Liu P., Hu Z.Z., Qin X.G., Liu G. A glycated whey protein isolate-epigallocatechin gallate nanocomplex enhances the stability of emulsion delivery of β-carotene during simulated digestion. Food Funct. 2019;10:6829–6839. doi: 10.1039/C9FO01605H. PubMed DOI
Zhang G.H., Wang Q., Chen J.J., Zhang X.M., Tam S.C., Zheng Y.T. The anti-HIV-1 effect of scutellarin. Biochem. Biophys. Res. Commun. 2005;334:812–816. doi: 10.1016/j.bbrc.2005.06.166. PubMed DOI
Xiong L., Du R., Xue L.L., Jiang Y., Huang J., Chen L., Liu J., Wang T.H. Anti-colorectal cancer effects of scutellarin revealed by genomic and proteomic analysis. Chin. Med. 2020;15:28. doi: 10.1186/s13020-020-00307-z. PubMed DOI PMC
Matos A.L., Bruno D.F., Ambrosio A.F., Santos P.F. The benefits of flavonoids in diabetic retinopathy. Nutrients. 2020;12:3169. doi: 10.3390/nu12103169. PubMed DOI PMC
Wang J., Tan J., Luo J., Huang P., Zhou W., Chen L., Long L., Zhang L.M., Zhu B., Yang L., et al. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J. Nanobiotechnol. 2017;15:18. doi: 10.1186/s12951-017-0251-z. PubMed DOI PMC
Hewlings S.J., Kalman D.S. Curcumin: A review of its effects on human health. Foods. 2017;6:92. doi: 10.3390/foods6100092. PubMed DOI PMC
Tsuda T. Curcumin as a functional food-derived factor: Degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 2018;9:705–714. doi: 10.1039/C7FO01242J. PubMed DOI
Lopresti A.L. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv. Nutr. 2018;9:41–50. doi: 10.1093/advances/nmx011. PubMed DOI PMC
Kotha R.R., Luthria D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 2019;24:2930. doi: 10.3390/molecules24162930. PubMed DOI PMC
Bansode P.A., Patil P.V., Birajdar A.R., Somasundaram I., Bachute M.T., Rashinkar G.S. Anticancer, antioxidant and antiangiogenic activities of nanoparticles of bioactive dietary nutraceuticals. ChemistrySelect. 2019;4:13792–13796. doi: 10.1002/slct.201903946. DOI
Ipar V.S., Dsouza A., Devarajan P.V. Enhancing curcumin oral bioavailability through nanoformulations. Eur. J. Drug Metab. Pharmacokinet. 2019;44:459–480. doi: 10.1007/s13318-019-00545-z. PubMed DOI
Nasery M.M., Abadi B., Poormoghadam D., Zarrabi A., Keyhanvar P., Khanbabaei H., Ashrafizadeh M., Mohammadinejad R., Tavakol S., Sethi G. Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules. 2020;25:689. doi: 10.3390/molecules25030689. PubMed DOI PMC
Kharat M., McClements D.J. Recent advances in colloidal delivery systems for nutraceuticals: A case study—Delivery by Design of curcumin. J. Colloid Interface Sci. 2019;557:506–518. doi: 10.1016/j.jcis.2019.09.045. PubMed DOI
Zheng B.J., Lin H., Zhang X.Y., McClements D.J. Fabrication of curcumin-loaded dairy milks using the pH-shift method: Formation, stability, and bioaccessibility. J. Agric. Food Chem. 2019;67:12245–12254. doi: 10.1021/acs.jafc.9b04904. PubMed DOI
Zheng B.J., Peng S.F., Zhang X.Y., McClements D.J. Impact of delivery system type on curcumin bioaccessibility: Comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. J. Agric. Food Chem. 2018;66:10816–10826. doi: 10.1021/acs.jafc.8b03174. PubMed DOI
Yerramilli M., Longmore N., Ghosh S. Stability and bioavailability of curcumin in mixed sodium caseinate and pea protein isolate nanoemulsions. J. Am. Oil Chem. Soc. 2018;95:1013–1026. doi: 10.1002/aocs.12084. DOI
Dharunya G., Duraipandy N., Lakra R., Korapatti P.S., Jayavel R., Kiran M.S. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy. Biomed. Mater. 2016;11:045011. doi: 10.1088/1748-6041/11/4/045011. PubMed DOI
Sneharani A.H. Curcumin-sunflower protein nanoparticles-A potential antiinflammatory agent. J. Food Biochem. 2019;43:12909. doi: 10.1111/jfbc.12909. PubMed DOI
Araujo J.F., Bourbon A.I., Simoes L.S., Vicente A.A., Coutinho P.J.G., Ramos O.L. Physicochemical characterisation and release behaviour of curcumin-loaded lactoferrin nanohydrogels into food simulants. Food Funct. 2020;11:305–317. doi: 10.1039/C9FO01963D. PubMed DOI
Liu F.G., Ma D., Luo X., Zhang Z.Y., He L.L., Gao Y.X., McClements D.J. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocoll. 2018;79:450–461. doi: 10.1016/j.foodhyd.2018.01.017. DOI
Dai L., Wei Y., Sun C.X., Mao L.K., McClements D.J., Gao Y.X. Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocoll. 2018;85:75–85. doi: 10.1016/j.foodhyd.2018.06.052. DOI
Chen S., Li Q., McClements D.J., Han Y.H., Dai L., Mao L.K., Gao Y.X. Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion. Food Hydrocoll. 2020;99:105334. doi: 10.1016/j.foodhyd.2019.105334. DOI
Huang X.X., Huang X.L., Gong Y.S., Xiao H., McClements D.J., Hu K. Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles. Food Res. Int. 2016;87:1–9. doi: 10.1016/j.foodres.2016.06.009. PubMed DOI
Silva H.D., Poejo J., Pinheiro A.C., Donsi F., Serra A.T., Duarte C.M.M., Ferrari G., Cerqueira M.A., Vicente A.A. Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. J. Funct. Foods. 2018;48:605–613. doi: 10.1016/j.jff.2018.08.002. DOI
Guo C.J., Yin J.G., Chen D.Q. Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer. Carbohydr. Polym. 2018;181:1033–1037. doi: 10.1016/j.carbpol.2017.11.046. PubMed DOI
Aadinath W., Bhushani A., Anandharamakrishnan C. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;64:293–302. doi: 10.1016/j.msec.2016.03.095. PubMed DOI
Peng S.F., Li Z.L., Zou L.Q., Liu W., Liu C.M., McClements D.J. Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: An in vitro and in vivo study. J. Agric. Food Chem. 2018;66:1488–1497. doi: 10.1021/acs.jafc.7b05478. PubMed DOI
Peng S.F., Li Z.L., Zou L.Q., Liu W., Liu C.M., McClements D.J. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct. 2018;9:1829–1839. doi: 10.1039/C7FO01814B. PubMed DOI
Li Z.L., Peng S.F., Chen X., Zhu Y.Q., Zou L.Q., Liu W., Liu C.M. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Res. Int. 2018;108:246–253. doi: 10.1016/j.foodres.2018.03.048. PubMed DOI
Zarate R., Jaber-Vazdekis N., Tejera N., Perez J.A., Rodriguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017;6:25. doi: 10.1186/s40169-017-0153-6. PubMed DOI PMC
Serini S., Calviello G. Omega-3 PUFA responders and non-responders and the prevention of lipid dysmetabolism and related diseases. Nutrients. 2020;12:1363. doi: 10.3390/nu12051363. PubMed DOI PMC
Lunn J., Theobald H.E. The health effects of dietary unsaturated fatty acids. Nutr. Bull. 2006;31:178–224. doi: 10.1111/j.1467-3010.2006.00571.x. DOI
Serini S., Cassano R., Trombino S., Calviello G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: Potential application in cardiovascular and neoplastic diseases. Int. J. Nanomed. 2019;14:2809–2828. doi: 10.2147/IJN.S197499. PubMed DOI PMC
Valenzuela A., Valenzuela R., Sanhueza J., de la Barra F., Morales G. Phospholipids from marine origin: A new alternative for supplementing omega-3 fatty acids. Rev. Chil. Nutr. 2014;41:433–438.
Gulotta A., Saberi A.H., Nicoli M.C., McClements D.J. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: Formation using a spontaneous emulsification method. J. Agric. Food Chem. 2014;62:1720–1725. doi: 10.1021/jf4054808. PubMed DOI
Uluata S., McClements D.J., Decker E.A. Physical stability, autoxidation, and photosensitized oxidation of ω-3 oils in nanoemulsions prepared with natural and synthetic surfactants. J. Agric. Food Chem. 2015;63:9333–9340. doi: 10.1021/acs.jafc.5b03572. PubMed DOI
Walker R.M., Gumus C.E., Decker E.A., McClements D.J. Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. J. Food Eng. 2017;211:60–68.
Esquerdo V.M., Silva P.P., Dotto G.L., Pinto L.A.A. Nanoemulsions from unsaturated fatty acids concentrates of carp oil using chitosan, gelatin, and their blends as wall materials. Eur. J. Lipid Sci. Technol. 2018;120:1700240. doi: 10.1002/ejlt.201700240. DOI
Dey T.K., Koley H., Ghosh M., Dey S., Dhar P. Effects of nano-sizing on lipid bioaccessibility and ex vivo bioavailability from EPA-DHA rich oil in water nanoemulsion. Food Chem. 2019;275:135–142. doi: 10.1016/j.foodchem.2018.09.084. PubMed DOI
Li Y., Li M.D., Qi Y.M., Zheng L., Wu C.L., Wang Z.J., Teng F. Preparation and digestibility of fish oil nanoemulsions stabilized by soybean protein isolate-phosphatidylcholine. Food Hydrocoll. 2020;100:105310. doi: 10.1016/j.foodhyd.2019.105310. DOI
Hwang J.Y., Ha H.K., Lee M.R., Kim J.W., Kim H.J., Lee W.J. Physicochemical property and oxidative stability of whey protein concentrate multiple nanoemulsion containing fish oil. J. Food Sci. 2017;82:437–444. doi: 10.1111/1750-3841.13591. PubMed DOI
Prieto C., Lagaron J.M. Nanodroplets of docosahexaenoic acid-enriched algae oil encapsulated within microparticles of hydrocolloids by emulsion electrospraying assisted by pressurized gas. Nanomaterials. 2020;10:270. doi: 10.3390/nano10020270. PubMed DOI PMC
Torres-Giner S., Martinez-Abad A., Ocio M.J., Lagaron J.M. Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J. Food Sci. 2010;75:N69–N79. doi: 10.1111/j.1750-3841.2010.01678.x. PubMed DOI
Dey T.K., Banerjee P., Chatterjee R., Dhar P. Designing of ω-3 PUFA enriched biocompatible nanoemulsion with sesame protein isolate as a natural surfactant: Focus on enhanced shelf-life stability and biocompatibility. Colloids Surf. A Physicochem. Eng. Asp. 2018;538:36–44. doi: 10.1016/j.colsurfa.2017.10.066. DOI
Zimet P., Rosenberg D., Livney Y.D. Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll. 2011;25:1270–1276. doi: 10.1016/j.foodhyd.2010.11.025. DOI
Semenova M.G., Antipova A.S., Zelikina D.V., Martirosova E.I., Plashchina I.G., Palmina N.P., Binyukov V.I., Bogdanova N.G., Kasparov V.V., Shumilina E.A., et al. Biopolymer nanovehicles for essential polyunsaturated fatty acids: Structure-functionality relationships. Food Res. Int. 2016;88:70–78. doi: 10.1016/j.foodres.2016.05.008. PubMed DOI
Zimet P., Livney Y.D. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll. 2009;23:1120–1126. doi: 10.1016/j.foodhyd.2008.10.008. DOI
Loughrill E., Thompson S., Owusu-Ware S., Snowden M.J., Douroumis D., Zand N. Controlled release of microencapsulated docosahexaenoic acid (DHA) by spray-drying processing. Food Chem. 2019;286:368–375. doi: 10.1016/j.foodchem.2019.01.121. PubMed DOI
Hashemi F.S., Farzadnia F., Aghajani A., NobariAzar F.A., Pezeshki A. Conjugated linoleic acid loaded nanostructured lipid carrier as a potential antioxidant nanocarrier for food applications. Food Sci. Nutr. 2020;8:4185–4195. doi: 10.1002/fsn3.1712. PubMed DOI PMC
Yaghmur A., Ghazal A., Ghazal R., Dimaki M., Svendsen W.E. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride. Phys. Chem. Chem. Phys. 2019;21:13005–13013. doi: 10.1039/C9CP02393C. PubMed DOI
Shao X.R., Bor G., Al-Hosayni S., Salentinig S., Yaghmur A. Structural characterization of self-assemblies of new omega-3 lipids: Docosahexaenoic acid and docosapentaenoic acid monoglycerides. Phys. Chem. Chem. Phys. 2018;20:23928–23941. doi: 10.1039/C8CP04256J. PubMed DOI
Zarrabi A., Abadi M.A.A., Khorasani S., Mohammadabadi M.R., Jamshidi A., Torkaman S., Taghavi E., Mozafari M.R., Rasti B. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules. 2020;25:638. doi: 10.3390/molecules25030638. PubMed DOI PMC
Gill H., Guarner F. Probiotics and human health: A clinical perspective. Postgrad. Med. J. 2004;80:516–526. doi: 10.1136/pgmj.2003.008664. PubMed DOI PMC
Wan M.L.Y., Forsythe S.J., El-Nezami H. Probiotics interaction with foodborne pathogens: A potential alternative to antibiotics and future challenges. Crit. Rev. Food Sci. Nutr. 2019;59:3320–3333. doi: 10.1080/10408398.2018.1490885. PubMed DOI
Kerry R.G., Patra J.K., Gouda S., Park Y., Shin H.S., Das G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018;26:927–939. doi: 10.1016/j.jfda.2018.01.002. PubMed DOI PMC
Sanders M.E., Merenstein D., Merrifield C.A., Hutkins R. Probiotics for human use. Nutr. Bull. 2018;43:212–225. doi: 10.1111/nbu.12334. DOI
Coghetto C.C., Brinques G.B., Ayub M.A. Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions. Int. J. Food Sci. Nutr. 2016;67:929–943. doi: 10.1080/09637486.2016.1211995. PubMed DOI
Kavitake D., Kandasamy S., Devi P.B., Shetty P.H. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods—A review. Food Biosci. 2018;21:34–44. doi: 10.1016/j.fbio.2017.11.003. DOI
Anal A.K., Singh H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 2007;18:240–251. doi: 10.1016/j.tifs.2007.01.004. DOI
Kwiecien I., Kwiecien M. Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels. 2018;4:47. doi: 10.3390/gels4020047. PubMed DOI PMC
Pathak K., Akhtar N. Nanoprobiotics: Progress and Issues. In: Singh B., editor. Nanonutraceuticals. 1st ed. CRC Press; Boca Raton, FL, USA: 2018. 18p Chapter 9.
Durazzo A., Nazhand A., Lucarini M., Atanasov A.G., Souto E.B., Novellino E., Capasso R., Santini A. An updated overview on nanonutraceuticals: Focus on nanoprebiotics and nanoprobiotics. Int. J. Mol. Sci. 2020;21:2285. doi: 10.3390/ijms21072285. PubMed DOI PMC
Anselmo A.C., McHugh K.J., Webster J., Langer R., Jaklenec A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 2016;28:9486–9490. doi: 10.1002/adma.201603270. PubMed DOI PMC
Liu H., Cui S.W., Chen M., Li Y., Liang R., Xu F.F., Zhong F. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2019;59:2863–2878. doi: 10.1080/10408398.2017.1377684. PubMed DOI
Qi W., Liang X., Yun T., Guo W. Growth and survival of microencapsulated probiotics prepared by emulsion and internal gelation. J. Food Sci. Technol. 2019;56:1398–1404. doi: 10.1007/s13197-019-03616-w. PubMed DOI PMC
Hansen L.T., Allan-Wojtas P.M., Jin Y.L., Paulson A.T. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 2002;19:35–45. doi: 10.1006/fmic.2001.0452. DOI
Holkem A.T., Raddatz G.C., Barin J.S., Flores E.M.M., Muller E.I., Codevilla C.F., Jacob-Lopes E., Grosso R.F., Menezes C.R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT Food Sci. Technol. 2017;76:216–221. doi: 10.1016/j.lwt.2016.07.013. DOI
Wang J., Korber D.R., Low N.H., Nickerson M.T. Encapsulation of Bifidobacterium adolescentis cells with legume proteins and survival under stimulated gastric conditions and during storage in commercial fruit juices. Food Sci. Biotechnol. 2015;24:383–391. doi: 10.1007/s10068-015-0051-x. DOI
Patrignani F., Siroli L., Serrazanetti D.I., Braschi G., Betoret E., Reinheimer J.A., Lanciotti R. Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Res. Int. 2017;97:250–257. doi: 10.1016/j.foodres.2017.04.020. PubMed DOI
Atia A., Gomaa A., Fliss I., Beyssac E., Garrait G., Subirade M. A prebiotic matrix for encapsulation of probiotics: Physicochemical and microbiological study. J. Microencapsul. 2016;33:89–101. doi: 10.3109/02652048.2015.1134688. PubMed DOI
Coghetto C.C., Brinques G.B., Siqueira N.M., Pletsch J., Soarea N.D., Ayub M.A.Z. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. J. Funct. Foods. 2016;24:316–326. doi: 10.1016/j.jff.2016.03.036. DOI
Silva K.C.G., Cezarino E.C., Michelon M., Sato A.C.K. Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT Food Sci. Technol. 2018;89:503–509. doi: 10.1016/j.lwt.2017.11.026. DOI
Yao M.F., Li B., Ye H.W., Huang W.H., Luo Q.X., Xiao H., McClements D.J., Li L.J. Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles. Food Hydrocoll. 2018;83:246–252. doi: 10.1016/j.foodhyd.2018.05.024. DOI
Poletto G., Raddatz G.C., Cichoski A.J., Zepla L.Q., Lopse E.J., Barin J.S., Wagner R., Menezes C.R. Study of viability and storage stability of Lactobacillus acidophillus when encapsulated with the prebiotics rice bran, inulin and Hi-maize. Food Hydrocoll. 2019;95:238–244. doi: 10.1016/j.foodhyd.2019.04.049. DOI
Huq T., Fraschini C., Khan A., Riedl B., Bouchard J., Lacroix M. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydr. Polym. 2017;168:61–69. doi: 10.1016/j.carbpol.2017.03.032. PubMed DOI
Pitigraisorn P., Srichaisupakit K., Wongpadungkiat N., Wongsasulak S. Encapsulation of Lactobacillus acidophilus in moist-heat-resistant multilayered microcapsules. J. Food Eng. 2017;192:11–18. doi: 10.1016/j.jfoodeng.2016.07.022. DOI
Ji R., Wu J., Zhang J.L., Wang T., Zhang X.D., Shai L., Chen D.J., Wang J. Extending viability of Bifidobacterium longum in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology. Front. Microbiol. 2019;10:1389. doi: 10.3389/fmicb.2019.01389. PubMed DOI PMC
Riaz T., Iqbal M.W., Saeed M., Yasmin I., Hassanin H.A.M., Mahmood S., Rehman A. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads. J. Microencapsul. 2019;36:192–203. doi: 10.1080/02652048.2019.1618403. PubMed DOI
Ramos P.E., Abrunhosa L., Pinheiro A., Cerqueira M.A., Motta C., Castanheira I., Chandra-Hioe M.V., Arcot J., Teixeira J.A., Vicente A.A. Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation. Food Res. Int. 2016;90:25–32. doi: 10.1016/j.foodres.2016.10.036. PubMed DOI
Ramos P.E., Cerqueira M.A., Teixeira J.A., Vicente A.A. Physiological protection of probiotic microcapsules by coatings. Crit. Rev. Food Sci. Nutr. 2018;58:1864–1877. doi: 10.1080/10408398.2017.1289148. PubMed DOI
Calinoiu L.-F., Ştefănescu B.E., Pop I.D., Muntean L., Vodnar D.C. Chitosan coating applications in probiotic microencapsulation. Coatings. 2019;9:194. doi: 10.3390/coatings9030194. DOI
Ebrahimnejad P., Khavarpour M., Khalilid S. Survival of Lactobacillus acidophilus as probiotic bacteria using chitosan nanoparticles. IJE Trans. Basics. 2017;30:456–463.
Kim J.U., Kim B., Shahbaz H.M., Lee S.H., Park D., Park J.Y. Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int. J. Food Sci. Technol. 2017;52:519–530. doi: 10.1111/ijfs.13308. DOI
Chen L., Yang T., Song Y., Shu G.W., Chen H. Effect of xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt. LWT Food Sci. Technol. 2017;81:274–280. doi: 10.1016/j.lwt.2017.04.005. DOI
Priya A.J., Vijayalakshmi S.P., Raichur A.M. Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. J. Agric. Food Chem. 2011;59:11838–11845. doi: 10.1021/jf203378s. PubMed DOI
Shah A., Gani A., Ahmad M., Ashwar B.A., Masoodi F.A. β-Glucan as an encapsulating agent: Effect on probiotic survival in simulated gastrointestinal tract. Int. J. Biol. Macromol. 2016;82:217–222. doi: 10.1016/j.ijbiomac.2015.11.017. PubMed DOI
Nawong S., Oonsivilai R., Boonkerd N., Truelstrup Hansen L. Entrapment in food-grade transglutaminase cross-linked gelatin-maltodextrin microspheres protects Lactobacillus spp. during exposure to simulated gastro-intestinal juices. Food Res. Int. 2016;85:191–199. doi: 10.1016/j.foodres.2016.04.041. PubMed DOI
Nunes G.L., Etchepare M.A., Cichoski A.J., Zepka L.Q., Lopes E.J., Barin J.S., Flores E.M.D.M., Silva C.D.B., Menezes C.R. Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT Food Sci. Technol. 2018;89:128–133. doi: 10.1016/j.lwt.2017.10.032. DOI
Krithika B., Preetha R. Formulation of protein based inulin incorporated synbiotic nanoemulsion for enhanced stability of probiotic. Mat. Res. Express. 2019;6:114003. doi: 10.1088/2053-1591/ab4d1a. DOI
Rodrigues D., Sousa S., Rocha-Santos T., Silva J.P., Sousa Lobo J.M., Costa R., Amaral M.H., Pintado M.M., Gomes A.M., Malcata F.X., et al. Influence of l-cysteine, oxygen and relative humidity upon survival throughout storage of probiotic bacteria in whey protein-based microcapsules. Int. Dairy J. 2011;21:869–876. doi: 10.1016/j.idairyj.2011.05.005. DOI
Gonzalez-Ferrero C., Irache J.M., Gonzalez-Navarro C.J. Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chem. 2018;239:879–888. doi: 10.1016/j.foodchem.2017.07.022. PubMed DOI
Mao L., Pan Q., Yuan F., Gao Y. Formation of soy protein isolate-carrageenan complex coacervates for improved viability of Bifidobacterium longum during pasteurization and in vitro digestion. Food Chem. 2019;276:307–314. doi: 10.1016/j.foodchem.2018.10.026. PubMed DOI
Zupancic S., Skrlec K., Kocbek P., Kristl J., Berlec A. Effects of electrospinning on the viability of ten species of lactic acid bacteria in poly(ethylene oxide) nanofibers. Pharmaceutics. 2019;11:483. doi: 10.3390/pharmaceutics11090483. PubMed DOI PMC
Pedroso D.L., Thomazini M., Heinemann R.J.B., Favaro-Trindade C.S. Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int. Dairy J. 2012;26:127–132. doi: 10.1016/j.idairyj.2012.04.008. DOI
Pedroso D.L., Dogenski M., Thomazini M., Heinemann R.J.B., Favaro-Trindade C.S. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Braz. J. Microbiol. 2013;44:777–783. doi: 10.1590/S1517-83822013000300017. PubMed DOI PMC
de Matos Junior F.E., Silva M.P., Kasemodel M.G.C., Santosm T.T., Burns P., Reinheimer J., Vinderola G., Favaro-Trindade C.S. Evaluation of the viability and the preservation of the functionality of microencapsulated Lactobacillus paracasei BGP1 and Lactobacillus rhamnosus 64 in lipid particles coated by polymer electrostatic interaction. J. Funct. Foods. 2019;54:98–108. doi: 10.1016/j.jff.2019.01.006. DOI
Paula D.A., Martins E.M.F., Costa N.A., Oliveira P.M., Oliveira E.B., Ramos A.M. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. Int. J. Biol. Macromol. 2019;133:722–731. doi: 10.1016/j.ijbiomac.2019.04.110. PubMed DOI
Okuro P.K., Thomazini M., Balieiro J.C.C., Liberal R.D.C.O., Favaro-Trindade C.S. Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res. Int. 2013;53:96–103. doi: 10.1016/j.foodres.2013.03.042. DOI
Amakiri A.C., Kalombo L., Thantsha M.S. Lyophilised vegetal BM 297 ATO-inulin lipid-based synbiotic microparticles containing Bifidobacterium longum LMG 13197: Design and characterisation. J. Microencapsul. 2015;32:820–827. doi: 10.3109/02652048.2015.1094534. PubMed DOI
Verruck S., de Carvalho M.W., de Liz G.R., Amante E.R., Vieira C.R.W., Amboni R.D.D.C., Prudencio E.S. Bifidobacterium BB-12 microencapsulated with full-fat goat’s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments. Small Rumin. Res. 2017;153:48–56. doi: 10.1016/j.smallrumres.2017.05.008. DOI
Nagy Z.K., Wagner I., Suhajda A., Tobak T., Harsztos A.H., Vigh T., Soti P.L., Pataki K., Molnar K., Marosi G. Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polym. Lett. 2014;8:352–361. doi: 10.3144/expresspolymlett.2014.39. DOI
Ceylan Z., Uslu E., Ispirli H., Meral R., Gavgali M., Yilmaz M.T., Dertli E. A novel perspective for Lactobacillus reuteri: Nanoencapsulation to obtain functional fish fillets. LWT Food Sci. Technol. 2019;115:108427. doi: 10.1016/j.lwt.2019.108427. DOI
Shoaib M., Shehzad A., Omar M., Rakha A., Raza H., Rizwan Sharif H., Shakeel A., Ansari A., Niazi S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym. 2016;147:444–454. doi: 10.1016/j.carbpol.2016.04.020. PubMed DOI
Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems
Advances in Nanostructures for Antimicrobial Therapy
Advances in Use of Nanomaterials for Musculoskeletal Regeneration
Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes
Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems