Antibacterial Character of Cationic Polymers Attached to Carbon-Based Nanomaterials

. 2020 Jun 22 ; 10 (6) : . [epub] 20200622

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32580474

Grantová podpora
MAT2016-78437-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
SP2020/70 Ministerstvo Školství, Mládeže a Tělovýchovy

The preparation of hybrid polymeric systems based on carbon derivatives with a cationic polymer is described. The polymer used is a copolymer of a quaternizable methacrylic monomer with another dopamine-based monomer capable of anchoring to carbon compounds. Graphene oxide and graphene as well as hybrid polymeric systems were widely characterized by infrared, Raman and photoemission X-ray spectroscopies, electron scanning microscopy, zeta potential and thermal degradation. These allowed confirming the attachment of copolymer onto carbonaceous materials. Besides, the antimicrobial activity of hybrid polymeric systems was tested against Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The results showed the antibacterial character of these hybrid systems.

Zobrazit více v PubMed

Shi L., Chen J., Teng L., Wang L., Zhu G., Liu S., Luo Z., Shi X., Wang Y., Ren L. The antibacterial applications of graphene and its derivatives. Small. 2016;12:4165–4184. doi: 10.1002/smll.201601841. PubMed DOI

Zhu J., Wang J., Hou J., Zhang Y., Liu J., Van der Bruggen B. Graphene-based antimicrobial polymeric membranes: A review. J. Mater. Chem. A. 2017;5:6776–6793. doi: 10.1039/C7TA00009J. DOI

Zou X., Zhang L., Wang Z., Luo Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016;138:2064–2077. doi: 10.1021/jacs.5b11411. PubMed DOI

Zhang Z., Zhang J., Zhang B., Tang J. Mussel-inspired functionalization of graphene for synthesizing ag-polydopamine-graphenenanosheets as antibacterial materials. Nanoscale. 2013;5:118–123. doi: 10.1039/C2NR32092D. PubMed DOI

Tiraferri A., Vecitis C.D., Elimelech M. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl. Mater. Interfaces. 2011;3:2869–2877. doi: 10.1021/am200536p. PubMed DOI

Santos C.M., Tria M.C., Vergara R.A., Ahmed F., Advincula R.C., Rodrigues D.F. Antimicrobial graphene polymer (pvk-go) nanocomposite films. Chem. Commun. (Camb.) 2011;47:8892–8894. doi: 10.1039/c1cc11877c. PubMed DOI

Santos C.M., Milagros Cui K., Ahmed F., Tria M.C.R., Vergara R.A.M.V., de Leon A.C., Advincula R.C., Rodrigues D.F. Bactericidal and anticorrosion properties in pvk/mwnt nanocomposite coatings on stainless steel. Macromol. Mater. Eng. 2012;297:807–813. doi: 10.1002/mame.201100334. DOI

Pangilinan K.D., Santos C.M., Estillore N.C., Rodrigues D.F., Advincula R.C. Temperature-responsiveness and antimicrobial properties of cnt-pnipam hybrid brush films. Macromol. Chem. Phys. 2013;214:464–469. doi: 10.1002/macp.201200464. DOI

Aslan S., Deneufchatel M., Hashmi S., Li N., Pfefferle L.D., Elimelech M., Pauthe E., Van Tassel P.R. Carbon nanotube-based antimicrobial biomaterials formed via layer-by-layer assembly with polypeptides. J. Colloid Interface Sci. 2012;388:268–273. doi: 10.1016/j.jcis.2012.08.025. PubMed DOI

Mejias Carpio I.E., Santos C.M., Wei X., Rodrigues D.F. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale. 2012;4:4746–4756. doi: 10.1039/c2nr30774j. PubMed DOI

Hegab H.M., ElMekawy A., Zou L., Mulcahy D., Saint C.P., Ginic-Markovic M. The controversial antibacterial activity of graphene-based materials. Carbon. 2016;105:362–376. doi: 10.1016/j.carbon.2016.04.046. DOI

Placha D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC

Pham V.T.H., Truong V.K., Quinn M.D.J., Notley S.M., Guo Y., Baulin V.A., Al Kobaisi M., Crawford R.J., Ivanova E.P. Graphene induces formation of pores that kill spherical and rod-shaped bacteria. ACS Nano. 2015;9:8458–8467. doi: 10.1021/acsnano.5b03368. PubMed DOI

Sawangphruk M., Srimuk P., Chiochan P., Sangsri T., Siwayaprahm P. Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon. 2012;50:5156–5161. doi: 10.1016/j.carbon.2012.06.056. DOI

Akhavan O., Ghaderi E., Esfandiar A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B. 2011;115:6279–6288. doi: 10.1021/jp200686k. PubMed DOI

Di Giulio M., Zappacosta R., Di Lodovico S., Di Campli E., Siani G., Fontana A., Cellini L. Antimicrobial and antibiofilm efficacy of graphene oxide against chronic wound microorganisms. Antimicrob. Agents Chemother. 2018;62:e00547-18. doi: 10.1128/AAC.00547-18. PubMed DOI PMC

Hou W.-C., Lee P.-L., Chou Y.-C., Wang Y.-S. Antibacterial property of graphene oxide: The role of phototransformation. Environ. Sci. Nano. 2017;4:647–657. doi: 10.1039/C6EN00427J. DOI

Romero M.P., Marangoni V.S., de Faria C.G., Leite I.S., Silva C., Maroneze C.M., Pereira-da-Silva M.A., Bagnato V.S., Inada N.M. Graphene oxide mediated broad-spectrum antibacterial based on bimodal action of photodynamic and photothermal effects. Front. Microbiol. 2019;10:2995. doi: 10.3389/fmicb.2019.02995. PubMed DOI PMC

Lim H.N., Huang N.M., Loo C.H. Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. J. Non Cryst. Solids. 2012;358:525–530. doi: 10.1016/j.jnoncrysol.2011.11.007. DOI

Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009;4:217–224. doi: 10.1038/nnano.2009.58. PubMed DOI

Kumar P., Huo P., Zhang R., Liu B. Antibacterial properties of graphene-based nanomaterials. Nanomaterials. 2019;9:737. doi: 10.3390/nano9050737. PubMed DOI PMC

Zhang P., Wang H., Zhang X., Xu W., Li Y., Li Q., Wei G., Su Z. Graphene film doped with silver nanoparticles: Self-assembly formation, structural characterizations, antibacterial ability, and biocompatibility. Biomater. Sci. 2015;3:852–860. doi: 10.1039/C5BM00058K. PubMed DOI

Tian T., Shi X., Cheng L., Luo Y., Dong Z., Gong H., Xu L., Zhong Z., Peng R., Liu Z. Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl. Mater. Interfaces. 2014;6:8542–8548. doi: 10.1021/am5022914. PubMed DOI

Cobos M., De-La-Pinta I., Quindos G., Fernandez M.J., Fernandez M.D. Graphene oxide-silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials. 2020;10:376. doi: 10.3390/nano10020376. PubMed DOI PMC

Zhao R., Kong W., Sun M., Yang Y., Liu W., Lv M., Song S., Wang L., Song H., Hao R. Highly stable graphene-based nanocomposite (GO-PEI-Ag) with broad-spectrum, long-term antimicrobial activity and antibiofilm effects. ACS Appl. Mater. Interfaces. 2018;10:17617–17629. doi: 10.1021/acsami.8b03185. PubMed DOI

Raja A., Selvakumar K., Rajasekaran P., Arunpandian M., Ashokkumar S., Kaviyarasu K., Asath Bahadur S., Swaminathan M. Visible active reduced graphene oxide loaded titania for photodecomposition of ciprofloxacin and its antibacterial activity. Colloids Surf. Physicochem. Eng. Asp. 2019;564:23–30. doi: 10.1016/j.colsurfa.2018.12.024. DOI

Hsueh Y.H., Hsieh C.T., Chiu S.T., Tsai P.H., Liu C.Y., Ke W.J. Antibacterial property of composites of reduced graphene oxide with nano-silver and zinc oxide nanoparticles synthesized using a microwave-assisted approach. Int. J. Mol. Sci. 2019;20:5394. doi: 10.3390/ijms20215394. PubMed DOI PMC

Archana S., Kumar K.Y., Jayanna B.K., Olivera S., Anand A., Prashanth M.K., Muralidhara H.B. Versatile graphene oxide decorated by star shaped zinc oxide nanocomposites with superior adsorption capacity and antimicrobial activity. J. Sci. Adv. Mater. Devices. 2018;3:167–174. doi: 10.1016/j.jsamd.2018.02.002. DOI

Nguyen H.N., Nadres E.T., Alamani B.G., Rodrigues D.F. Designing polymeric adhesives for antimicrobial materials: Poly(ethylene imine) polymer, graphene, graphene oxide and molybdenum trioxide - a biomimetic approach. J. Mater. Chem. B. 2017;5:6616–6628. doi: 10.1039/C7TB00722A. PubMed DOI

Mazaheri M., Akhavan O., Simchi A. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl. Surf. Sci. 2014;301:456–462. doi: 10.1016/j.apsusc.2014.02.099. DOI

Liu T., Liu Y., Liu M., Wang Y., He W., Shi G., Hu X., Zhan R., Luo G., Xing M., et al. Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing. Burn. Trauma. 2018;6:16. doi: 10.1186/s41038-018-0115-2. PubMed DOI PMC

Tu Q., Tian C., Ma T., Pang L., Wang J. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability. Colloids Surf. B Biointerfaces. 2016;141:196–205. doi: 10.1016/j.colsurfb.2016.01.046. PubMed DOI

Chiloeches A., Echeverría C., Cuervo-Rodríguez R., Plachà D., López-Fabal F., Fernández-García M., Muñoz-Bonilla A. Adhesive antibacterial coatings based on copolymers bearing thiazolium cationic groups and catechol moieties as robust anchors. Prog. Org. Coat. 2019;136:105272. doi: 10.1016/j.porgcoat.2019.105272. DOI

Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Guadagno L., Raimondo M., Vertuccio L., Mauro M., Guerra G., Lafdi K., De Vivo B., Lamberti P., Spinelli G., Tucci V. Optimization of graphene-based materials outperforming host epoxy matrices. RSC Adv. 2015;5:36969–36978. doi: 10.1039/C5RA04558D. DOI

Díez-Betriu X., Álvarez-García S., Botas C., Álvarez P., Sánchez-Marcos J., Prieto C., Menéndez R., de Andrés A. Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J. Mater. Chem. C. 2013;1:6905. doi: 10.1039/c3tc31124d. DOI

Kim S.-G., Park O.-K., Lee J.H., Ku B.-C. Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes. Carbon Lett. 2013;14:247–250. doi: 10.5714/CL.2013.14.4.247. DOI

Vidano R.P., Fischbach D.B., Willis L.J., Loehr T.M. Observation of raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981;39:341–344. doi: 10.1016/0038-1098(81)90686-4. DOI

Hao Y., Wang Y., Wang L., Ni Z., Wang Z., Wang R., Koo C.K., Shen Z., Thong J.T.L. Probing layer number and stacking order of few-layer graphene by raman spectroscopy. Small. 2010;6:195–200. doi: 10.1002/smll.200901173. PubMed DOI

Malard L.M., Pimenta M.A., Dresselhaus G., Dresselhaus M.S. Raman spectroscopy in graphene. Phys. Rep. 2009;473:51–87. doi: 10.1016/j.physrep.2009.02.003. DOI

Chiloeches A., Echeverría C., Fernández-García M., Muñoz-Bonilla A. Influence of polymer composition and substrate on the performance of bioinspired coatings with antibacterial activity. Coatings. 2019;9:733. doi: 10.3390/coatings9110733. DOI

Gurzęda B., Florczak P., Wiesner M., Kempiński M., Jurga S., Krawczyk P. Graphene material prepared by thermal reduction of the electrochemically synthesized graphite oxide. RSC Adv. 2016;6:63058–63063. doi: 10.1039/C6RA10903A. DOI

Thomas H.R., Phillips D.J., Wilson N.R., Gibson M.I., Rourke J.P. One-step grafting of polymers to graphene oxide. Polym. Chem. 2015;6:8270–8274. doi: 10.1039/C5PY01358E. PubMed DOI PMC

Larciprete R., Fabris S., Sun T., Lacovig P., Baraldi A., Lizzit S. Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 2011;133:17315–17321. doi: 10.1021/ja205168x. PubMed DOI

Faure E., Falentin-Daudré C., Jérôme C., Lyskawa J., Fournier D., Woisel P., Detrembleur C. Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 2013;38:236–270. doi: 10.1016/j.progpolymsci.2012.06.004. DOI

Kaminska I., Das M.R., Coffinier Y., Niedziolka-Jonsson J., Sobczak J., Woisel P., Lyskawa J., Opallo M., Boukherroub R., Szunerits S. Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step. ACS Appl. Mater. Interfaces. 2012;4:1016–1020. doi: 10.1021/am201664n. PubMed DOI

Vallés C., Drummond C., Saadaoui H., Furtado C.A., He M., Roubeau O., Ortolani L., Monthioux M., Pénicaud A. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 2008;130:15802–15804. doi: 10.1021/ja808001a. PubMed DOI

Zhu H., Gao L., Jiang X., Liu R., Wei Y., Wang Y., Zhao Y., Chai Z., Gao X. Positively charged graphene oxide nanoparticle: Precisely label the plasma membrane of live cell and sensitively monitor extracellular ph in situ. Chem. Commun. (Camb.) 2014;50:3695–3698. doi: 10.1039/C3CC49325C. PubMed DOI

Yi M., Shen Z., Liang S., Liu L., Zhang X., Ma S. Water can stably disperse liquid-exfoliated graphene. Chem. Commun. (Camb.) 2013;49:11059–11061. doi: 10.1039/c3cc46457a. PubMed DOI

Tejero R., López D., López-Fabal F., Gómez-Garcés J.L., Fernández-García M. Antimicrobial polymethacrylates based on quaternized 1,3-thiazole and 1,2,3-triazole side-chain groups. Polym. Chem. 2015;6:3449–3459. doi: 10.1039/C5PY00288E. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...