Graphenic Materials for Biomedical Applications

. 2019 Dec 11 ; 9 (12) : . [epub] 20191211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31835693

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008441 MSMT CR
SP2019/23 MSMT CR
APVV-17-0373 Slovak Research and Development Agency
APVV-17-0318 Slovak Research and Development Agency

Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017-2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.

Zobrazit více v PubMed

Erol O., Uyan I., Hatip M., Yilmaz C. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomed. Nanotechnol. 2018;14:2433–2454. doi: 10.1016/j.nano.2017.03.021. PubMed DOI

Patel D.K., Seo Y.R., Lim K.T. Stimuli-responsive graphene nanohybrids for biomedical applications. Stem Cells Int. 2019;2019:9831853. doi: 10.1155/2019/9831853. PubMed DOI PMC

Gong X., Liu G., Li Y., Yu D.Y.W., Teoh W.Y. Functionalized-graphene composites: Fabrication and applications in sustainable energy and environment. Chem. Mater. 2016;28:8082–8118. doi: 10.1021/acs.chemmater.6b01447. DOI

Dhas N., Parekh K., Pandey A., Kudarha R., Mutalik S., Mehta T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J. Control. Release. 2019;308:130–161. doi: 10.1016/j.jconrel.2019.07.016. PubMed DOI

Chakraborty M., Hashmi M.S.J. Wonder material graphene: Properties, synthesis and practical applications. Adv. Mater. Process. Technol. 2018;4:573–602. doi: 10.1080/2374068X.2018.1484998. DOI

Liu J., Cui L., Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–9257. doi: 10.1016/j.actbio.2013.08.016. PubMed DOI

Kiew S.F., Kiew L.V., Lee H.B., Imae T., Chung L.Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control. Release. 2016;226:217–228. doi: 10.1016/j.jconrel.2016.02.015. PubMed DOI

Yang Y., Asiri A.M., Tang Z., Du D., Lin Y. Graphene based materials for biomedical applications. Mater. Today. 2013;16:365–373. doi: 10.1016/j.mattod.2013.09.004. DOI

Pattnaik S., Swain K., Lin Z. Graphene and graphene-based nanocomposites: Biomedical applications and biosafety. J. Mater. Chem. B. 2016;4:7813–7831. doi: 10.1039/C6TB02086K. PubMed DOI

Muthoosamy K., Abubakar I.B., Bai R.G., Loh H. Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci. Rep. 2016;6:32808. doi: 10.1038/srep32808. PubMed DOI PMC

Tahriri M., Del Monico M., Moghanian A., Tavakkoli Yaraki M., Torres R., Yadegari A., Tayebi L. Graphene and its derivatives: Opportunities and challenges in dentistry. Mater. Sci. Eng. C. 2019;102:171–185. doi: 10.1016/j.msec.2019.04.051. PubMed DOI

Panwar N., Soehartono A.M., Chan K.K., Zeng S., Xu G., Qu J., Coquet P., Yong K.T., Chen X. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery. Chem. Rev. 2019;119:9559–9656. doi: 10.1021/acs.chemrev.9b00099. PubMed DOI

Ioniţă M., Vlăsceanu G.M., Watzlawek A.A., Voicu S.I., Burns J.S., Iovu H. Graphene and functionalized graphene: Extraordinary prospects for nanobiocomposite materials. Compos. Part B Eng. 2017;121:34–57.

Phiri J., Gane P., Maloney T.C. General overview of graphene: Production, properties and application in polymer composites. Mater. Sci. Eng. B. 2017;215:9–28. doi: 10.1016/j.mseb.2016.10.004. DOI

Yang G., Li L., Lee W.B., Ng M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018;19:613–648. doi: 10.1080/14686996.2018.1494493. PubMed DOI PMC

Walter J., Nacken T.J., Damm C., Thajudeen T., Eigler S., Peukert W. Determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation. Small. 2015;11:814–825. doi: 10.1002/smll.201401940. PubMed DOI

Mittal G., Dhand V., Yop K., Park S., Ro W. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015;21:11–25. doi: 10.1016/j.jiec.2014.03.022. DOI

Lawal A.T. Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 2019;141:111384. doi: 10.1016/j.bios.2019.111384. PubMed DOI

Zhang X., Wang Y., Luo G., Xing M. Two-dimensional graphene family material. Sensors. 2019;19:1–34. PubMed PMC

Girao A.F., Serrano M.C., Completo A., Marques P.A.A.P. Do biomedical engineers dream of graphene sheets? Biomater. Sci. 2019;7:1228–1239. doi: 10.1039/C8BM01636D. PubMed DOI

Kitko K.E., Zhang Q. Graphene-based nanomaterials: From production to integration with modern tools in neuroscience. Front. Syst. Neurosci. 2019;13:1–17. doi: 10.3389/fnsys.2019.00026. PubMed DOI PMC

Xia M.Y., Xie Y., Yu C.H., Chen G.Y., Li Y.H., Zhang T., Peng Q. Graphene-based nanomaterials: The promising active agents for antibiotics-independent antibacterial applications. J. Control. Release. 2019;307:16–31. doi: 10.1016/j.jconrel.2019.06.011. PubMed DOI

De Melo-Diogo D., Lima-Sousa R., Alves C.G., Correia I.J. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater. Sci. 2019;7:3534–3551. doi: 10.1039/C9BM00577C. PubMed DOI

Bullo S., Buskaran K., Baby R., Dorniani D., Fakurazi S., Hussein M.Z. Dual drugs anticancer nanoformulation using graphene oxide-PEG as nanocarrier for protocatechuic acid and chlorogenic acid. Pharm. Res. 2019;36:91. doi: 10.1007/s11095-019-2621-8. PubMed DOI

Tiwari H., Karki N., Pal M., Basak S., Verma R.K., Bal R., Kandpal N.D., Bisht G., Sahoo N.G. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf. B Biointerfaces. 2019;178:452–459. doi: 10.1016/j.colsurfb.2019.03.037. PubMed DOI

Charmi J., Nosrati H., Amjad J.M., Mohammadkhani R., Danafar H. Polyethylene glycol (PEG) decorated graphene oxide nanosheets for controlled release curcumin delivery. Heliyon. 2019;5:e01466. doi: 10.1016/j.heliyon.2019.e01466. PubMed DOI PMC

Assali A., Akhavan O., Mottaghitalab F., Adeli M., Dinarvand R., Razzazan S., Arefian E., Soleimani M., Atyabi F. Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. Int. J. Nanomedicine. 2018;13:5865–5886. doi: 10.2147/IJN.S162647. PubMed DOI PMC

Taniselass S., Arshad M.K.M., Gopinath S.C.B. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron. 2019;130:276–292. doi: 10.1016/j.bios.2019.01.047. PubMed DOI

De Silva K.K.H., Huang H.H., Joshi R.K., Yoshimura M. Chemical reduction of graphene oxide using green reductants. Carbon. 2017;119:190–199. doi: 10.1016/j.carbon.2017.04.025. DOI

Madannejad R., Shoaie N., Jahanpeyma F., Darvishi M.H., Azimzadeh M., Javadi H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact. 2019;307:206–222. doi: 10.1016/j.cbi.2019.04.036. PubMed DOI

Eivazzadeh-Keihan R., Maleki A., de la Guardia M., Bani M.S., Chenab K.K., Pashazadeh-Panahi P., Baradaran B., Mokhtarzadeh A., Hamblin M.R. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res. 2019;18:185–201. doi: 10.1016/j.jare.2019.03.011. PubMed DOI PMC

Li Z., Wang L., Li Y., Feng Y., Feng W. Carbon-based functional nanomaterials: Preparation, properties and applications. Compos. Sci. Technol. 2019;179:10–40. doi: 10.1016/j.compscitech.2019.04.028. DOI

Setaro A. Advanced carbon nanotubes functionalization. J. Phys. Condens. Matter. 2017;29:11–14. doi: 10.1088/1361-648X/aa8248. PubMed DOI

Guo X., Mei N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 2014;22:105–115. doi: 10.1016/j.jfda.2014.01.009. PubMed DOI PMC

Wick P., Louw-Gaume A.E., Kucki M., Krug H.F., Kostarelos K., Fadeel B., Dawson K.A., Salvati A., Vazquez E., Ballerini L., et al. Classification framework for grapheme-based materials. Angew. Chem. 2014;53:7714–7718. doi: 10.1002/anie.201403335. PubMed DOI

Bottari G., Herranz M.A., Wibmer L., Volland M., Rodriguez-Perez L., Guldi D.M., Hirsch A., Martin N., D’Souza F., Torres T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 2017;46:4464–4500. doi: 10.1039/C7CS00229G. PubMed DOI

Lin L., Bin-Tay W., Aslam Z., Westwood A.V.K. Determination of the lateral size and thickness of solution-processed graphene flakes. J. Phys. Conf. Ser. 2017;902:012026. doi: 10.1088/1742-6596/902/1/012026. DOI

Wei P., Shen J., Wu K., Yang N. Defect-dependent electrochemistry of exfoliated graphene layers. Carbon. 2019;154:125–131. doi: 10.1016/j.carbon.2019.07.100. DOI

Mohandoss M., Sen Gupta S., Kumar R., Islam M.R., Som A., Mohd A.G., Pradeep T., Maliyekkal S.M. Self-propagated combustion synthesis of few-layered graphene: An optical properties perspective. Nanoscale. 2018;10:7581–7588. doi: 10.1039/C7NR09156G. PubMed DOI

Aliyev E., Filiz V., Khan M.M., Lee Y.J., Abetz C., Abetz V. Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials. 2019;9:1180. doi: 10.3390/nano9081180. PubMed DOI PMC

Cho J.H., Na S.R., Park S., Akinwande D., Liechti K.M., Cullinan M.A. Controlling the number of layers in graphene using the growth pressure. Nanotechnology. 2019;30:22. doi: 10.1088/1361-6528/ab0847. PubMed DOI

Wu J.B., Lin M.L., Cong X., Liu H.N., Tan P.H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018;47:1822–1873. doi: 10.1039/C6CS00915H. PubMed DOI

Shearer C.J., Slattery A.D., Stapleton A.J., Shapter J.G., Gibson C.T. Accurate thickness measurement of graphene. Nanotechnology. 2016;27:125704. doi: 10.1088/0957-4484/27/12/125704. PubMed DOI

Mellado C., Figueroa T., Baez R., Melendrez M., Fernandez K. Effects of probe and bath ultrasonic treatments on graphene oxide structure. Mater. Today Chem. 2019;13:1–7. doi: 10.1016/j.mtchem.2019.04.006. DOI

Amaro-Gahete J., Benitez A., Otero R., Esquivel D., Jimenez-Sanchidrian C., Morales J., Caballero A., Romero-Salguero F.J. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method. Nanomaterials. 2019;9:152. doi: 10.3390/nano9020152. PubMed DOI PMC

Borode A.O., Ahmed N.A., Olubambi P.A. Surfactant-aided dispersion of carbon nanomaterials in aqueous solution. Phys. Fluids. 2019;31:071301. doi: 10.1063/1.5105380. DOI

Qu Y., He F., Yu C., Liang X., Liang D., Ma L., Zhang Q., Lv J., Wu J. Advances on graphene-based nanomaterials for biomedical applications. Mater. Sci. Eng. C. 2018;90:764–780. doi: 10.1016/j.msec.2018.05.018. PubMed DOI

Karki N., Tiwari H., Pal M., Chaurasia A., Bal R., Joshi P., Sahoo N.G. Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: A comparative study. Colloids Surf. B Biointerfaces. 2018;169:265–272. doi: 10.1016/j.colsurfb.2018.05.022. PubMed DOI

Nanda S.S., Papaefthymiou G.C., Yi D.K., Nanda S.S., Papaefthymiou G.C., Yi D.K. Functionalization of graphene oxide and its biomedical applications functionalization of graphene oxide and its biomedical applications. Crit. Rev. Solid State Mater. Sci. 2015;40:291–315. doi: 10.1080/10408436.2014.1002604. DOI

Vacchi I.A., Raya J., Bianco A., Menard-Moyon C. Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions. 2D Mater. 2018;5:035037. doi: 10.1088/2053-1583/aac8a9. DOI

Cha J., Kim J., Ryu S., Hong S.H. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos. Part B Eng. 2019;162:283–288. doi: 10.1016/j.compositesb.2018.11.011. DOI

Punetha V.D., Rana S., Yoo H.J., Chaurasia A., McLeskey J.T., Sekkarapatti Ramasamy M., Sahoo N.G., Cho J.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog. Polym. Sci. 2017;67:1–47. doi: 10.1016/j.progpolymsci.2016.12.010. DOI

De Sousa M., Martins C.H.Z., Franqui L.S., Fonseca L.C., Delite F.S., Lanzoni E.M., Martinez D.S.T., Alves O.L. Covalent functionalization of graphene oxide with d-mannose: Evaluating the hemolytic effect and protein corona formation. J. Mater. Chem. B. 2018;6:2803–2812. doi: 10.1039/C7TB02997G. PubMed DOI

Nandanapalli K.R., Mudusu D., Lee S. Functionalization of graphene layers and advancements in device applications. Carbon. 2019;152:954–985. doi: 10.1016/j.carbon.2019.06.081. DOI

Ji X., Xu Y., Zhang W., Cui L., Liu J. Review of functionalization, structure and properties of graphene/polymer composite fibers. Comp. A Appl. Sci. Manufact. 2016;87:29–45. doi: 10.1016/j.compositesa.2016.04.011. DOI

Eckhart K.E., Holt B.D., Sydlik S.A., Laurencin M.G. Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomater. Sci. 2019;7:3876–3885. doi: 10.1039/C9BM00867E. PubMed DOI

Cherian R.S., Sandeman S., Ray S., Savina I.N., Ashtami J., Mohanan P.V. Green synthesis of Pluronic stabilized reduced graphene oxide: Chemical and biological characterization. Colloids Surf. B Biointerfaces. 2019;179:94–106. doi: 10.1016/j.colsurfb.2019.03.043. PubMed DOI

Khawaja H., Zahir E., Asghar M.A., Asghar M.A. Graphene oxide, chitosan and silver nanocomposite as a highly effective antibacterial agent against pathogenic strains. Colloids Surf. A Physicochem. Eng. Asp. 2018;555:246–255. doi: 10.1016/j.colsurfa.2018.06.052. DOI

Martin C., Kostarelos K., Prato M., Bianco A. Biocompatibility and biodegradability of 2D materials: Graphene and beyond. Chem. Commun. 2019;55:5540–5546. doi: 10.1039/C9CC01205B. PubMed DOI

Jia P.P., Sun T., Junaid M., Yang L., Ma Y.B., Cui Z.S., Wei D.P., Shi H.F., Pei D.S. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ. Pollut. 2019;247:595–606. doi: 10.1016/j.envpol.2019.01.072. PubMed DOI

Liao C., Li Y., Tjong S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018;19:3564. doi: 10.3390/ijms19113564. PubMed DOI PMC

Frontinan-Rubio J., Gomez M.V., Martin C., Gonzalez-Dominguez J.M., Duran-Prado M., Vazquez E. Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale. 2018;10:11604–11615. doi: 10.1039/C8NR00897C. PubMed DOI

Keremidarska-Markova M., Hristova-Panusheva K., Andreeva T., Speranza G., Wang D., Krasteva N. Cytotoxicity evaluation of ammonia-modified graphene oxide particles in lung cancer cells and embryonic stem cells. Adv. Condens. Matter Phys. 2018;2018:9571828. doi: 10.1155/2018/9571828. DOI

Syama S., Mohanan P.V. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. Int. J. Biol. Macromol. 2016;86:546–555. doi: 10.1016/j.ijbiomac.2016.01.116. PubMed DOI

Ou L., Song B., Liang H., Liu J., Feng X., Deng B., Sun T., Shao L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016;13:57. doi: 10.1186/s12989-016-0168-y. PubMed DOI PMC

Akhavan O., Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–5736. doi: 10.1021/nn101390x. PubMed DOI

Nasirzadeh N., Azari M.R., Rasoulzadeh Y., Mohammadian Y. An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol. Ind. Health. 2019;35:79–87. doi: 10.1177/0748233718817180. PubMed DOI

Zainal-Abidin M.H., Hayyan M., Ngoh G.C., Wong W.F. From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem. Eng. Sci. 2019;195:95–106. doi: 10.1016/j.ces.2018.11.013. DOI

Dallavalle M., Calvaresi M., Bottoni A., Melle-Franco M., Zerbetto F. Graphene can wreak havoc with cell membranes. ACS Appl. Mater. 2015;7:4406–4414. doi: 10.1021/am508938u. PubMed DOI

Bondar O.V., Saifullina D.V., Shakhmaeva I.I., Mavlyutova I.I., Abdullin T.I. Monitoring of the zeta potential of human cells upon reduction in their viability and interaction with polymers. Acta Nat. 2012;1:78–81. doi: 10.32607/20758251-2012-4-1-78-81. PubMed DOI PMC

Singh S.K., Singh M.K., Kulkarni P.P., Sonkar V.K., Gracio J.J., Dash D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano. 2012;6:2731–2740. doi: 10.1021/nn300172t. PubMed DOI

Wang B., Zhang L., Bae S.C., Granick S. Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc. Natl. Acad. Sci. USA. 2008;105:18171–18175. doi: 10.1073/pnas.0807296105. PubMed DOI PMC

Majidi H.J., Babaei A., Bafrani Z.A., Shahrampour D., Zabihi E., Jafari S.M. Investigating the best strategy to diminish the toxicity and enhance the antibacterial activity of graphene oxide by chitosan addition. Carbohydr. Polym. 2019;225:115–220. doi: 10.1016/j.carbpol.2019.115220. PubMed DOI

Wu Y., Wang F., Wang S., Ma J., Xu M., Gao M., Liu R., Chen W., Liu S. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale. 2018;10:14637–14650. doi: 10.1039/C8NR02798F. PubMed DOI

Thomas S., Grohens Y., Ninan N. Nanotechnology Applications for Tissue Engineering. Elsevier; Amsterdam, The Netherlands: 2015.

Olad A., Hagh H.B.K. Graphene oxide and amin-modified graphene oxide incorporated chitosan-gelatin scaffolds as promising materials for tissue engineering. Compos. Part B Eng. 2019;162:692–702. doi: 10.1016/j.compositesb.2019.01.040. DOI

Kenry L.W., Loh K.P., Lim C.T. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials. 2018;155:236–250. doi: 10.1016/j.biomaterials.2017.10.004. PubMed DOI

Teradal N.L., Jelinek R. Carbon nanomaterials in biological studies and biomedicine. Adv. Healthc. Mater. 2017;6:1–36. doi: 10.1002/adhm.201700574. PubMed DOI

Lasocka I., Szulc-Dabrowska L., Skibniewski M., Skibniewska E., Strupinski W., Pasternak I., Kmiec H., Kowalczyk P. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts. Toxicol. Vitr. 2018;48:276–285. doi: 10.1016/j.tiv.2018.01.028. PubMed DOI

Aval N.A., Emadi R., Valiani A., Kharaziha M., Karimipour M., Rahbarghazi R. Nano-featured poly (lactide-co-glycolide)-graphene microribbons as a promising substrate for nerve tissue engineering. Compos. Part B Eng. 2019;173:106863. doi: 10.1016/j.compositesb.2019.05.074. DOI

Olad A., Hagh H.B.K., Mirmohseni A., Azhar F.F. Graphene oxide and montmorillonite enriched natural polymeric scaffold for bone tissue engineering. Ceram. Int. 2019;45:15609–15619. doi: 10.1016/j.ceramint.2019.05.071. DOI

Jiang W., Liu H. Nanocomposites for bone repair and osteointegration with soft tissues. In: Liu H., editor. Nanocomposites for Musculoskeletal Tissue Regeneration. Woodhead Publishing & Elsevier; Kidlington, UK: 2016. pp. 241–257.

Purohit S.D., Bhaskar R., Singh H., Yadav I., Gupta M.K., Mishra N.C. Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int. J. Biol. Macromol. 2019;133:592–602. doi: 10.1016/j.ijbiomac.2019.04.113. PubMed DOI

He Y., Li Y., Chen G., Wei C., Zhang X., Zeng B., Yi C., Wang C., Yu D. Concentration-dependent cellular behavior and osteogenic differentiation effect induced in bone marrow mesenchymal stem cells treated with magnetic graphene oxide. J. Biomed. Mater. Res. Part A. 2020;108:50–60. doi: 10.1002/jbm.a.36791. PubMed DOI

Jafarkhani M., Salehi Z., Bagheri Z., Aayanifard Z., Rezvan A., Doosthosseini H., Shokrgozar M.A. Graphene functionalized decellularized scaffold promotes skin cell proliferation. Can. J. Chem. Eng. 2020;98 doi: 10.1002/cjce.23588. in press. DOI

Zhou K., Yu P., Shi X., Ling T., Zeng W., Chen A., Yang W., Zhou Z. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13:9595–9606. doi: 10.1021/acsnano.9b04723. PubMed DOI

Krishnan S.K., Singh E., Singh P., Meyyappan M., Nalwa H.S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019;9:8778–8781. doi: 10.1039/C8RA09577A. PubMed DOI PMC

Wang H., Chen Q., Zhou S. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018;47:4198–4232. doi: 10.1039/C7CS00399D. PubMed DOI

Singh D.P., Herrera C.E., Singh B., Singh S., Singh R.K., Kumar R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C. 2018;86:173–197. doi: 10.1016/j.msec.2018.01.004. PubMed DOI

Rahman M.M., Lee J.J. Electrochemical dopamine sensors based on graphene. J. Electrochem. Sci. Technol. 2019;10:185–195.

Wang W., Su H., Wu Y., Zhou T., Li T. Review-biosensing and biomedical applications of graphene: A review of current progress and future prospect. J. Electrochem. Soc. 2019;166:B505–B520. doi: 10.1149/2.1231906jes. DOI

Jampilek J., Kralova K. Nano-antimicrobials: Activity, benefits and weaknesses. In: Ficai A., Grumezescu A.M., editors. Nanostructures in Therapeutic Medicine–Nanostructures for Antimicrobial Therapy. Elsevier; Amsterdam, The Netherlands: 2017. pp. 23–54.

Gao F., Cai X., Wang X., Gao C., Liu S., Gao F., Wang Q. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens. Actuators B Chem. 2013;186:380–387. doi: 10.1016/j.snb.2013.06.020. DOI

Jampilek J., Kralova K. Nanocomposites: Synergistic nanotools for management mycotoxigenic fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology–Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2019. pp. 349–383.

Jampilek J., Kralova K. Impact of nanoparticles on toxigenic fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology–Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2019. pp. 309–348.

Jampilek J., Kralova K. Nanomaterials applicable in food protection. In: Rai R.V., Bai J.A., editors. Nanotechnology Applications in the Food Industry. Taylor & Francis Group; Boca Raton, FL, USA: 2018. pp. 75–96.

Gomes R.N., Borges I., Pereira A.T., Maia A.F., Pestana M., Magalhaes F.D., Pinto A.M., Goncalves I.C. Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon. 2018;139:635–647. doi: 10.1016/j.carbon.2018.06.044. DOI

Scaffaro R., Maio A., Lopresti F. Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid. Compos. Sci. Technol. 2019;169:60–69. doi: 10.1016/j.compscitech.2018.11.003. DOI

Liu Y., Wen J., Gao Y., Li T., Wang H., Yan H., Niu B., Guo R. Antibacterial graphene oxide coatings on polymer substrate. Appl. Surf. Sci. 2018;436:624–630. doi: 10.1016/j.apsusc.2017.12.006. DOI

Palmieri V., Lauriola M.C., Ciasca G., Conti C., De Spirito M., Papi M. The graphene oxide contradictory effects against human pathogens. Nanotechnology. 2017;28:152001–152018. doi: 10.1088/1361-6528/aa6150. PubMed DOI

Skrlova K., Malachova K., Munoz-Bonilla A., Merinska D., Rybkova Z., Fernandez-Garcia M., Placha D. Biocompatible polymer materials with antimicrobial properties for preparation of stents. Nanomaterials. 2019;9:1548. doi: 10.3390/nano9111548. PubMed DOI PMC

Pulingam T., Thong K.L., Ali M.E., Appaturi J.N., Dinshaw I.J., Ong Z.Y., Leo B.F. Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids Surf. B Biointerfaces. 2019;181:6–15. doi: 10.1016/j.colsurfb.2019.05.023. PubMed DOI

Jampilek J., Kralova K., Campos E.V.R., Fraceto L.F. Bio-based nanoemulsion formulations applicable in agriculture, medicine and food industry. In: Prasad R., Kumar V., Kumar M., Choudhary D.K., editors. Nanobiotechnology in Bioformulations. Springer; Cham, Germany: 2019. pp. 33–84.

Jampilek J., Kralova K. Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Sharma A.K., Keservani R.K., Kesharwani R.K., editors. Nanobiomaterials: Applications in Drug Delivery. CRC Press; Warentown, NJ, USA: 2018. pp. 131–208.

Jampilek J., Kralova K. Natural biopolymeric nanoformulations for brain drug delivery. In: Keservani R.K., Sharma A.K., Kesharwani R.K., editors. Nanocarriers for Brain Targetting: Principles and Applications. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2019. pp. 131–203.

Cheng W., Chen Y., Teng L., Lu B., Ren L., Wang Y. Antimicrobial colloidal hydrogels assembled by graphene oxide and thermo-sensitive nanogels for cell encapsulation. J. Colloid Interface Sci. 2018;513:314–323. doi: 10.1016/j.jcis.2017.11.018. PubMed DOI

Rasoulzadehzali M., Namazi H. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin. Int. J. Biol. Macromol. 2018;116:54–63. doi: 10.1016/j.ijbiomac.2018.04.140. PubMed DOI

Zhang Q., Tu Q., Hickey M.E., Xiao J., Gao B., Tian C., Heng P., Jiao Y., Peng T., Wang J. Preparation and study of the antibacterial ability of graphene oxide-catechol hybrid polylactic acid nanofiber mats. Colloids Surf. B Biointerfaces. 2018;172:496–505. doi: 10.1016/j.colsurfb.2018.09.003. PubMed DOI

Diez-Orejas R., Feito M.J., Cicuendez M., Casarrubios L., Rojo J.M., Portoles M.T. Graphene oxide nanosheets increase Candida albicans killing by pro-inflammatory and reparative peritoneal macrophages. Colloids Surf. B Biointerfaces. 2018;171:250–259. doi: 10.1016/j.colsurfb.2018.07.027. PubMed DOI

Sandhya P.K., Jose J., Sreekala M.S., Padmanabhan M., Kalarikkal N., Thomas S. Reduced graphene oxide and ZnO decorated graphene for biomedical applications. Ceram. Int. 2018;44:15092–15098. doi: 10.1016/j.ceramint.2018.05.143. DOI

Jampilek J. How can we bolster the antifungal drug discovery pipeline? Future Med. Chem. 2016;8:1393–1397. doi: 10.4155/fmc-2016-0124. PubMed DOI

Tran D.L., Thi P.L., Hoang-Thi T.T., Park K.D. Graphene oxide immobilized surfaces facilitate the sustained release of doxycycline for the prevention of implant related infection. Colloids Surf. B Biointerfaces. 2019;181:576–584. doi: 10.1016/j.colsurfb.2019.06.009. PubMed DOI

Ma S., Si Y., Wang F., Su L., Xia C.C., Yao J., Chen H., Liu X. Interaction processes of ciprofloxacin with graphene oxide and reduced graphene oxide in the presence of montmorillonite in simulated gastrointestinal fluids. Sci. Rep. 2017;7:2588. doi: 10.1038/s41598-017-02620-4. PubMed DOI PMC

Pi J., Shen L., Shen H., Yang E., Wang W., Wang R., Huang D., Lee B.S., Hu C., Chen C., et al. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M. tuberculosis killing efficiency. Mater. Sci. Eng. C. 2019;103:109777. doi: 10.1016/j.msec.2019.109777. PubMed DOI

Liu P., Wang S., Liu X., Ding J., Zhou W. Platinated graphene oxide: A nanoplatform for efficient gene-chemo combination cancer therapy. Eur. J. Pharm. Sci. 2018;121:319–329. doi: 10.1016/j.ejps.2018.06.009. PubMed DOI

Magrez A., Kasas S., Salicio V., Pasquier N., Seo J.W., Celio M., Catsicas S., Schwaller B., Forro L. Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett. 2006;6:1121–1125. doi: 10.1021/nl060162e. PubMed DOI

Pulskamp K., Diabate S., Krug H.F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 2007;168:58–74. doi: 10.1016/j.toxlet.2006.11.001. PubMed DOI

Yu X., Cai H., Zhang W., Li X., Pan N., Luo Y., Wang X., Hou J.G. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano. 2011;5:952–958. doi: 10.1021/nn102291j. PubMed DOI

Sanchez V.C., Jachak A., Hurt R.H., Kane A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol. 2012;25:15–34. doi: 10.1021/tx200339h. PubMed DOI PMC

Valentini F., Calcaterra A., Ruggiero V., Pichichero E., Martino A., Iosi F., Bertuccini L., Antonaroli S., Mardente S., Zicari A., et al. Functionalized graphene derivatives: Antibacterial properties and cytotoxicity. J. Nanomat. 2019;2019:2752539. doi: 10.1155/2019/2752539. DOI

Kumar P., Huo P., Zhang R., Liu B. Antibacterial properties of graphene-based nanomaterials. Nanomaterials. 2019;9:737. doi: 10.3390/nano9050737. PubMed DOI PMC

Jampílek J., Kos J., Kralova K. Potential of Nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials. 2019;9:296. doi: 10.3390/nano9020296. PubMed DOI PMC

Jampilek J., Kralova K. Recent advances in lipid nanocarriers applicable in the fight against cancer. In: Grumezescu A.M., editor. Nanoarchitectonics in Biomedicine. Elsevier; Amsterdam, The Netherlands: 2019. pp. 219–294.

Jampilek J., Kralova K. Nano-biopesticides in agriculture: State of art and future opportunities. In: Koul O., editor. Nano-Biopesticides Today and Future Perspectives. Academic Press & Elsevier; Amsterdam, The Netherlands: 2019. pp. 397–447.

Jampilek J., Kralova K. Nanotechnology based formulations for drug targeting to central nervous system. In: Keservani R.K., Sharma A.K., editors. Nanoparticulate Drug Delivery Systems. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2019. pp. 151–220.

Jampilek J., Kralova K. Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Prasad R., Kumar M., Kumar V., editors. Nanotechnology: An Agricultural Paradigm. Springer; Singapore: 2017. pp. 177–226.

Kozik V., Bak A., Pentak D., Hachula B., Pytlakowska K., Rojkiewicz M., Jampilek J., Sieron K., Jazowiecka-Rakus J., Sochanik A. Derivatives of graphene oxide as potential drug carriers. J. Nanosci. Nanotechnol. 2019;19:2489–2492. doi: 10.1166/jnn.2019.15855. PubMed DOI

Jampilek J., Kralova K. Nanopesticides: Preparation, targeting and controlled release. In: Grumezescu A.M., editor. Nanotechnology in the Agri-Food Industry–New Pesticides and Soil Sensors. Elsevier; London, UK: 2017. pp. 81–127.

Abdollahi Z., Taheri-Kafrani A., Bahrani S.A., Kajani A.A. PEGAylated graphene oxide/superparamagnetic nanocomposite as a high-efficiency loading nanocarrier for controlled delivery of methotrexate. J. Biotechnol. 2019;298:88–97. doi: 10.1016/j.jbiotec.2019.04.006. PubMed DOI

Yuen W.W., Du N.R., Chan C.H., Silva E.A., Mooney D.J. Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc. Natl. Acad. Sci. USA. 2010;107:17933–17938. doi: 10.1073/pnas.1001192107. PubMed DOI PMC

Dube A., Reynolds J.L., Law W.C., Maponga C.C., Prasad P.N., Morse G.D. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomed. Nanotechnol. 2014;10:831–838. doi: 10.1016/j.nano.2013.11.012. PubMed DOI

Sharma M., Chatterjee M., Singh K., Satapathia S. Design of a multimodal colloidal polymeric drug delivery vesicle: A detailed pharmaceutical study. NANOSO. 2019;18:100245. doi: 10.1016/j.nanoso.2019.01.004. DOI

Browne S., Pandit A. Multi-modal delivery of therapeutics using biomaterial scaffolds. J. Mater. Chem. B. 2014;2:6692–6707. doi: 10.1039/C4TB00863D. PubMed DOI

Feng L., Wu L., Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater. 2013;25:168–186. doi: 10.1002/adma.201203229. PubMed DOI

Tabish T.A. Graphene-based materials: The missing piece in nanomedicine? Biochem. Biophys. Res. Commun. 2018;504:686–689. doi: 10.1016/j.bbrc.2018.09.029. PubMed DOI

Zhan M., Naik R.R., Dai L. Carbon Nanomaterials for Biomedical Applications. Springer International Publishing; Cham, Switzerland: 2016.

Chee W.K., Lim H.N., Huang N.M., Harrison I. Nanocomposites of graphene/polymers: A review. RSC Adv. 2015;5:68014–68051. doi: 10.1039/C5RA07989F. DOI

Gao Y., Zhong S., Xu L., He S., Dou Y., Zhao S., Chen P., Cui X. Mesoporous silica nanoparticles capped with graphene quantum dots as multifunctional drug carriers for photo-thermal and redox-responsive release. Microporous Mesoporous Mater. 2019;278:130–137. doi: 10.1016/j.micromeso.2018.11.030. DOI

Zhang X., Luo L., Li L., He Y., Cao W., Liu H., Niu K., Gao D. Trimodal synergistic antitumor drug delivery system based on graphene oxide. Nanomedicine. 2019;15:142–152. doi: 10.1016/j.nano.2018.09.008. PubMed DOI

Campbell E., Hasan M.T., Pho C., Callaghan K., Akkaraju G.R., Naumov A.V. Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci. Rep. 2019;9:416. doi: 10.1038/s41598-018-36617-4. PubMed DOI PMC

Yuan Y., Xu X., Gong J., Mu R., Li Y., Wu C., Pang J. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int. J. Biol. Macromol. 2019;131:209–217. doi: 10.1016/j.ijbiomac.2019.03.061. PubMed DOI

Huang C., Wu J., Jiang W., Liu R., Li Z., Luan Y. Amphiphilic prodrug-decorated graphene oxide as a multi-functional drug delivery system for efficient cancer therapy. Mater. Sci. Eng. C. 2018;89:15–24. doi: 10.1016/j.msec.2018.03.017. PubMed DOI

Dong J., Wang K., Sun L., Sun B., Yang M., Chen H., Wang Y., Sun J., Dong L. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens. Actua. B Chem. 2018;256:616–623. doi: 10.1016/j.snb.2017.09.200. DOI

Zare-Zardini H., Taheri-Kafrani A., Amiri A., Bordbar A.K. New generation of drug delivery systems based on ginsenoside Rh2-, Lysine- and Arginine-treated highly porous graphene for improving anticancer activity. Sci. Rep. 2018;8:586. doi: 10.1038/s41598-017-18938-y. PubMed DOI PMC

Wang C., Zhang Z., Chen B., Gu L., Li Y., Yu S. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J. Colloid Interface Sci. 2018;516:332–341. doi: 10.1016/j.jcis.2018.01.073. PubMed DOI

Javanbakht S., Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater. Sci. Eng. C. 2018;87:50–59. doi: 10.1016/j.msec.2018.02.010. PubMed DOI

Javanbakht S., Pooresmaeil M., Namazi H. Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydr. Polym. 2019;208:294–301. doi: 10.1016/j.carbpol.2018.12.066. PubMed DOI

Borandeh S., Abdolmaleki A., Abolmaali S.S., Tamaddon A.M. Synthesis, structural and in-vitro characterization of β-cyclodextrin grafted L-phenylalanine functionalized graphene oxide nanocomposite: A versatile nanocarrier for pH-sensitive doxorubicin delivery. Carbohydr. Polym. 2018;201:151–161. doi: 10.1016/j.carbpol.2018.08.064. PubMed DOI

Xiao Y., Zhang M., Fan Y., Zhang Q., Wang Y., Yuan W., Zhou N., Che J. Novel controlled drug release system engineered with inclusion complexes based on carboxylic graphene. Colloids Surf. B Biointerfaces. 2019;175:18–25. doi: 10.1016/j.colsurfb.2018.11.058. PubMed DOI

Kaya D., Kucukada K., Alemdar N. Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly (ethylene oxide) polymeric films. Carbohydr. Polym. 2019;215:189–197. doi: 10.1016/j.carbpol.2019.03.041. PubMed DOI

Rahmani Z., Sahraei R., Ghaemy M. Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: Study of drug delivery behavior. Carbohydr. Polym. 2018;194:34–42. doi: 10.1016/j.carbpol.2018.04.022. PubMed DOI

Xu X., Wang J., Wang Y., Zhao L., Li Y., Liu C. Formation of graphene oxide-hybridized nanogels for combinative anticancer therapy. Nanomedicine. 2018;14:2387–2395. doi: 10.1016/j.nano.2017.05.007. PubMed DOI

Xie M., Zhang F., Liu L., Zhang Y., Li Y., Li H., Xie J. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci. 2018;440:853–860. doi: 10.1016/j.apsusc.2018.01.175. DOI

Zhang J., Chen L., Shen B., Chen L., Mo J., Feng J. Dual-sensitive graphene oxide loaded with proapoptotic peptides and anticancer drugs for cancer synergetic therapy. Langmuir. 2019;35:6120–6128. doi: 10.1021/acs.langmuir.9b00611. PubMed DOI

Pham T.T., Nguyen H.T., Phung C.D., Pathak S., Regmi S., Ha D.H., Kim J.O., Yong C.S., Kim S.K., Choi J.E., et al. Targeted delivery of doxorubicin for the treatment of bone metastasis from breast cancer using alendronate-functionalized graphene oxide nanosheets. J. Ind. Eng. Chem. 2019;76:310–317. doi: 10.1016/j.jiec.2019.03.055. DOI

Abbasian M., Roudi M.M., Mahmoodzadeh F., Eskandani M., Jaymand M. Chitosan-grafted-poly(methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. Int. J. Biol. Macromol. 2018;118:1871–1879. doi: 10.1016/j.ijbiomac.2018.07.036. PubMed DOI

Pooresmaeil M., Namazi H. Surface modification of graphene oxide with stimuli-responsive polymer brush containing β-cyclodextrin as a pendant group: Preparation, characterization, and evaluation as controlled drug delivery agent. Colloids Surf. B Biointerfaces. 2018;172:17–25. doi: 10.1016/j.colsurfb.2018.08.017. PubMed DOI

Hashemi H., Namazi H. Blue fluorescent graphene oxide hybrid: Synthesis, characterization, and application as a drug delivery system. J. Drug Deliv. Sci. Technol. 2018;48:355–362. doi: 10.1016/j.jddst.2018.10.010. DOI

Vinothini K., Rajendran N.K., Munusamy M.A., Alarfaj A.A., Rajan M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. Mater. Sci. Eng. C. 2019;100:676–687. doi: 10.1016/j.msec.2019.03.011. PubMed DOI

Deb A., Vimala R. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery—A comparative study. Int. J. Biol. Macromol. 2018;107:2320–2333. doi: 10.1016/j.ijbiomac.2017.10.119. PubMed DOI

Thapa R.K., Soe Z.C., Ou W., Poudel K., Jeong J.H., Jin S.G., Ku S.K., Choi H.G., Lee Y.M., Yong C.S., et al. Palladium nanoparticle-decorated 2-D graphene oxide for effective photodynamic and photothermal therapy of prostate solid tumors. Colloids Surf. B Biointerfaces. 2018;169:429–437. doi: 10.1016/j.colsurfb.2018.05.051. PubMed DOI

Li G., Yang Y., Zhou R., Meng F., Li X. Functionalized graphene oxide as a nanocarrier of new copper (II) complexes for targeted therapy on nasopharyngeal carcinoma. Eur. J. Pharm. Sci. 2018;123:249–259. doi: 10.1016/j.ejps.2018.07.006. PubMed DOI

Wang X., Cao F., Yan M., Liu Y., Zhu X., Sun H., Ma G. Alum-functionalized graphene oxide nanocomplexes for effective anticancer vaccination. Acta Biomater. 2019;83:390–399. doi: 10.1016/j.actbio.2018.11.023. PubMed DOI

Pooresmaeil M., Namazi H. β-Cyclodextrin grafted magnetic graphene oxide applicable as cancer drug delivery agent: Synthesis and characterization. Mater. Chem. Phys. 2018;218:62–69. doi: 10.1016/j.matchemphys.2018.07.022. DOI

Xie M., Zhang F., Peng H., Zhang Y., Li Y., Xu Y., Xie J. Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy. Colloids Surf. B Biointerfaces. 2019;176:462–470. doi: 10.1016/j.colsurfb.2019.01.028. PubMed DOI

Xie P., Du P., Li J., Liu P. Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging. Carbohydr. Polym. 2019;205:377–384. doi: 10.1016/j.carbpol.2018.10.076. PubMed DOI

Chowdhury A.D., Ganganboina A.B., Tsai Y.C., Chiu H.C., Doong R. Multifunctional GQDs-concanavalin A@Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery. Anal. Chim. Acta. 2018;1027:109–120. doi: 10.1016/j.aca.2018.04.029. PubMed DOI

Rodrigues R.O., Baldi G., Doumett S., Garcia-Hevia L., Gallo J., Banobre-Lopez M., Drazic G., Calhelha R.C., Ferreira I.C.F.R., Lima R., et al. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater. Sci. Eng. C. 2018;93:206–217. doi: 10.1016/j.msec.2018.07.060. PubMed DOI

Shirvalilou S., Khoei S., Khoee S., Jamali N. Chemico-biological interactions development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations. Chem. Biol. Interact. 2018;295:97–108. doi: 10.1016/j.cbi.2018.08.027. PubMed DOI

Tran A.V., Shim K.H., Vo Thi T.T., Kook J.K., An S.S.A., Lee S.W. Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomater. 2018;74:397–413. doi: 10.1016/j.actbio.2018.05.022. PubMed DOI

Moldovan M., Prodan D., Sarosi C., Carpa R., Socaci C., Rosu M.C., Pruneanu S. Synthesis, morpho-structural properties and antibacterial effect of silicate-based composites containing graphene oxide/hydroxyapatite. Mater. Chem. Phys. 2018;217:48–53. doi: 10.1016/j.matchemphys.2018.06.055. DOI

Liu R., Zhang H., Zhang F., Wang X., Liu X., Zhang Y. Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy. Mater. Sci. Eng. C. 2019;96:138–145. doi: 10.1016/j.msec.2018.10.093. PubMed DOI

Yuan Y.G., Gurunathan S. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int. J. Nanomedicine. 2017;12:6537–6558. doi: 10.2147/IJN.S125281. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems

. 2022 Dec 01 ; 14 (12) : . [epub] 20221201

Advances in Biologically Applicable Graphene-Based 2D Nanomaterials

. 2022 Jun 02 ; 23 (11) : . [epub] 20220602

Advances in Nanostructures for Antimicrobial Therapy

. 2022 Mar 24 ; 15 (7) : . [epub] 20220324

Advances in Use of Nanomaterials for Musculoskeletal Regeneration

. 2021 Nov 24 ; 13 (12) : . [epub] 20211124

Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes

. 2021 Feb 24 ; 14 (5) : . [epub] 20210224

Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems

. 2021 Jan 06 ; 13 (1) : . [epub] 20210106

Potential of Nanonutraceuticals in Increasing Immunity

. 2020 Nov 09 ; 10 (11) : . [epub] 20201109

Antibacterial Character of Cationic Polymers Attached to Carbon-Based Nanomaterials

. 2020 Jun 22 ; 10 (6) : . [epub] 20200622

Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine

. 2020 Jan 23 ; 10 (2) : . [epub] 20200123

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...