Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-17-0373
Slovak Research and Development Agency
CZ.02.1.01/0.0/0.0/17\_049/0008441
Ministry of Education of the Czech Republic:SGS project SP2020/70
PubMed
33419176
PubMed Central
PMC7825503
DOI
10.3390/pharmaceutics13010064
PII: pharmaceutics13010064
Knihovny.cz E-zdroje
- Klíčová slova
- anti-inflammatory drugs, drug delivery systems, experimental drugs, inflammation, nanoformulations, nanoparticles,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Inflammatory diseases, whether caused by excessive stress on certain tissues/parts of the body or arising from infections accompanying autoimmune or secondary diseases, have become a problem, especially in the Western world today. Whether these are inflammations of visceral organs, joints, bones, or the like, they are always a physiological reaction of the body, which always tries to eradicate noxious agents and restore tissue homeostasis. Unfortunately, this often results in damage, often irreversible, to the affected tissues. Nevertheless, these inflammatory reactions of the body are the results of excessive stress, strain, and the generally unhealthy environment, in which the people of Western civilization live. The pathophysiology and pathobiochemistry of inflammatory/autoimmune processes are being studied in deep detail, and pharmaceutical companies are constantly developing new drugs that modulate/suppress inflammatory responses and endogenous pro-inflammatory agents. In addition to new specifically targeted drugs for a variety of pro-inflammatory agents, a strategy can be found for the use of older drugs, which are formulated into special nanodrug delivery systems with targeted distribution and often modified release. This contribution summarizes the current state of research and development of nanoformulated anti-inflammatory agents from both conventional drug classes and experimental drugs or dietary supplements used to alleviate inflammatory reactions.
Zobrazit více v PubMed
Pahwa R., Goyal A., Bansal P., Jialal I. Chronic Inflammation. StatPearls Publishing; Tampa, FL, USA: 2019. [(accessed on 27 November 2020)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493173.
Oxford University Hospitals NHS Foundation Trust Inflammatory Diseases. [(accessed on 27 November 2020)];2020 Available online: https://www.ouh.nhs.uk/oxparc/information/diagnoses/inflammatory-diseases.aspx.
Tsai D.H., Riediker M., Berchet A., Paccaud F., Waeber G., Vollenweider P., Bochud M. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ. Sci. Pollut. Res. Int. 2019;26:19697–19704. doi: 10.1007/s11356-019-05194-y. PubMed DOI
Barcelos I.P., Troxell R.M., Graves J.S. Mitochondrial dysfunction and multiple sclerosis. Biology. 2019;8:37. doi: 10.3390/biology8020037. PubMed DOI PMC
Deepak P., Axelrad J.E., Ananthakrishnan A.N. The role of the radiologist in determining disease severity in inflammatory bowel diseases. Gastrointest. Endosc. Clin. N. Am. 2019;29:447–470. doi: 10.1016/j.giec.2019.02.006. PubMed DOI
Pfizer Inc. Chronic Inflammation and Inflammatory Disease. [(accessed on 27 November 2020)];2017 Available online: https://www.pfizer.com/news/featured_stories/featured_stories_detail/chronic_inflammation_and_inflammatory_disease.
National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention Inflammatory Bowel Disease Prevalence. [(accessed on 27 November 2020)]; Available online: https://www.cdc.gov/ibd/data-statistics.htm.
Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, USA Arthritis-Related Statistics. [(accessed on 27 November 2020)]; Available online: https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm.
Smolen J.S., Aletaha D., McInnes I.B. Rheumatoid arthritis. Lancet. 2016;388:2023–2038. doi: 10.1016/S0140-6736(16)30173-8. PubMed DOI
Thakur S., Riyaz B., Patil A., Kaur A., Kapoor B., Mishra V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview. Biomed. Pharmacother. 2018;106:1011–1023. doi: 10.1016/j.biopha.2018.07.027. PubMed DOI
Kotyla P.J., Islam M.A., Engelmann M. Clinical aspects of janus kinase (JAK) inhibitors in the cardiovascular system in patients with rheumatoid arthritis. Int. J. Mol. Sci. 2020;21:7390. doi: 10.3390/ijms21197390. PubMed DOI PMC
Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–435. doi: 10.1038/nature07201. PubMed DOI
Serhan C.N., Ward P.A. Molecular and Cellular Basis of Inflammation. Humana Press Inc.; Totowa, NJ, USA: 2010.
Malone S. Inflamed: Discover the Root Cause of Inflammation and Personalize a Step-By-Step Plan to Create a Healthy, Vibrant Life. Augustin Publishing; Locust Valley, NY, USA: 2016.
Diegelmann R.F. Basic Biology and Clinical Aspects of Inflammation. Bentham Science Publishers; Sharjah, UAE: 2016. (Book Series). Frontiers in Inflammation.
Ley K. Inflammation—Fundamental Mechanisms. La Jolla Institute for Allergy and Immunology; San Diego, CA, USA: 2018.
Cavaillon J.M., Singer M. Inflammation: From Molecular and Cellular Mechanisms to the Clinic. Wiley-VCH; Weinheim, Germany: 2018.
Coico R., Sunshine G. Immunology: A Short Course. 7th ed. Wiley-Blackwell; Chichester, UK: 2015.
Miyasaka M., Takatsu K. Chronic Inflammation: Mechanisms and Regulation. Springer; Tokyo, Japan: 2016.
Chang W.C., Chang W.C. Chronic Inflammation: Causes, Treatment Options and Role in Disease (Immunology and Immune System Disorders) Nova Biomedical; Hauppauge, NY, USA: 2013.
Van Dyke T.E., van Winkelhoff A.J. Infection and inflammatory mechanisms. J. Clin. Periodontol. 2013;40:1–7. doi: 10.1111/jcpe.12088. PubMed DOI
Earl C.S., An S.Q., Ryan R.P. The changing face of asthma and its relation with microbes. Trends Microbiol. 2015;23:408–418. doi: 10.1016/j.tim.2015.03.005. PubMed DOI PMC
Dulek D.E., Stokes Peebles R. Bacteria and asthma—more than we thought. Expert Rev. Respir. Med. 2011;5:329–332. doi: 10.1586/ers.11.33. PubMed DOI PMC
Mikhail I., Grayson M.H. Asthma and viral infections: An intricate relationship. Ann. Allergy Asthma Immunol. 2019;123:352–358. doi: 10.1016/j.anai.2019.06.020. PubMed DOI PMC
Sreenivasan P.K., Gaffar A. Antibacterials as anti-inflammatory agents: Dual action agents for oral health. Antonie Van Leeuwenhoek. 2008;93:227–239. doi: 10.1007/s10482-007-9197-8. PubMed DOI
Qiu C.C., Caricchio R., Gallucci S. Triggers of autoimmunity: The role of bacterial infections in the extracellular exposure of lupus nuclear autoantigens. Front. Immunol. 2019;10:2608. doi: 10.3389/fimmu.2019.02608. PubMed DOI PMC
Van Elsland D., Neefjes J. Bacterial infections and cancer. EMBO Rep. 2018;19:46632. doi: 10.15252/embr.201846632. PubMed DOI PMC
Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC
Gautam C.S., Saha L. Fixed dose drug combinations (FDCs): Rational or irrational: A view point. Br. J. Clin. Pharmacol. 2008;65:795–796. doi: 10.1111/j.1365-2125.2007.03089.x. PubMed DOI PMC
Godman B., McCabe H., Leong T.D., Mueller D., Martin A.P., Hoxha I., Mwita J.C., Mutashambara Rwegereran G., Massele A., de Oliveira Costa J., et al. Fixed dose drug combinations—are they pharmacoeconomically sound? Findings and implications especially for lower- and middle-income countries. Expert Rev. Pharmacoecon. Outcomes Res. 2020;20:1–26. doi: 10.1080/14737167.2020.1734456. PubMed DOI
Cernikova A., Jampilek J. Structure modification of drugs influencing their bioavailability and therapeutic effect. Chem. Listy. 2014;108:7–16.
Serhan C.N. Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms. FASEB J. 2017;31:1273–1288. doi: 10.1096/fj.201601222R. PubMed DOI PMC
Vasaikar S., Bhatia P., Bhatia P.G., Yaiw K.C. Complementary approaches to existing target based drug discovery for identifying novel drug targets. Biomedicines. 2016;4:27. doi: 10.3390/biomedicines4040027. PubMed DOI PMC
Ul Islam N., Amin R., Shahid M., Amin M., Zaib S., Iqbal J. A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. BMC Complement. Altern. Med. 2017;17:276. doi: 10.1186/s12906-017-1791-3. PubMed DOI PMC
Brullo C., Massa M., Rapetti F., Alfei S., Bertolotto M.B., Montecucco F., Signorello M.G., Bruno O. New hybrid pyrazole and imidazopyrazole antinflammatory agents able to reduce ROS production in different biological targets. Molecules. 2020;25:899. doi: 10.3390/molecules25040899. PubMed DOI PMC
Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC
Bolognesi M.L. Polypharmacology in a single drug: Multitarget drugs. Curr. Med. Chem. 2013;20:1639–1645. doi: 10.2174/0929867311320130004. PubMed DOI
Talevi A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 2015;6:205. doi: 10.3389/fphar.2015.00205. PubMed DOI PMC
Brase S. Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation. Royal Society of Chemistry; Cambridge, UK: 2016.
Zhang W., Zhao Y., Zhang F., Wang Q., Li T., Liu Z., Wang J., Qin Y., Zhang X., Yan X., et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol. 2020;214:108393. doi: 10.1016/j.clim.2020.108393. PubMed DOI PMC
Lemke T.L., Williams D.A. Foye’s Principles of Medicinal Chemistry. 7th ed. Lippincott Williams & Wilkins and Wolters Kluwer; Baltimore, MD, USA: 2013.
Jampilek J., Dolezal M., Opletalova V., Hartl J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006;13:117–129. doi: 10.2174/092986706775197935. PubMed DOI
Trevor A.J., Katzung B.G., Kruidering-Hall M. Katzung & Trevor’s Pharmacology. 12th ed. McGraw-Hill; New York, NY, USA: 2019.
Whalen K., Radhakrishnan R., Field C. Lippincott Illustrated Reviews: Pharmacology. 7th ed. Wolters Kluwer; Philadelphia, PA, USA: 2019.
Psoriasis—Mayo Clinic. [(accessed on 27 November 2020)];2020 Available online: https://www.mayoclinic.org/diseases-conditions/psoriasis/diagnosis-treatment/drc-20355845.
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Jampilek J., Kralova K. Potential of nanonutraceuticals in increasing immunity. Nanomaterials. 2020;10:2224. doi: 10.3390/nano10112224. PubMed DOI PMC
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Kushkevych I., Vitezova M., Kos J., Kollar P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Inflammatory Bowel Disease—Mayo Clinic. [(accessed on 27 November 2020)];2020 Available online: https://www.mayoclinic.org/diseases-conditions/inflammatory-bowel-disease/diagnosis-treatment/drc-20353320.
Khare T., Palakurthi S.S., Shah B.M., Palakurthi S., Khare S. Natural product-based nanomedicine in treatment of inflammatory bowel disease. Int. J. Mol. Sci. 2020;21:3956. doi: 10.3390/ijms21113956. PubMed DOI PMC
Rheumatoid Arthritis—Mayo Clinic. [(accessed on 27 November 2020)];2020 Available online: https://www.mayoclinic.org/diseases-conditions/rheumatoid-arthritis/diagnosis-treatment/drc-20353653.
Rosman Z., Shoenfeld Y., Zandman-Goddard G. Biologic therapy for autoimmune diseases: An update. BMC Med. 2013;11:88. doi: 10.1186/1741-7015-11-88. PubMed DOI PMC
Baumgart D.C., Misery L., Naeyaert S., Taylor P.C. Biological therapies in immune-mediated inflammatory diseases: Can biosimilars reduce access inequities? Front. Pharmacol. 2019;10:279. doi: 10.3389/fphar.2019.00279. PubMed DOI PMC
Tasneem S., Liu B., Lia B., Choudhary I., Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharm. Res. 2019;139:126–140. doi: 10.1016/j.phrs.2018.11.001. PubMed DOI
Jampilek J., Kos J., Kralova K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials. 2019;9:296. doi: 10.3390/nano9020296. PubMed DOI PMC
Healthline Media Understanding and Managing Chronic Inflammation. [(accessed on 27 November 2020)];2020 Available online: https://www.healthline.com/health/chronic-inflammation.
Ballerini C., Baldi G., Aldinucci A., Maggi P. Nanomaterial applications in multiple sclerosis inflamed brain. J. Neuroimmune Pharmacol. 2015;10:1–13. doi: 10.1007/s11481-015-9588-y. PubMed DOI
Patra J.K., Das G., Fraceto F.L., Campos E.V.R., del Pilar Rodriguez-Torres M., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC
Rahoui N., Jiang B., Taloub N., Huang Y.D. Spatio-temporal control strategy of drug delivery systems based nano structures. J. Control. Release. 2017;255:176–201. doi: 10.1016/j.jconrel.2017.04.003. PubMed DOI
Hofmann-Amtenbrink M., Hofmann H., Hool A., Roubert F. Nanotechnology in medicine: European research and its implications. Swiss Med. Wkl. 2014;144:w1404. doi: 10.4414/smw.2014.14044. PubMed DOI
Fornaguera C., Garcia-Celma M.J. Personalized nanomedicine: A revolution at the nanoscale. J. Pers. Med. 2017;7:12. doi: 10.3390/jpm7040012. PubMed DOI PMC
Bhatt P., Vhora I., Patil S., Amrutiya J., Bhattacharya C., Misra A., Mashru R. Role of antibodies in diagnosis and treatment of ovarian cancer: Basic approach and clinical status. J. Control. Release. 2016;226:148–167. doi: 10.1016/j.jconrel.2016.02.008. PubMed DOI
Aminu N., Bello I., Umar N.M., Tanko N., Aminu A., Audu M.M. The influence of nanoparticulate drug delivery systems in drug therapy. J. Drug Deliv. Sci. Technol. 2020;60:101961. doi: 10.1016/j.jddst.2020.101961. DOI
Sufi S.A., Pajaniradje S., Mukherjee V., Rajagopalan R. Redox nano-architectures: Perspectives and implications in diagnosis and treatment of human diseases. Antiox. Redox Signal. 2019;30:762–785. doi: 10.1089/ars.2017.7412. PubMed DOI
Mercado N., Bhatt P., Sutariya V., Florez F.L.E., Pathak Y.V. Application of nanoparticles in treating periodontitis: Preclinical and clinical overview. In: Pathak Y., editor. Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer; Cham, Switzerland: 2019. pp. 467–480.
Ulbrich W., Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J. R. Soc. Interface. 2010;7:55–66. doi: 10.1098/rsif.2009.0285.focus. PubMed DOI PMC
Pentak D., Kozik V., Bak A., Dybal P., Sochanik A., Jampilek J. Methotrexate and cytarabine—loaded nanocarriers for multidrug cancer therapy. Spectroscopic study. Molecules. 2016;21:1689. doi: 10.3390/molecules21121689. PubMed DOI PMC
Placha D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC
Jampilek J., Kralova K. Nano-antimicrobials: Activity, benefits and weaknesses. In: Ficai A., Grumezescu A.M., editors. Nanostructures for Antimicrobial Therapy. Elsevier; Amsterdam, The Netherlands: 2017. pp. 23–54.
Jampilek J., Kralova K. Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Sharma A.K., Keservani R.K., Kesharwani R.K., editors. Nanobiomaterials: Applications in Drug Delivery. CRC Press; Warentown, NJ, USA: 2018. pp. 131–208.
Jampilek J., Kralova K. Nanotechnology based formulations for drug targeting to central nervous system. In: Keservani R.K., Sharma A.K., editors. Nanoparticulate Drug Delivery Systems. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2019. pp. 151–220.
Jampilek J., Kralova K. Recent advances in lipid nanocarriers applicable in the fight against cancer. In: Grumezescu A.M., editor. Nanoarchitectonics in Biomedicine. Elsevier; Amsterdam, The Netherlands: 2019. pp. 219–294.
Jampilek J., Kralova K., Campos E.V.R., Fraceto L.F. Bio-based nanoemulsion formulations applicable in agriculture, medicine and food industry. In: Prasad R., Kumar V., Kumar M., Choudhary D.K., editors. Nanobiotechnology in Bioformulations. Springer; Cham, Germany: 2019. pp. 33–84.
Jampilek J., Kralova K. Nanoformulations—valuable tool in therapy of viral diseases attacking humans and animals. In: Rai M., Jamil B., editors. Nanotheranostic—Applications and Limitations. Springer Nature; Cham, Switzerland: 2019. pp. 137–178.
Jampilek J., Kralova K., Novak P., Novak M. Nanobiotechnology in neurodegenerative diseases. In: Rai M., Yadav A., editors. Nanobiotechnology in Neurodegenerative Diseases. Springer Nature Switzerland AG; Cham, Switzerland: 2019. pp. 65–138.
Jampilek J., Kralova K. Natural biopolymeric nanoformulations for brain drug delivery. In: Keservani R.K., Sharma A.K., Kesharwani R.K., editors. Nanocarriers for Brain Targetting: Principles and Applications. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2020. pp. 131–203.
Fleige E., Quadir M.A., Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012;64:866–884. doi: 10.1016/j.addr.2012.01.020. PubMed DOI
Molina M., Asadian-Birjand M., Balach J., Bergueiro J., Miceli E., Calderon M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem. Soc. Rev. 2015;44:6161–6186. doi: 10.1039/C5CS00199D. PubMed DOI
Kost B., Brzezinski M., Socka M., Basko M., Biela T. Biocompatible polymers combined with cyclodextrins: Fascinating materials for drug delivery applications. Molecules. 2020;25:3404. doi: 10.3390/molecules25153404. PubMed DOI PMC
Jampilek J., Kralova K. Impact of nanoparticles on toxigenic fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology—Treating Mycotoxins in Nano Way. Academic Press & Elsevier; London, UK: 2020. pp. 309–348.
Dou Y., Li C., Li L., Guo J., Zhang J. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J. Control. Release. 2020;327:641–666. doi: 10.1016/j.jconrel.2020.09.008. PubMed DOI PMC
Li F., Qin Y., Lee J., Liao H., Wang N., Davis T.P., Qiao R., Ling D. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J. Control. Release. 2020;322:566–592. doi: 10.1016/j.jconrel.2020.03.051. PubMed DOI
Kumar R., Dalvi S.V., Siril P.F. Nanoparticle-based drugs and formulations: Current status and emerging applications. ACS Appl. Nano Mater. 2020;3:4944–4961. doi: 10.1021/acsanm.0c00606. DOI
Yetisgin A.A., Cetinel S., Zuvin M., Kosar A., Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules. 2020;25:2193. doi: 10.3390/molecules25092193. PubMed DOI PMC
Saito E., Kuo R., Pearson R.M., Gohel N., Cheung B., King N.J.C., Miller S.D., Shea L.D. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J. Control. Release. 2019;300:185–196. doi: 10.1016/j.jconrel.2019.02.025. PubMed DOI PMC
Cheng C.A., Deng T., Lin F.C., Cai Y., Zink J.I. Supramolecular nanomachines as stimuli-responsive gatekeepers on mesoporous silica nanoparticles for antibiotic and cancer drug delivery. Theranostics. 2019;9:3341–3364. doi: 10.7150/thno.34576. PubMed DOI PMC
Getts D.R., Shea L.D., Miller S.D., King N.J.C. Harnessing nanoparticles for immune modulation. Trends Immunol. 2015;36:419–427. doi: 10.1016/j.it.2015.05.007. PubMed DOI PMC
Chenthamara D., Subramaniam S., Ramakrishnan S.G., Krishnaswamy S., Essa M.M., Lin F.H., Qoronfleh M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019;23:1–29. doi: 10.1186/s40824-019-0166-x. PubMed DOI PMC
Esfanjani A.F., Jafari S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces. 2016;146:532–543. doi: 10.1016/j.colsurfb.2016.06.053. PubMed DOI
Peng Y., Chen L., Ye S., Kang Y., Liu J., Zeng S., Yu L. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J. Pharm. Sci. 2020;15:220–236. doi: 10.1016/j.ajps.2020.02.004. PubMed DOI PMC
Wang T., Zhang D., Sun D., Gu J. Current status of in vivo bioanalysis of nano drug delivery systems. J. Pharm. Anal. 2020;10:221–232. doi: 10.1016/j.jpha.2020.05.002. PubMed DOI PMC
Brzezinski M., Wedepohl S., Kost B., Calderon M. Nanoparticles from supramolecular polylactides overcome drug resistance of cancer cells. Eur. Polym. J. 2018;109:117–123. doi: 10.1016/j.eurpolymj.2018.08.060. DOI
Chen W.H., Yang C.X., Qiu W.X., Luo G.F., Jia H.Z., Lei Q., Wang X.Y., Liu G., Zhuo R.X., Zhang X.Z. Multifunctional Theranostic Nanoplatform for Cancer Combined Therapy Based on Gold Nanorods. Adv. Healthc. Mater. 2015;4:2247–2259. doi: 10.1002/adhm.201500453. PubMed DOI
Culen M., Rezacova A., Jampilek J., Dohnal J. Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small intestine. J. Pharm. Sci. 2013;102:2995–3017. doi: 10.1002/jps.23494. PubMed DOI
Ghosh S., Mukherjee B., Chaudhuri S., Roy T., Mukherjee A., Sengupta S. Methotrexate Aspasomes Against Rheumatoid Arthritis: Optimized Hydrogel Loaded Liposomal Formulation with In Vivo Evaluation in Wistar Rats. AAPS PharmSciTech. 2018;19:1320–1336. doi: 10.1208/s12249-017-0939-2. PubMed DOI
Date A.A., Hanes J., Ensign L.M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J. Control. Release. 2016;240:504–526. doi: 10.1016/j.jconrel.2016.06.016. PubMed DOI PMC
Chen Y., Shan X., Luo C., He Z. Emerging nanoparticulate drug delivery systems of metformin. J. Pharm. Investig. 2020;50:219–230. doi: 10.1007/s40005-020-00480-1. DOI
Khan F.A., Almohazey D., Alomari M., Almofty S.A. Impact of nanoparticles on neuron biology: Current research trends. Int. J. Nanomed. 2018;13:2767–2776. doi: 10.2147/IJN.S165675. PubMed DOI PMC
Pinon-Segundo E., Ganem-Quintanar A., Alonso-Perez V., Quintanar-Guerrero D. Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int. J. Pharm. 2005;294:217–232. doi: 10.1016/j.ijpharm.2004.11.010. PubMed DOI
Maghsoudnia N., Eftekhari R.B., Sohi A.N., Zamzami A., Dorkoosh F.A. Application of nano-based systems for drug delivery and targeting: A review. J. Nanopart. Res. 2020;22:245. doi: 10.1007/s11051-020-04959-8. DOI
Moulari B., Beduneau A., Pellequer Y., Lamprecht A. Nanoparticle targeting to inflamed tissues of the gastrointestinal tract. Curr. Drug Deliv. 2013;10:9–17. doi: 10.2174/1567201811310010004. PubMed DOI
Takedatsu H. Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease. World J. Gastroenterol. 2015;21:11343–11352. doi: 10.3748/wjg.v21.i40.11343. PubMed DOI PMC
Beloqui A., Coco R., Preat V. Targeting inflammatory bowel diseases by nanocarriers loaded with small and biopharmaceutical anti-inflammatory drugs. Curr. Pharm. Des. 2016;22:6192–6206. doi: 10.2174/1381612822666160211141813. PubMed DOI
Nunes R., das Neves J., Sarmento B. Nanoparticles for the regulation of intestinal inflammation: Opportunities and challenges. Nanomedicine. 2019;14:2631–2644. doi: 10.2217/nnm-2019-0191. PubMed DOI
Yang C., Merlin D. Nanoparticle-mediated drug delivery systems for the treatment of IBD: Current perspectives. Int. J. Nanomed. 2019;14:8875–8889. doi: 10.2147/IJN.S210315. PubMed DOI PMC
Zeeshan M., Ali H., Khan S., Khan S.A., Weigmann B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int. J. Pharm. 2019;558:201–214. doi: 10.1016/j.ijpharm.2018.12.074. PubMed DOI
Zhang M., Merlin D. Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis. Inflamm. Bowel Dis. 2018;24:1401–1415. doi: 10.1093/ibd/izy123. PubMed DOI PMC
Khare V., Krnjic A., Frick A., Gmainer C., Asboth M., Jimenez K., Lang M., Baumgartner M., Evstatiev R., Gasche C. Mesalamine and azathioprine modulate junctional complexes and restore epithelial barrier function in intestinal inflammation. Sci. Rep. 2019;9:2842. doi: 10.1038/s41598-019-39401-0. PubMed DOI PMC
Zieba M., Chaber P., Duale K., Maksymiak M.M., Basczok M., Kowalczuk M., Adamus G. Polymeric carriers for delivery systems in the treatment of chronic periodontal disease. Polymers. 2020;12:1574. doi: 10.3390/polym12071574. PubMed DOI PMC
Maniar K.H., Jones I.A., Gopalakrishna R., Vangsness C.T. Lowering side effects of NSAID usage in osteoarthritis: Recent attempts at minimizing dosage. Expert Opin. Pharmacother. 2018;19:93–102. doi: 10.1080/14656566.2017.1414802. PubMed DOI
Chegini S.P., Varshosaz J., Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif. Cell. Nanomed. Biotechnol. 2018;46:502–514. doi: 10.1080/21691401.2018.1460373. PubMed DOI
Lima A.C., Ferreira H., Reis R.L., Neves N.M. Biodegradable polymers: An update on drug delivery in bone and cartilage diseases. Expert Opin. Drug Deliv. 2019;16:795–813. doi: 10.1080/17425247.2019.1635117. PubMed DOI
Brown S., Kumar S., Sharma B. Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater. 2020;93:239–257. doi: 10.1016/j.actbio.2019.03.010. PubMed DOI PMC
Kesharwani D., Paliwal R., Satapathy T., Das P.S. Rheumatiod arthritis: An updated overview of latest therapy and drug delivery. J. Pharmacopunct. 2019;22:210–224. PubMed PMC
Ain Q., Zeeshan M., Khan S., Ali H. Biomimetic hydroxyapatite as potential polymeric nanocarrier for the treatment of rheumatoid arthritis. J. Biomed. Mater. Res. A. 2019;107:2595–2600. doi: 10.1002/jbm.a.36765. PubMed DOI
Qindeel M., Ullah M.H., Fakhar-Ud-Din, Ahmed N., Rehman A. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J. Control. Release. 2020;327:595–615. doi: 10.1016/j.jconrel.2020.09.016. PubMed DOI
Yokota J., Kyotani S. Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs. J. Chin. Med. Assoc. 2019;81:511–519. doi: 10.1016/j.jcma.2018.01.008. PubMed DOI
Kim S.H., Moon J.H., Jeong S.U., Jung H.H., Park C.S., Hwang B.Y., Lee C.K. Induction of antigen-specific immune tolerance using biodegradable nanoparticles containing antigen and dexamethasone. Int. J. Nanomed. 2019;14:5229–5242. doi: 10.2147/IJN.S210546. PubMed DOI PMC
Zhang S., Ermann J., Succi M.D., Zhou A., Hamilton M.J., Cao B., Korzenik J.R., Glickman J.N., Vemula P.K., Glimcher L.H., et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci. Transl. Med. 2015;7:300ra128. doi: 10.1126/scitranslmed.aaa5657. PubMed DOI PMC
Assali M., Shawahna R., Dayyeh S., Shareef M., Alhimony I.A. Dexamethasone-diclofenac loaded polylactide nanoparticles: Preparation, release and anti-inflammatory activity. Eur. J. Pharm. Sci. 2018;122:179–184. doi: 10.1016/j.ejps.2018.07.012. PubMed DOI
Date A.A., Halpert G., Babu T., Ortiz J., Kanvinde P., Dimitrion P., Narayan J., Zierden H., Betageri K., Musmanno O., et al. Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials. 2018;185:97–105. doi: 10.1016/j.biomaterials.2018.09.005. PubMed DOI PMC
Gai X., Jiang Z., Liu M., Li Q., Wang S., Li T., Pan W., Yang X. Therapeutic Effect of a Novel Nano-Drug Delivery System on Membranous Glomerulonephritis Rat Model Induced by Cationic Bovine Serum. AAPS Pharm. Sci. Tech. 2018;19:2195–2202. doi: 10.1208/s12249-018-1034-z. PubMed DOI
Hanafy A.F., Abdalla A.M., Guda T.K., Gabr K.E., Royall P.G., Alqurshi A. Ocular anti-inflammatory activity of prednisolone acetate loaded chitosan-deoxycholate self-assembled nanoparticles. Int. J. Nanomed. 2019;14:3679–3689. doi: 10.2147/IJN.S195892. PubMed DOI PMC
Gupta R.D., Raghav N. Nano-crystalline cellulose: Preparation, modification and usage as sustained release drug delivery excipient for some non-steroidal anti-inflammatory drugs. Int. J. Biol. Macromol. 2020;147:921–930. doi: 10.1016/j.ijbiomac.2019.10.057. PubMed DOI
Kumar R., Singh A., Garg N., Siril P.F. Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. Ultrason. Sonochem. 2018;40:686–696. doi: 10.1016/j.ultsonch.2017.08.018. PubMed DOI
Shah R., Eldridge D.S., Palombo E.A., Harding I.H. Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs. Int. J. Pharm. 2016;515:543–554. doi: 10.1016/j.ijpharm.2016.10.054. PubMed DOI
Guilherme V.A., Ribeiro L.N.M., Alcantara A.C.S., Castro S.R., da Silva G.H.R., Goncalves da Silva C., Breitkreitz M.C., Clemente-Napimoga J., Macedo C.G., Abdalla H.B., et al. Improved efficacy of naproxen-loaded NLC for temporomandibular joint administration. Sci. Rep. 2019;9:11160. doi: 10.1038/s41598-019-47486-w. PubMed DOI PMC
Dalmoro A., Bochicchio S., Nasibullin S.F., Bertoncin P., Lamberti G., Barba A.A., Moustafine R.I. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems. Eur. J. Pharm. Sci. 2018;121:16–28. doi: 10.1016/j.ejps.2018.05.014. PubMed DOI
Ozturk A.A., Kiyan H.T. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc. Res. 2020;128:103961. doi: 10.1016/j.mvr.2019.103961. PubMed DOI
Kishore N., Raja M.D., Kumar C.S., Dhanalekshmi U., Srinivasan R. Lipid carriers for delivery of celecoxib: In-vitro, in-vivo assessment of nanomedicine in rheumatoid arthritis. Eur. J. Lipid Sci. Technol. 2016;118:949–958. doi: 10.1002/ejlt.201400658. DOI
Badri W., Miladi K., Robin S., Viennet C., Nazari Q.A., Agusti G., Fessi H., Elaissari A. Polycaprolactone based nanoparticles loaded with indomethacin for anti-inflammatory therapy: From preparation to ex vivo study. Pharm. Res. 2017;34:1773–1783. doi: 10.1007/s11095-017-2166-7. PubMed DOI
Jampilek J., Brychtova K. Azone analogues: Classification, design, and transdermal penetration principles. Med. Res. Rev. 2012;32:907–947. doi: 10.1002/med.20227. PubMed DOI
Farghaly D.A., Aboelwafa A.A., Hamza M.Y., Mohamed M.I. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: Optimization using experimental design and in vivo evaluation. AAPS Pharm. Sci. Tech. 2017;18:2898–2909. doi: 10.1208/s12249-017-0771-8. PubMed DOI
Madhumathi K., Rubaiya Y., Doble M., Venkateswari R., Sampath Kumar T.S. Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers—in vitro and in vivo studies. Drug Deliv. Transl. Res. 2018;8:1066–1077. doi: 10.1007/s13346-018-0532-6. PubMed DOI
Liu L., Hu F., Wang H., Wu X., Shaker Eltahan A., Stanford S., Bottini N., Xiao H., Bottini M., Guo W., et al. Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy. ACS Nano. 2019;13:5036–5048. doi: 10.1021/acsnano.9b01710. PubMed DOI
Kumar V., Leekha A., Tyagi A., Kaul A., Mishra A.K., Verma A.K. Preparation and evaluation of biopolymeric nanoparticles as drug delivery system in effective treatment of rheumatoid arthritis. Pharm. Res. 2017;34:654–667. doi: 10.1007/s11095-016-2094-y. PubMed DOI
Lima S.A., Reis S. Temperature-responsive polymeric nanospheres containing methotrexate and gold nanoparticles: A multi-drug system for theranostic in rheumatoid arthritis. Colloids Surf. B Biointerfaces. 2015;133:378–387. doi: 10.1016/j.colsurfb.2015.04.048. PubMed DOI
Barbosa A.I., Costa Lima S.A., Reis S. Development of methotrexate loaded fucoidan/chitosan nanoparticles with anti-inflammatory potential and enhanced skin permeation. Int. J. Biol. Macromol. 2019;124:1115–1122. doi: 10.1016/j.ijbiomac.2018.12.014. PubMed DOI
Ferreira M., Barreiros L., Segundo M.A., Torres T., Selores M., Costa Lima S.A., Reis S. Topical co-delivery of methotrexate and etanercept using lipid nanoparticles: A targeted approach for psoriasis management. Colloids Surf. B Biointerfaces. 2017;159:23–29. doi: 10.1016/j.colsurfb.2017.07.080. PubMed DOI
Giulbudagian M., Yealland G., Hönzke S., Edlich A., Geisendorfer B., Kleuser B., Hedtrich S., Calderon M. Breaking the barrier—potent anti-inflammatory activity following efficient topical delivery of etanercept using thermoresponsive nanogels. Theranostics. 2018;8:450–463. doi: 10.7150/thno.21668. PubMed DOI PMC
Walsh L., Ryu J., Bock S., Koval M., Mauro T., Ross R., Desai T. Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. Nano Lett. 2015;15:2434–2441. doi: 10.1021/nl504829f. PubMed DOI PMC
Kim J.M., Kim D.H., Park H.J., Ma H.W., Park S., Son M., Ro S.Y., Hong S., Han H.K., Lim S.J., et al. Nanocomposites-based targeted oral drug delivery systems with infliximab in a murine colitis model. J. Nanobiotechnol. 2020;18:133. doi: 10.1186/s12951-020-00693-4. PubMed DOI PMC
Pabari R.M., Mattu C., Partheeban S., Almarhoon A., Boffito M., Ciardelli G., Ramtoola Z. Novel polyurethane-based nanoparticles of infliximab to reduce inflammation in an in-vitro intestinal epithelial barrier model. Int. J. Pharm. 2019;565:533–542. doi: 10.1016/j.ijpharm.2019.05.025. PubMed DOI
Kishimoto T.K., Ferrari J.D., LaMothe R.A., Kolte P.N., Griset A.P., O’Neil C., Chan V., Browning E., Chalishazar A., Kuhlman W., et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat. Nanotechnol. 2016;11:890–899. doi: 10.1038/nnano.2016.135. PubMed DOI
Friedrich R.B., Coradini K., Fonseca F.N., Guterres S.S., Beck R.C.R., Pohlmann A.R. Lipid-core nanocapsules improved antiedematogenic activity of tacrolimus in adjuvant-induced arthritis model. J. Nanosci. Nanotechnol. 2016;16:1265–1274. doi: 10.1166/jnn.2016.11673. PubMed DOI
Hegazy S.K., El-Morsy Abd El-Ghany El-Sayed S., El-Saeed El-Hefnawy M. A clinical study evaluating the effects of fluvastatin on serum osteoprotegerin levels in rheumatoid arthritis patients. J. Clin. Pharmacol. 2016;56:1272–1276. doi: 10.1002/jcph.725. PubMed DOI
El Menshawe S.F., Nafady M.M., Aboud H.M., Kharshoum R.M., Elkelawy A.M.M.H., Hamad D.S. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: Mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv. 2019;26:1140–1154. doi: 10.1080/10717544.2019.1686087. PubMed DOI PMC
De Araujo R.F., De Araujo A.A., Pessoa J.B., Freire Neto F.P., Ribeiro da Silva G., Leitao Oliveira A.L.C.S., Gomes de Carvalho T., Silva H.F.O., Eugenio M., Sant’Anna C., et al. Anti-inflammatory, analgesic and anti-tumor properties of gold nanoparticles. Pharmacol. Rep. 2017;69:119–129. doi: 10.1016/j.pharep.2016.09.017. PubMed DOI
Lautenschlager C., Schmidt C., Lehr C.M., Fischer D., Stallmach A. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur. J. Pharm. Biopharm. 2013;85:578–586. doi: 10.1016/j.ejpb.2013.09.016. PubMed DOI
Rao K., Aziz S., Roome T., Razzak A., Sikandar B., Jamali K.S., Imran M., Jabri T., Raza Shah M. Gum acacia stabilized silver nanoparticles based nano-cargo for enhanced anti-arthritic potentials of hesperidin in adjuvant induced arthritic rats. Artif. Cells Nanomed. Biotechnol. 2018;46:597–607. doi: 10.1080/21691401.2018.1431653. PubMed DOI
Rao D.S. Rheumatoid arthritis (RA) disease treatment with rutin stabilized nanoparticles. Austin J. Biotechnol. Bioeng. 2015;2:1043.
Hewlings S.J., Kalman D.S. Curcumin: A review of its’ effects on human health. Foods. 2017;6:92. doi: 10.3390/foods6100092. PubMed DOI PMC
Lee S.Y., Cho S.S., Li Y.C., Bae C.S., Park K.M., Park D.H. Anti-inflammatory effect of curcuma longa and allium hookeri co-treatment via NF-κB and COX-2 pathways. Sci. Rep. 2020;10:5718. doi: 10.1038/s41598-020-62749-7. PubMed DOI PMC
Wal P., Saraswat N., Pal R.S., Wal A., Chaubey M. A detailed insight of the anti-inflammatory effects of curcumin with the assessment of parameters, sources of ROS and associated mechanisms. Open Med. J. 2019;6:64–76. doi: 10.2174/1874220301906010064. DOI
Naksuriya O., Okonogi S., Schiffelers R.M., Hennink W.E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35:3365–3383. doi: 10.1016/j.biomaterials.2013.12.090. PubMed DOI
Rahimi H.R., Nedaeinia R., Shamloo A.S., Nikdoust S., Oskuee R.K. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J. Phytomed. 2016;6:383–398. PubMed PMC
Karthikeyan A., Senthil N., Min T. Nanocurcumin: A promising candidate for therapeutic applications. Front. Pharmacol. 2020;11:487. doi: 10.3389/fphar.2020.00487. PubMed DOI PMC
Bonaccorso A., Gigliobianco M.R., Pellitteri R., Santonocito D., Carbone C., Di Martino P., Puglisi G., Musumeci T. Optimization of curcumin nanocrystals as promising strategy for nose-to-brain delivery application. Pharmaceutics. 2020;12:476. doi: 10.3390/pharmaceutics12050476. PubMed DOI PMC
Valizadeh H., Abdolmohammadi-Vahid S., Danshina S., Gencer M.Z., Ammari A., Sadeghi A., Roshangar L., Aslani S., Esmaeilzadeh A., Ghaebi M., et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 2020;89:107088. doi: 10.1016/j.intimp.2020.107088. PubMed DOI PMC
Moniruzzaman M., Min T. Curcumin, curcumin nanoparticles and curcumin nanospheres: A review on their pharmacodynamics based on monogastric farm animal, poultry and fish nutrition. Pharmaceutics. 2020;12:447. doi: 10.3390/pharmaceutics12050447. PubMed DOI PMC
Del Prado-Audelo M.L., Caballero-Floran I.H., Meza-Toledo J.A., Mendoza-Munoz N., Gonzalez-Torres M., Floran B., Cortes H., Leyva-Gomez G. Formulations of curcumin nanoparticles for brain diseases. Biomolecules. 2019;9:56. doi: 10.3390/biom9020056. PubMed DOI PMC
Yavarpour-Bali H., Ghasemi-Kasman M., Pirzadeh M. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomed. 2019;14:4449–4460. doi: 10.2147/IJN.S208332. PubMed DOI PMC
Ubeyitogullari A., Ciftci O.N. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin’s bioaccessibility. Sci. Rep. 2019;9:19112. doi: 10.1038/s41598-019-55619-4. PubMed DOI PMC
Coradini K., Friedrich R.B., Fonseca F.N., Vencato M.S., Andrade D.F., Oliveira C.M., Battistel A.P., Guterres S.S., da Rocha M.I., Pohlmann A.R., et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In-vivo studies. Eur. J. Pharm. Sci. 2015;78:163–170. doi: 10.1016/j.ejps.2015.07.012. PubMed DOI
Kakkar V., Kaur I.P., Kaur A.P., Saini K., Singh K.K. Topical delivery of tetrahydrocurcumin lipid nanoparticles effectively inhibits skin inflammation: In vitro and in vivo study. Drug Dev. Ind. Pharm. 2018;44:1701–1712. doi: 10.1080/03639045.2018.1492607. PubMed DOI
Yang C., Zhang M., Lama S., Wang L., Merlin D. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J. Control. Release. 2020;323:293–310. doi: 10.1016/j.jconrel.2020.04.032. PubMed DOI PMC
Gai W., Hao X., Zhao J., Wang L., Liu J., Jiang H., Jin H., Liu G., Feng Y. Delivery of benzoylaconitine using biodegradable nanoparticles to suppress inflammation via regulating NF-κB signaling. Colloids Surf. B Biointerfaces. 2020;191:1–10. doi: 10.1016/j.colsurfb.2020.110980. PubMed DOI
Chen S.R., Dai Y., Zhao J., Lin L., Wang Y., Wang Y. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F. Front. Pharmacol. 2018;9:104. doi: 10.3389/fphar.2018.00104. PubMed DOI PMC
Zhang L., Chang J., Zhao Y., Xu H., Wang T., Xing L., Wang Y., Liang Q. Fabrication of a triptolide-loaded and poly-γ-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. Int. J. Nanomed. 2018;13:2051–2064. doi: 10.2147/IJN.S151233. PubMed DOI PMC
Land W.G. Damage-Associated Molecular Patterns in Human Diseases. Springer Nature; Cham, Switzerland: 2018. Volume 1: Injury-Induced Innate Immune Responses.
Deng Z., Rong Y., Teng Y., Mu J., Zhuang X., Tseng M., Samykutty A., Zhang L., Yan J., Miller D., et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol. Ther. 2017;25:1641–1654. doi: 10.1016/j.ymthe.2017.01.025. PubMed DOI PMC
Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 2018;59:391–412. doi: 10.1016/j.intimp.2018.03.002. PubMed DOI PMC
Gao W., Wang Y., Xiong Y., Sun L., Wang L., Wang K., Lu H.Y., Bao A., Turvey S.E., Li Q., et al. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomater. 2019;85:203–217. doi: 10.1016/j.actbio.2018.12.046. PubMed DOI PMC
Fukata T., Mizushima T., Nishimura J., Okuzaki D., Wu X., Hirose H., Yokoyama Y., Kubota Y., Nagata K., Tsujimura N., et al. The supercarbonate apatite-microrna complex inhibits dextran sodium sulfate-induced colitis. Mol. Ther. Nucleic Acids. 2018;12:658–671. doi: 10.1016/j.omtn.2018.07.007. PubMed DOI PMC
Uemura Y., Naoi T., Kanai Y., Kobayashi K. The efficiency of lipid nanoparticles with an original cationic lipid as a siRNA delivery system for macrophages and dendritic cells. Pharm. Dev. Technol. 2019;24:263–268. doi: 10.1080/10837450.2018.1469149. PubMed DOI
Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems
Advances in Biologically Applicable Graphene-Based 2D Nanomaterials
Advances in Nanostructures for Antimicrobial Therapy
Advances in Use of Nanomaterials for Musculoskeletal Regeneration
Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes