Graphenic Materials for Biomedical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008441
MSMT CR
SP2019/23
MSMT CR
APVV-17-0373
Slovak Research and Development Agency
APVV-17-0318
Slovak Research and Development Agency
PubMed
31835693
PubMed Central
PMC6956396
DOI
10.3390/nano9121758
PII: nano9121758
Knihovny.cz E-zdroje
- Klíčová slova
- biomedical applications, drug delivery systems, graphene, graphene oxide, graphene-based nanomaterials, nanoformulations,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017-2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.
Zobrazit více v PubMed
Erol O., Uyan I., Hatip M., Yilmaz C. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomed. Nanotechnol. 2018;14:2433–2454. doi: 10.1016/j.nano.2017.03.021. PubMed DOI
Patel D.K., Seo Y.R., Lim K.T. Stimuli-responsive graphene nanohybrids for biomedical applications. Stem Cells Int. 2019;2019:9831853. doi: 10.1155/2019/9831853. PubMed DOI PMC
Gong X., Liu G., Li Y., Yu D.Y.W., Teoh W.Y. Functionalized-graphene composites: Fabrication and applications in sustainable energy and environment. Chem. Mater. 2016;28:8082–8118. doi: 10.1021/acs.chemmater.6b01447. DOI
Dhas N., Parekh K., Pandey A., Kudarha R., Mutalik S., Mehta T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J. Control. Release. 2019;308:130–161. doi: 10.1016/j.jconrel.2019.07.016. PubMed DOI
Chakraborty M., Hashmi M.S.J. Wonder material graphene: Properties, synthesis and practical applications. Adv. Mater. Process. Technol. 2018;4:573–602. doi: 10.1080/2374068X.2018.1484998. DOI
Liu J., Cui L., Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–9257. doi: 10.1016/j.actbio.2013.08.016. PubMed DOI
Kiew S.F., Kiew L.V., Lee H.B., Imae T., Chung L.Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control. Release. 2016;226:217–228. doi: 10.1016/j.jconrel.2016.02.015. PubMed DOI
Yang Y., Asiri A.M., Tang Z., Du D., Lin Y. Graphene based materials for biomedical applications. Mater. Today. 2013;16:365–373. doi: 10.1016/j.mattod.2013.09.004. DOI
Pattnaik S., Swain K., Lin Z. Graphene and graphene-based nanocomposites: Biomedical applications and biosafety. J. Mater. Chem. B. 2016;4:7813–7831. doi: 10.1039/C6TB02086K. PubMed DOI
Muthoosamy K., Abubakar I.B., Bai R.G., Loh H. Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci. Rep. 2016;6:32808. doi: 10.1038/srep32808. PubMed DOI PMC
Tahriri M., Del Monico M., Moghanian A., Tavakkoli Yaraki M., Torres R., Yadegari A., Tayebi L. Graphene and its derivatives: Opportunities and challenges in dentistry. Mater. Sci. Eng. C. 2019;102:171–185. doi: 10.1016/j.msec.2019.04.051. PubMed DOI
Panwar N., Soehartono A.M., Chan K.K., Zeng S., Xu G., Qu J., Coquet P., Yong K.T., Chen X. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery. Chem. Rev. 2019;119:9559–9656. doi: 10.1021/acs.chemrev.9b00099. PubMed DOI
Ioniţă M., Vlăsceanu G.M., Watzlawek A.A., Voicu S.I., Burns J.S., Iovu H. Graphene and functionalized graphene: Extraordinary prospects for nanobiocomposite materials. Compos. Part B Eng. 2017;121:34–57.
Phiri J., Gane P., Maloney T.C. General overview of graphene: Production, properties and application in polymer composites. Mater. Sci. Eng. B. 2017;215:9–28. doi: 10.1016/j.mseb.2016.10.004. DOI
Yang G., Li L., Lee W.B., Ng M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018;19:613–648. doi: 10.1080/14686996.2018.1494493. PubMed DOI PMC
Walter J., Nacken T.J., Damm C., Thajudeen T., Eigler S., Peukert W. Determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation. Small. 2015;11:814–825. doi: 10.1002/smll.201401940. PubMed DOI
Mittal G., Dhand V., Yop K., Park S., Ro W. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015;21:11–25. doi: 10.1016/j.jiec.2014.03.022. DOI
Lawal A.T. Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 2019;141:111384. doi: 10.1016/j.bios.2019.111384. PubMed DOI
Zhang X., Wang Y., Luo G., Xing M. Two-dimensional graphene family material. Sensors. 2019;19:1–34. PubMed PMC
Girao A.F., Serrano M.C., Completo A., Marques P.A.A.P. Do biomedical engineers dream of graphene sheets? Biomater. Sci. 2019;7:1228–1239. doi: 10.1039/C8BM01636D. PubMed DOI
Kitko K.E., Zhang Q. Graphene-based nanomaterials: From production to integration with modern tools in neuroscience. Front. Syst. Neurosci. 2019;13:1–17. doi: 10.3389/fnsys.2019.00026. PubMed DOI PMC
Xia M.Y., Xie Y., Yu C.H., Chen G.Y., Li Y.H., Zhang T., Peng Q. Graphene-based nanomaterials: The promising active agents for antibiotics-independent antibacterial applications. J. Control. Release. 2019;307:16–31. doi: 10.1016/j.jconrel.2019.06.011. PubMed DOI
De Melo-Diogo D., Lima-Sousa R., Alves C.G., Correia I.J. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater. Sci. 2019;7:3534–3551. doi: 10.1039/C9BM00577C. PubMed DOI
Bullo S., Buskaran K., Baby R., Dorniani D., Fakurazi S., Hussein M.Z. Dual drugs anticancer nanoformulation using graphene oxide-PEG as nanocarrier for protocatechuic acid and chlorogenic acid. Pharm. Res. 2019;36:91. doi: 10.1007/s11095-019-2621-8. PubMed DOI
Tiwari H., Karki N., Pal M., Basak S., Verma R.K., Bal R., Kandpal N.D., Bisht G., Sahoo N.G. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf. B Biointerfaces. 2019;178:452–459. doi: 10.1016/j.colsurfb.2019.03.037. PubMed DOI
Charmi J., Nosrati H., Amjad J.M., Mohammadkhani R., Danafar H. Polyethylene glycol (PEG) decorated graphene oxide nanosheets for controlled release curcumin delivery. Heliyon. 2019;5:e01466. doi: 10.1016/j.heliyon.2019.e01466. PubMed DOI PMC
Assali A., Akhavan O., Mottaghitalab F., Adeli M., Dinarvand R., Razzazan S., Arefian E., Soleimani M., Atyabi F. Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. Int. J. Nanomedicine. 2018;13:5865–5886. doi: 10.2147/IJN.S162647. PubMed DOI PMC
Taniselass S., Arshad M.K.M., Gopinath S.C.B. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron. 2019;130:276–292. doi: 10.1016/j.bios.2019.01.047. PubMed DOI
De Silva K.K.H., Huang H.H., Joshi R.K., Yoshimura M. Chemical reduction of graphene oxide using green reductants. Carbon. 2017;119:190–199. doi: 10.1016/j.carbon.2017.04.025. DOI
Madannejad R., Shoaie N., Jahanpeyma F., Darvishi M.H., Azimzadeh M., Javadi H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact. 2019;307:206–222. doi: 10.1016/j.cbi.2019.04.036. PubMed DOI
Eivazzadeh-Keihan R., Maleki A., de la Guardia M., Bani M.S., Chenab K.K., Pashazadeh-Panahi P., Baradaran B., Mokhtarzadeh A., Hamblin M.R. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res. 2019;18:185–201. doi: 10.1016/j.jare.2019.03.011. PubMed DOI PMC
Li Z., Wang L., Li Y., Feng Y., Feng W. Carbon-based functional nanomaterials: Preparation, properties and applications. Compos. Sci. Technol. 2019;179:10–40. doi: 10.1016/j.compscitech.2019.04.028. DOI
Setaro A. Advanced carbon nanotubes functionalization. J. Phys. Condens. Matter. 2017;29:11–14. doi: 10.1088/1361-648X/aa8248. PubMed DOI
Guo X., Mei N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 2014;22:105–115. doi: 10.1016/j.jfda.2014.01.009. PubMed DOI PMC
Wick P., Louw-Gaume A.E., Kucki M., Krug H.F., Kostarelos K., Fadeel B., Dawson K.A., Salvati A., Vazquez E., Ballerini L., et al. Classification framework for grapheme-based materials. Angew. Chem. 2014;53:7714–7718. doi: 10.1002/anie.201403335. PubMed DOI
Bottari G., Herranz M.A., Wibmer L., Volland M., Rodriguez-Perez L., Guldi D.M., Hirsch A., Martin N., D’Souza F., Torres T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 2017;46:4464–4500. doi: 10.1039/C7CS00229G. PubMed DOI
Lin L., Bin-Tay W., Aslam Z., Westwood A.V.K. Determination of the lateral size and thickness of solution-processed graphene flakes. J. Phys. Conf. Ser. 2017;902:012026. doi: 10.1088/1742-6596/902/1/012026. DOI
Wei P., Shen J., Wu K., Yang N. Defect-dependent electrochemistry of exfoliated graphene layers. Carbon. 2019;154:125–131. doi: 10.1016/j.carbon.2019.07.100. DOI
Mohandoss M., Sen Gupta S., Kumar R., Islam M.R., Som A., Mohd A.G., Pradeep T., Maliyekkal S.M. Self-propagated combustion synthesis of few-layered graphene: An optical properties perspective. Nanoscale. 2018;10:7581–7588. doi: 10.1039/C7NR09156G. PubMed DOI
Aliyev E., Filiz V., Khan M.M., Lee Y.J., Abetz C., Abetz V. Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials. 2019;9:1180. doi: 10.3390/nano9081180. PubMed DOI PMC
Cho J.H., Na S.R., Park S., Akinwande D., Liechti K.M., Cullinan M.A. Controlling the number of layers in graphene using the growth pressure. Nanotechnology. 2019;30:22. doi: 10.1088/1361-6528/ab0847. PubMed DOI
Wu J.B., Lin M.L., Cong X., Liu H.N., Tan P.H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018;47:1822–1873. doi: 10.1039/C6CS00915H. PubMed DOI
Shearer C.J., Slattery A.D., Stapleton A.J., Shapter J.G., Gibson C.T. Accurate thickness measurement of graphene. Nanotechnology. 2016;27:125704. doi: 10.1088/0957-4484/27/12/125704. PubMed DOI
Mellado C., Figueroa T., Baez R., Melendrez M., Fernandez K. Effects of probe and bath ultrasonic treatments on graphene oxide structure. Mater. Today Chem. 2019;13:1–7. doi: 10.1016/j.mtchem.2019.04.006. DOI
Amaro-Gahete J., Benitez A., Otero R., Esquivel D., Jimenez-Sanchidrian C., Morales J., Caballero A., Romero-Salguero F.J. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method. Nanomaterials. 2019;9:152. doi: 10.3390/nano9020152. PubMed DOI PMC
Borode A.O., Ahmed N.A., Olubambi P.A. Surfactant-aided dispersion of carbon nanomaterials in aqueous solution. Phys. Fluids. 2019;31:071301. doi: 10.1063/1.5105380. DOI
Qu Y., He F., Yu C., Liang X., Liang D., Ma L., Zhang Q., Lv J., Wu J. Advances on graphene-based nanomaterials for biomedical applications. Mater. Sci. Eng. C. 2018;90:764–780. doi: 10.1016/j.msec.2018.05.018. PubMed DOI
Karki N., Tiwari H., Pal M., Chaurasia A., Bal R., Joshi P., Sahoo N.G. Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: A comparative study. Colloids Surf. B Biointerfaces. 2018;169:265–272. doi: 10.1016/j.colsurfb.2018.05.022. PubMed DOI
Nanda S.S., Papaefthymiou G.C., Yi D.K., Nanda S.S., Papaefthymiou G.C., Yi D.K. Functionalization of graphene oxide and its biomedical applications functionalization of graphene oxide and its biomedical applications. Crit. Rev. Solid State Mater. Sci. 2015;40:291–315. doi: 10.1080/10408436.2014.1002604. DOI
Vacchi I.A., Raya J., Bianco A., Menard-Moyon C. Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions. 2D Mater. 2018;5:035037. doi: 10.1088/2053-1583/aac8a9. DOI
Cha J., Kim J., Ryu S., Hong S.H. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos. Part B Eng. 2019;162:283–288. doi: 10.1016/j.compositesb.2018.11.011. DOI
Punetha V.D., Rana S., Yoo H.J., Chaurasia A., McLeskey J.T., Sekkarapatti Ramasamy M., Sahoo N.G., Cho J.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog. Polym. Sci. 2017;67:1–47. doi: 10.1016/j.progpolymsci.2016.12.010. DOI
De Sousa M., Martins C.H.Z., Franqui L.S., Fonseca L.C., Delite F.S., Lanzoni E.M., Martinez D.S.T., Alves O.L. Covalent functionalization of graphene oxide with d-mannose: Evaluating the hemolytic effect and protein corona formation. J. Mater. Chem. B. 2018;6:2803–2812. doi: 10.1039/C7TB02997G. PubMed DOI
Nandanapalli K.R., Mudusu D., Lee S. Functionalization of graphene layers and advancements in device applications. Carbon. 2019;152:954–985. doi: 10.1016/j.carbon.2019.06.081. DOI
Ji X., Xu Y., Zhang W., Cui L., Liu J. Review of functionalization, structure and properties of graphene/polymer composite fibers. Comp. A Appl. Sci. Manufact. 2016;87:29–45. doi: 10.1016/j.compositesa.2016.04.011. DOI
Eckhart K.E., Holt B.D., Sydlik S.A., Laurencin M.G. Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomater. Sci. 2019;7:3876–3885. doi: 10.1039/C9BM00867E. PubMed DOI
Cherian R.S., Sandeman S., Ray S., Savina I.N., Ashtami J., Mohanan P.V. Green synthesis of Pluronic stabilized reduced graphene oxide: Chemical and biological characterization. Colloids Surf. B Biointerfaces. 2019;179:94–106. doi: 10.1016/j.colsurfb.2019.03.043. PubMed DOI
Khawaja H., Zahir E., Asghar M.A., Asghar M.A. Graphene oxide, chitosan and silver nanocomposite as a highly effective antibacterial agent against pathogenic strains. Colloids Surf. A Physicochem. Eng. Asp. 2018;555:246–255. doi: 10.1016/j.colsurfa.2018.06.052. DOI
Martin C., Kostarelos K., Prato M., Bianco A. Biocompatibility and biodegradability of 2D materials: Graphene and beyond. Chem. Commun. 2019;55:5540–5546. doi: 10.1039/C9CC01205B. PubMed DOI
Jia P.P., Sun T., Junaid M., Yang L., Ma Y.B., Cui Z.S., Wei D.P., Shi H.F., Pei D.S. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ. Pollut. 2019;247:595–606. doi: 10.1016/j.envpol.2019.01.072. PubMed DOI
Liao C., Li Y., Tjong S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018;19:3564. doi: 10.3390/ijms19113564. PubMed DOI PMC
Frontinan-Rubio J., Gomez M.V., Martin C., Gonzalez-Dominguez J.M., Duran-Prado M., Vazquez E. Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale. 2018;10:11604–11615. doi: 10.1039/C8NR00897C. PubMed DOI
Keremidarska-Markova M., Hristova-Panusheva K., Andreeva T., Speranza G., Wang D., Krasteva N. Cytotoxicity evaluation of ammonia-modified graphene oxide particles in lung cancer cells and embryonic stem cells. Adv. Condens. Matter Phys. 2018;2018:9571828. doi: 10.1155/2018/9571828. DOI
Syama S., Mohanan P.V. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. Int. J. Biol. Macromol. 2016;86:546–555. doi: 10.1016/j.ijbiomac.2016.01.116. PubMed DOI
Ou L., Song B., Liang H., Liu J., Feng X., Deng B., Sun T., Shao L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016;13:57. doi: 10.1186/s12989-016-0168-y. PubMed DOI PMC
Akhavan O., Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–5736. doi: 10.1021/nn101390x. PubMed DOI
Nasirzadeh N., Azari M.R., Rasoulzadeh Y., Mohammadian Y. An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol. Ind. Health. 2019;35:79–87. doi: 10.1177/0748233718817180. PubMed DOI
Zainal-Abidin M.H., Hayyan M., Ngoh G.C., Wong W.F. From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem. Eng. Sci. 2019;195:95–106. doi: 10.1016/j.ces.2018.11.013. DOI
Dallavalle M., Calvaresi M., Bottoni A., Melle-Franco M., Zerbetto F. Graphene can wreak havoc with cell membranes. ACS Appl. Mater. 2015;7:4406–4414. doi: 10.1021/am508938u. PubMed DOI
Bondar O.V., Saifullina D.V., Shakhmaeva I.I., Mavlyutova I.I., Abdullin T.I. Monitoring of the zeta potential of human cells upon reduction in their viability and interaction with polymers. Acta Nat. 2012;1:78–81. doi: 10.32607/20758251-2012-4-1-78-81. PubMed DOI PMC
Singh S.K., Singh M.K., Kulkarni P.P., Sonkar V.K., Gracio J.J., Dash D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano. 2012;6:2731–2740. doi: 10.1021/nn300172t. PubMed DOI
Wang B., Zhang L., Bae S.C., Granick S. Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc. Natl. Acad. Sci. USA. 2008;105:18171–18175. doi: 10.1073/pnas.0807296105. PubMed DOI PMC
Majidi H.J., Babaei A., Bafrani Z.A., Shahrampour D., Zabihi E., Jafari S.M. Investigating the best strategy to diminish the toxicity and enhance the antibacterial activity of graphene oxide by chitosan addition. Carbohydr. Polym. 2019;225:115–220. doi: 10.1016/j.carbpol.2019.115220. PubMed DOI
Wu Y., Wang F., Wang S., Ma J., Xu M., Gao M., Liu R., Chen W., Liu S. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale. 2018;10:14637–14650. doi: 10.1039/C8NR02798F. PubMed DOI
Thomas S., Grohens Y., Ninan N. Nanotechnology Applications for Tissue Engineering. Elsevier; Amsterdam, The Netherlands: 2015.
Olad A., Hagh H.B.K. Graphene oxide and amin-modified graphene oxide incorporated chitosan-gelatin scaffolds as promising materials for tissue engineering. Compos. Part B Eng. 2019;162:692–702. doi: 10.1016/j.compositesb.2019.01.040. DOI
Kenry L.W., Loh K.P., Lim C.T. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials. 2018;155:236–250. doi: 10.1016/j.biomaterials.2017.10.004. PubMed DOI
Teradal N.L., Jelinek R. Carbon nanomaterials in biological studies and biomedicine. Adv. Healthc. Mater. 2017;6:1–36. doi: 10.1002/adhm.201700574. PubMed DOI
Lasocka I., Szulc-Dabrowska L., Skibniewski M., Skibniewska E., Strupinski W., Pasternak I., Kmiec H., Kowalczyk P. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts. Toxicol. Vitr. 2018;48:276–285. doi: 10.1016/j.tiv.2018.01.028. PubMed DOI
Aval N.A., Emadi R., Valiani A., Kharaziha M., Karimipour M., Rahbarghazi R. Nano-featured poly (lactide-co-glycolide)-graphene microribbons as a promising substrate for nerve tissue engineering. Compos. Part B Eng. 2019;173:106863. doi: 10.1016/j.compositesb.2019.05.074. DOI
Olad A., Hagh H.B.K., Mirmohseni A., Azhar F.F. Graphene oxide and montmorillonite enriched natural polymeric scaffold for bone tissue engineering. Ceram. Int. 2019;45:15609–15619. doi: 10.1016/j.ceramint.2019.05.071. DOI
Jiang W., Liu H. Nanocomposites for bone repair and osteointegration with soft tissues. In: Liu H., editor. Nanocomposites for Musculoskeletal Tissue Regeneration. Woodhead Publishing & Elsevier; Kidlington, UK: 2016. pp. 241–257.
Purohit S.D., Bhaskar R., Singh H., Yadav I., Gupta M.K., Mishra N.C. Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int. J. Biol. Macromol. 2019;133:592–602. doi: 10.1016/j.ijbiomac.2019.04.113. PubMed DOI
He Y., Li Y., Chen G., Wei C., Zhang X., Zeng B., Yi C., Wang C., Yu D. Concentration-dependent cellular behavior and osteogenic differentiation effect induced in bone marrow mesenchymal stem cells treated with magnetic graphene oxide. J. Biomed. Mater. Res. Part A. 2020;108:50–60. doi: 10.1002/jbm.a.36791. PubMed DOI
Jafarkhani M., Salehi Z., Bagheri Z., Aayanifard Z., Rezvan A., Doosthosseini H., Shokrgozar M.A. Graphene functionalized decellularized scaffold promotes skin cell proliferation. Can. J. Chem. Eng. 2020;98 doi: 10.1002/cjce.23588. in press. DOI
Zhou K., Yu P., Shi X., Ling T., Zeng W., Chen A., Yang W., Zhou Z. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13:9595–9606. doi: 10.1021/acsnano.9b04723. PubMed DOI
Krishnan S.K., Singh E., Singh P., Meyyappan M., Nalwa H.S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019;9:8778–8781. doi: 10.1039/C8RA09577A. PubMed DOI PMC
Wang H., Chen Q., Zhou S. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018;47:4198–4232. doi: 10.1039/C7CS00399D. PubMed DOI
Singh D.P., Herrera C.E., Singh B., Singh S., Singh R.K., Kumar R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C. 2018;86:173–197. doi: 10.1016/j.msec.2018.01.004. PubMed DOI
Rahman M.M., Lee J.J. Electrochemical dopamine sensors based on graphene. J. Electrochem. Sci. Technol. 2019;10:185–195.
Wang W., Su H., Wu Y., Zhou T., Li T. Review-biosensing and biomedical applications of graphene: A review of current progress and future prospect. J. Electrochem. Soc. 2019;166:B505–B520. doi: 10.1149/2.1231906jes. DOI
Jampilek J., Kralova K. Nano-antimicrobials: Activity, benefits and weaknesses. In: Ficai A., Grumezescu A.M., editors. Nanostructures in Therapeutic Medicine–Nanostructures for Antimicrobial Therapy. Elsevier; Amsterdam, The Netherlands: 2017. pp. 23–54.
Gao F., Cai X., Wang X., Gao C., Liu S., Gao F., Wang Q. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens. Actuators B Chem. 2013;186:380–387. doi: 10.1016/j.snb.2013.06.020. DOI
Jampilek J., Kralova K. Nanocomposites: Synergistic nanotools for management mycotoxigenic fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology–Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2019. pp. 349–383.
Jampilek J., Kralova K. Impact of nanoparticles on toxigenic fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology–Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2019. pp. 309–348.
Jampilek J., Kralova K. Nanomaterials applicable in food protection. In: Rai R.V., Bai J.A., editors. Nanotechnology Applications in the Food Industry. Taylor & Francis Group; Boca Raton, FL, USA: 2018. pp. 75–96.
Gomes R.N., Borges I., Pereira A.T., Maia A.F., Pestana M., Magalhaes F.D., Pinto A.M., Goncalves I.C. Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon. 2018;139:635–647. doi: 10.1016/j.carbon.2018.06.044. DOI
Scaffaro R., Maio A., Lopresti F. Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid. Compos. Sci. Technol. 2019;169:60–69. doi: 10.1016/j.compscitech.2018.11.003. DOI
Liu Y., Wen J., Gao Y., Li T., Wang H., Yan H., Niu B., Guo R. Antibacterial graphene oxide coatings on polymer substrate. Appl. Surf. Sci. 2018;436:624–630. doi: 10.1016/j.apsusc.2017.12.006. DOI
Palmieri V., Lauriola M.C., Ciasca G., Conti C., De Spirito M., Papi M. The graphene oxide contradictory effects against human pathogens. Nanotechnology. 2017;28:152001–152018. doi: 10.1088/1361-6528/aa6150. PubMed DOI
Skrlova K., Malachova K., Munoz-Bonilla A., Merinska D., Rybkova Z., Fernandez-Garcia M., Placha D. Biocompatible polymer materials with antimicrobial properties for preparation of stents. Nanomaterials. 2019;9:1548. doi: 10.3390/nano9111548. PubMed DOI PMC
Pulingam T., Thong K.L., Ali M.E., Appaturi J.N., Dinshaw I.J., Ong Z.Y., Leo B.F. Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids Surf. B Biointerfaces. 2019;181:6–15. doi: 10.1016/j.colsurfb.2019.05.023. PubMed DOI
Jampilek J., Kralova K., Campos E.V.R., Fraceto L.F. Bio-based nanoemulsion formulations applicable in agriculture, medicine and food industry. In: Prasad R., Kumar V., Kumar M., Choudhary D.K., editors. Nanobiotechnology in Bioformulations. Springer; Cham, Germany: 2019. pp. 33–84.
Jampilek J., Kralova K. Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Sharma A.K., Keservani R.K., Kesharwani R.K., editors. Nanobiomaterials: Applications in Drug Delivery. CRC Press; Warentown, NJ, USA: 2018. pp. 131–208.
Jampilek J., Kralova K. Natural biopolymeric nanoformulations for brain drug delivery. In: Keservani R.K., Sharma A.K., Kesharwani R.K., editors. Nanocarriers for Brain Targetting: Principles and Applications. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2019. pp. 131–203.
Cheng W., Chen Y., Teng L., Lu B., Ren L., Wang Y. Antimicrobial colloidal hydrogels assembled by graphene oxide and thermo-sensitive nanogels for cell encapsulation. J. Colloid Interface Sci. 2018;513:314–323. doi: 10.1016/j.jcis.2017.11.018. PubMed DOI
Rasoulzadehzali M., Namazi H. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin. Int. J. Biol. Macromol. 2018;116:54–63. doi: 10.1016/j.ijbiomac.2018.04.140. PubMed DOI
Zhang Q., Tu Q., Hickey M.E., Xiao J., Gao B., Tian C., Heng P., Jiao Y., Peng T., Wang J. Preparation and study of the antibacterial ability of graphene oxide-catechol hybrid polylactic acid nanofiber mats. Colloids Surf. B Biointerfaces. 2018;172:496–505. doi: 10.1016/j.colsurfb.2018.09.003. PubMed DOI
Diez-Orejas R., Feito M.J., Cicuendez M., Casarrubios L., Rojo J.M., Portoles M.T. Graphene oxide nanosheets increase Candida albicans killing by pro-inflammatory and reparative peritoneal macrophages. Colloids Surf. B Biointerfaces. 2018;171:250–259. doi: 10.1016/j.colsurfb.2018.07.027. PubMed DOI
Sandhya P.K., Jose J., Sreekala M.S., Padmanabhan M., Kalarikkal N., Thomas S. Reduced graphene oxide and ZnO decorated graphene for biomedical applications. Ceram. Int. 2018;44:15092–15098. doi: 10.1016/j.ceramint.2018.05.143. DOI
Jampilek J. How can we bolster the antifungal drug discovery pipeline? Future Med. Chem. 2016;8:1393–1397. doi: 10.4155/fmc-2016-0124. PubMed DOI
Tran D.L., Thi P.L., Hoang-Thi T.T., Park K.D. Graphene oxide immobilized surfaces facilitate the sustained release of doxycycline for the prevention of implant related infection. Colloids Surf. B Biointerfaces. 2019;181:576–584. doi: 10.1016/j.colsurfb.2019.06.009. PubMed DOI
Ma S., Si Y., Wang F., Su L., Xia C.C., Yao J., Chen H., Liu X. Interaction processes of ciprofloxacin with graphene oxide and reduced graphene oxide in the presence of montmorillonite in simulated gastrointestinal fluids. Sci. Rep. 2017;7:2588. doi: 10.1038/s41598-017-02620-4. PubMed DOI PMC
Pi J., Shen L., Shen H., Yang E., Wang W., Wang R., Huang D., Lee B.S., Hu C., Chen C., et al. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M. tuberculosis killing efficiency. Mater. Sci. Eng. C. 2019;103:109777. doi: 10.1016/j.msec.2019.109777. PubMed DOI
Liu P., Wang S., Liu X., Ding J., Zhou W. Platinated graphene oxide: A nanoplatform for efficient gene-chemo combination cancer therapy. Eur. J. Pharm. Sci. 2018;121:319–329. doi: 10.1016/j.ejps.2018.06.009. PubMed DOI
Magrez A., Kasas S., Salicio V., Pasquier N., Seo J.W., Celio M., Catsicas S., Schwaller B., Forro L. Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett. 2006;6:1121–1125. doi: 10.1021/nl060162e. PubMed DOI
Pulskamp K., Diabate S., Krug H.F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 2007;168:58–74. doi: 10.1016/j.toxlet.2006.11.001. PubMed DOI
Yu X., Cai H., Zhang W., Li X., Pan N., Luo Y., Wang X., Hou J.G. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano. 2011;5:952–958. doi: 10.1021/nn102291j. PubMed DOI
Sanchez V.C., Jachak A., Hurt R.H., Kane A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol. 2012;25:15–34. doi: 10.1021/tx200339h. PubMed DOI PMC
Valentini F., Calcaterra A., Ruggiero V., Pichichero E., Martino A., Iosi F., Bertuccini L., Antonaroli S., Mardente S., Zicari A., et al. Functionalized graphene derivatives: Antibacterial properties and cytotoxicity. J. Nanomat. 2019;2019:2752539. doi: 10.1155/2019/2752539. DOI
Kumar P., Huo P., Zhang R., Liu B. Antibacterial properties of graphene-based nanomaterials. Nanomaterials. 2019;9:737. doi: 10.3390/nano9050737. PubMed DOI PMC
Jampílek J., Kos J., Kralova K. Potential of Nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials. 2019;9:296. doi: 10.3390/nano9020296. PubMed DOI PMC
Jampilek J., Kralova K. Recent advances in lipid nanocarriers applicable in the fight against cancer. In: Grumezescu A.M., editor. Nanoarchitectonics in Biomedicine. Elsevier; Amsterdam, The Netherlands: 2019. pp. 219–294.
Jampilek J., Kralova K. Nano-biopesticides in agriculture: State of art and future opportunities. In: Koul O., editor. Nano-Biopesticides Today and Future Perspectives. Academic Press & Elsevier; Amsterdam, The Netherlands: 2019. pp. 397–447.
Jampilek J., Kralova K. Nanotechnology based formulations for drug targeting to central nervous system. In: Keservani R.K., Sharma A.K., editors. Nanoparticulate Drug Delivery Systems. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2019. pp. 151–220.
Jampilek J., Kralova K. Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Prasad R., Kumar M., Kumar V., editors. Nanotechnology: An Agricultural Paradigm. Springer; Singapore: 2017. pp. 177–226.
Kozik V., Bak A., Pentak D., Hachula B., Pytlakowska K., Rojkiewicz M., Jampilek J., Sieron K., Jazowiecka-Rakus J., Sochanik A. Derivatives of graphene oxide as potential drug carriers. J. Nanosci. Nanotechnol. 2019;19:2489–2492. doi: 10.1166/jnn.2019.15855. PubMed DOI
Jampilek J., Kralova K. Nanopesticides: Preparation, targeting and controlled release. In: Grumezescu A.M., editor. Nanotechnology in the Agri-Food Industry–New Pesticides and Soil Sensors. Elsevier; London, UK: 2017. pp. 81–127.
Abdollahi Z., Taheri-Kafrani A., Bahrani S.A., Kajani A.A. PEGAylated graphene oxide/superparamagnetic nanocomposite as a high-efficiency loading nanocarrier for controlled delivery of methotrexate. J. Biotechnol. 2019;298:88–97. doi: 10.1016/j.jbiotec.2019.04.006. PubMed DOI
Yuen W.W., Du N.R., Chan C.H., Silva E.A., Mooney D.J. Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc. Natl. Acad. Sci. USA. 2010;107:17933–17938. doi: 10.1073/pnas.1001192107. PubMed DOI PMC
Dube A., Reynolds J.L., Law W.C., Maponga C.C., Prasad P.N., Morse G.D. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomed. Nanotechnol. 2014;10:831–838. doi: 10.1016/j.nano.2013.11.012. PubMed DOI
Sharma M., Chatterjee M., Singh K., Satapathia S. Design of a multimodal colloidal polymeric drug delivery vesicle: A detailed pharmaceutical study. NANOSO. 2019;18:100245. doi: 10.1016/j.nanoso.2019.01.004. DOI
Browne S., Pandit A. Multi-modal delivery of therapeutics using biomaterial scaffolds. J. Mater. Chem. B. 2014;2:6692–6707. doi: 10.1039/C4TB00863D. PubMed DOI
Feng L., Wu L., Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater. 2013;25:168–186. doi: 10.1002/adma.201203229. PubMed DOI
Tabish T.A. Graphene-based materials: The missing piece in nanomedicine? Biochem. Biophys. Res. Commun. 2018;504:686–689. doi: 10.1016/j.bbrc.2018.09.029. PubMed DOI
Zhan M., Naik R.R., Dai L. Carbon Nanomaterials for Biomedical Applications. Springer International Publishing; Cham, Switzerland: 2016.
Chee W.K., Lim H.N., Huang N.M., Harrison I. Nanocomposites of graphene/polymers: A review. RSC Adv. 2015;5:68014–68051. doi: 10.1039/C5RA07989F. DOI
Gao Y., Zhong S., Xu L., He S., Dou Y., Zhao S., Chen P., Cui X. Mesoporous silica nanoparticles capped with graphene quantum dots as multifunctional drug carriers for photo-thermal and redox-responsive release. Microporous Mesoporous Mater. 2019;278:130–137. doi: 10.1016/j.micromeso.2018.11.030. DOI
Zhang X., Luo L., Li L., He Y., Cao W., Liu H., Niu K., Gao D. Trimodal synergistic antitumor drug delivery system based on graphene oxide. Nanomedicine. 2019;15:142–152. doi: 10.1016/j.nano.2018.09.008. PubMed DOI
Campbell E., Hasan M.T., Pho C., Callaghan K., Akkaraju G.R., Naumov A.V. Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci. Rep. 2019;9:416. doi: 10.1038/s41598-018-36617-4. PubMed DOI PMC
Yuan Y., Xu X., Gong J., Mu R., Li Y., Wu C., Pang J. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int. J. Biol. Macromol. 2019;131:209–217. doi: 10.1016/j.ijbiomac.2019.03.061. PubMed DOI
Huang C., Wu J., Jiang W., Liu R., Li Z., Luan Y. Amphiphilic prodrug-decorated graphene oxide as a multi-functional drug delivery system for efficient cancer therapy. Mater. Sci. Eng. C. 2018;89:15–24. doi: 10.1016/j.msec.2018.03.017. PubMed DOI
Dong J., Wang K., Sun L., Sun B., Yang M., Chen H., Wang Y., Sun J., Dong L. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens. Actua. B Chem. 2018;256:616–623. doi: 10.1016/j.snb.2017.09.200. DOI
Zare-Zardini H., Taheri-Kafrani A., Amiri A., Bordbar A.K. New generation of drug delivery systems based on ginsenoside Rh2-, Lysine- and Arginine-treated highly porous graphene for improving anticancer activity. Sci. Rep. 2018;8:586. doi: 10.1038/s41598-017-18938-y. PubMed DOI PMC
Wang C., Zhang Z., Chen B., Gu L., Li Y., Yu S. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J. Colloid Interface Sci. 2018;516:332–341. doi: 10.1016/j.jcis.2018.01.073. PubMed DOI
Javanbakht S., Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater. Sci. Eng. C. 2018;87:50–59. doi: 10.1016/j.msec.2018.02.010. PubMed DOI
Javanbakht S., Pooresmaeil M., Namazi H. Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydr. Polym. 2019;208:294–301. doi: 10.1016/j.carbpol.2018.12.066. PubMed DOI
Borandeh S., Abdolmaleki A., Abolmaali S.S., Tamaddon A.M. Synthesis, structural and in-vitro characterization of β-cyclodextrin grafted L-phenylalanine functionalized graphene oxide nanocomposite: A versatile nanocarrier for pH-sensitive doxorubicin delivery. Carbohydr. Polym. 2018;201:151–161. doi: 10.1016/j.carbpol.2018.08.064. PubMed DOI
Xiao Y., Zhang M., Fan Y., Zhang Q., Wang Y., Yuan W., Zhou N., Che J. Novel controlled drug release system engineered with inclusion complexes based on carboxylic graphene. Colloids Surf. B Biointerfaces. 2019;175:18–25. doi: 10.1016/j.colsurfb.2018.11.058. PubMed DOI
Kaya D., Kucukada K., Alemdar N. Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly (ethylene oxide) polymeric films. Carbohydr. Polym. 2019;215:189–197. doi: 10.1016/j.carbpol.2019.03.041. PubMed DOI
Rahmani Z., Sahraei R., Ghaemy M. Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: Study of drug delivery behavior. Carbohydr. Polym. 2018;194:34–42. doi: 10.1016/j.carbpol.2018.04.022. PubMed DOI
Xu X., Wang J., Wang Y., Zhao L., Li Y., Liu C. Formation of graphene oxide-hybridized nanogels for combinative anticancer therapy. Nanomedicine. 2018;14:2387–2395. doi: 10.1016/j.nano.2017.05.007. PubMed DOI
Xie M., Zhang F., Liu L., Zhang Y., Li Y., Li H., Xie J. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci. 2018;440:853–860. doi: 10.1016/j.apsusc.2018.01.175. DOI
Zhang J., Chen L., Shen B., Chen L., Mo J., Feng J. Dual-sensitive graphene oxide loaded with proapoptotic peptides and anticancer drugs for cancer synergetic therapy. Langmuir. 2019;35:6120–6128. doi: 10.1021/acs.langmuir.9b00611. PubMed DOI
Pham T.T., Nguyen H.T., Phung C.D., Pathak S., Regmi S., Ha D.H., Kim J.O., Yong C.S., Kim S.K., Choi J.E., et al. Targeted delivery of doxorubicin for the treatment of bone metastasis from breast cancer using alendronate-functionalized graphene oxide nanosheets. J. Ind. Eng. Chem. 2019;76:310–317. doi: 10.1016/j.jiec.2019.03.055. DOI
Abbasian M., Roudi M.M., Mahmoodzadeh F., Eskandani M., Jaymand M. Chitosan-grafted-poly(methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. Int. J. Biol. Macromol. 2018;118:1871–1879. doi: 10.1016/j.ijbiomac.2018.07.036. PubMed DOI
Pooresmaeil M., Namazi H. Surface modification of graphene oxide with stimuli-responsive polymer brush containing β-cyclodextrin as a pendant group: Preparation, characterization, and evaluation as controlled drug delivery agent. Colloids Surf. B Biointerfaces. 2018;172:17–25. doi: 10.1016/j.colsurfb.2018.08.017. PubMed DOI
Hashemi H., Namazi H. Blue fluorescent graphene oxide hybrid: Synthesis, characterization, and application as a drug delivery system. J. Drug Deliv. Sci. Technol. 2018;48:355–362. doi: 10.1016/j.jddst.2018.10.010. DOI
Vinothini K., Rajendran N.K., Munusamy M.A., Alarfaj A.A., Rajan M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. Mater. Sci. Eng. C. 2019;100:676–687. doi: 10.1016/j.msec.2019.03.011. PubMed DOI
Deb A., Vimala R. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery—A comparative study. Int. J. Biol. Macromol. 2018;107:2320–2333. doi: 10.1016/j.ijbiomac.2017.10.119. PubMed DOI
Thapa R.K., Soe Z.C., Ou W., Poudel K., Jeong J.H., Jin S.G., Ku S.K., Choi H.G., Lee Y.M., Yong C.S., et al. Palladium nanoparticle-decorated 2-D graphene oxide for effective photodynamic and photothermal therapy of prostate solid tumors. Colloids Surf. B Biointerfaces. 2018;169:429–437. doi: 10.1016/j.colsurfb.2018.05.051. PubMed DOI
Li G., Yang Y., Zhou R., Meng F., Li X. Functionalized graphene oxide as a nanocarrier of new copper (II) complexes for targeted therapy on nasopharyngeal carcinoma. Eur. J. Pharm. Sci. 2018;123:249–259. doi: 10.1016/j.ejps.2018.07.006. PubMed DOI
Wang X., Cao F., Yan M., Liu Y., Zhu X., Sun H., Ma G. Alum-functionalized graphene oxide nanocomplexes for effective anticancer vaccination. Acta Biomater. 2019;83:390–399. doi: 10.1016/j.actbio.2018.11.023. PubMed DOI
Pooresmaeil M., Namazi H. β-Cyclodextrin grafted magnetic graphene oxide applicable as cancer drug delivery agent: Synthesis and characterization. Mater. Chem. Phys. 2018;218:62–69. doi: 10.1016/j.matchemphys.2018.07.022. DOI
Xie M., Zhang F., Peng H., Zhang Y., Li Y., Xu Y., Xie J. Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy. Colloids Surf. B Biointerfaces. 2019;176:462–470. doi: 10.1016/j.colsurfb.2019.01.028. PubMed DOI
Xie P., Du P., Li J., Liu P. Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging. Carbohydr. Polym. 2019;205:377–384. doi: 10.1016/j.carbpol.2018.10.076. PubMed DOI
Chowdhury A.D., Ganganboina A.B., Tsai Y.C., Chiu H.C., Doong R. Multifunctional GQDs-concanavalin A@Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery. Anal. Chim. Acta. 2018;1027:109–120. doi: 10.1016/j.aca.2018.04.029. PubMed DOI
Rodrigues R.O., Baldi G., Doumett S., Garcia-Hevia L., Gallo J., Banobre-Lopez M., Drazic G., Calhelha R.C., Ferreira I.C.F.R., Lima R., et al. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater. Sci. Eng. C. 2018;93:206–217. doi: 10.1016/j.msec.2018.07.060. PubMed DOI
Shirvalilou S., Khoei S., Khoee S., Jamali N. Chemico-biological interactions development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations. Chem. Biol. Interact. 2018;295:97–108. doi: 10.1016/j.cbi.2018.08.027. PubMed DOI
Tran A.V., Shim K.H., Vo Thi T.T., Kook J.K., An S.S.A., Lee S.W. Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomater. 2018;74:397–413. doi: 10.1016/j.actbio.2018.05.022. PubMed DOI
Moldovan M., Prodan D., Sarosi C., Carpa R., Socaci C., Rosu M.C., Pruneanu S. Synthesis, morpho-structural properties and antibacterial effect of silicate-based composites containing graphene oxide/hydroxyapatite. Mater. Chem. Phys. 2018;217:48–53. doi: 10.1016/j.matchemphys.2018.06.055. DOI
Liu R., Zhang H., Zhang F., Wang X., Liu X., Zhang Y. Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy. Mater. Sci. Eng. C. 2019;96:138–145. doi: 10.1016/j.msec.2018.10.093. PubMed DOI
Yuan Y.G., Gurunathan S. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int. J. Nanomedicine. 2017;12:6537–6558. doi: 10.2147/IJN.S125281. PubMed DOI PMC
Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems
Advances in Biologically Applicable Graphene-Based 2D Nanomaterials
Advances in Nanostructures for Antimicrobial Therapy
Advances in Use of Nanomaterials for Musculoskeletal Regeneration
Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes
Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems
Potential of Nanonutraceuticals in Increasing Immunity
Antibacterial Character of Cationic Polymers Attached to Carbon-Based Nanomaterials
Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine