Biocompatibility and biocidal effects of modified polylactide composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36504788
PubMed Central
PMC9731850
DOI
10.3389/fmicb.2022.1031783
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial effect, biofilm, cytotoxicity, graphene oxide, organically modified vermiculite, polylactide composites,
- Publikační typ
- časopisecké články MeSH
Polylactide (PLA) materials treated with antimicrobial fillers represent a suitable alternative to the production of medical devices. Their advantage is that they can prevent the growth of microorganisms and the formation of microbial biofilms on the surface and around composites. The work is focused on the evaluation of biocompatibility and biocide effect of PLA composite films filled with vermiculite and graphene oxide modified with silver (Ag+ and Ag nanoparticles), hexadecylpyridinium (HDP) and hexadecyltrimethylammonium (HDTMA) cations and their degradation leachates monitored at 1-3-6-month intervals. The antimicrobial effect of the leachates was detected by microdilution methods on gram-negative (Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis), gram-positive (Staphylococcus aureus, Streptococcus salivarius) bacteria and yeast (Candida albicans). The biocidal effect of composites on biofilm formation on the surface of composites was monitored by Christensen method and autoaggregation and motility tests. The biocompatibility of the composite and the leachates was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cytotoxicity assay. The evaluation of the antimicrobial effect of the leachates demonstrated that leachates of PLA composite filled with graphene oxide and Ag+ showed a stronger antimicrobial effect than leachates of PLA composite filled with vermiculite and Ag+ and Ag nanoparticles. The leachates of PLA composites containing vermiculite with HDP and HDTMA cations had a higher antimicrobial effect on G+ bacteria and yeast than G- bacteria. Bacterial growth, biofilm formation, autoaggregation and motility of the tested bacteria were most inhibited by the composite with vermiculite and Ag+ and Ag nanoparticles. Even after a 6-month degradation of this composite, bacterial growth and biofilm formation continued to be strongly inhibited up to 42 and 91%, respectively. The cytotoxic effect was proved only in the leachate of the composite with vermiculite containing HDP after 6 months of its degradation. Tests evaluating the biocompatibility of materials have shown that the vermiculite is the most preferred carrier and can be used in the future to bind other compounds. The study confirmed that PLA composite filled with vermiculite and Ag+ and Ag nanoparticles was the most stable and effective composite with the best biocompatible and biocidal properties.
Department of Biology and Ecology University of Ostrava Ostrava Czechia
Medin a s Nové Město na Moravě Czechia
Nanotechnology Centre VSB Technical University of Ostrava Ostrava Czechia
Zobrazit více v PubMed
Albu S., Voidazan S., Bilca D., Badiu M., Trut̨ă A., Ciorea M., et al. (2018). Bacteriuria and asymptomatic infection in chronic patients with indwelling urinary catheter. Medicine 97:e11796. 10.1097/MD.0000000000011796 PubMed DOI PMC
Araujo H. C., Arias L. S., Caldeirão A. C. M., de Freitas Assumpcão L. C., Morceli M. G., de Souza Neto F. N., et al. (2020). Novel colloidal nanocarrier of cetylpyridinium chloride: Antifungal activities on candida species and cytotoxic potential on murine fibroblasts. J. Fungi. 6:218. 10.3390/jof6040218 PubMed DOI PMC
Berridge M. V., Herst P. M., Tan A. S. (2005). Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 11 127–152. 10.1016/S1387-2656(05)11004-7 PubMed DOI
Besinis A., De Peralta T., Handy R. D. (2014). The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on streptococcus mutans using a suite of bioassays. Nanotoxicology 8 1–16. 10.3109/17435390.2012.742935 PubMed DOI PMC
Burugapalli K., Razavi M., Zhou L., Huang Y. (2016). In vitro cytocompatibility study of a medical ß-type Ti-35.5Nb-5.7Ta titanium alloy. J. Biomater. Tissue Eng. 6 141–148. 10.1166/jbt.2016.1424 DOI
Casalini T., Rossi F., Castrovinci A., Perale G. (2019). A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol. 7:259. 10.3389/fbioe.2019.00259 PubMed DOI PMC
Chen M., Yu Q., Sun H. (2013). Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci. 14 18488–18501. 10.3390/ijms140918488 PubMed DOI PMC
Cvitkovitch D. G., Li Y.-H., Ellen R. P. (2003). Quorum sensing and biofilm formation in streptococcal infections. J. Clin. Invest. 112 1626–1632. 10.1172/JCI200320430 PubMed DOI PMC
Gherasim O., Grumezescu A. M., Grumezescu V., Iordache F., Vasile B. S., Holban A. M. (2020). Bioactive surfaces of polylactide and silver nanoparticles for the prevention of microbial contamination. Materials 13:768. 10.3390/ma13030768 PubMed DOI PMC
Girard E., Chagnon G., Moreau-Gaudry A., Letoublon C., Favier D., Dejean S., et al. (2021). Evaluation of a biodegradable PLA–PEG–PLA internal biliary stent for liver transplantation: In vitro degradation and mechanical properties. J. Biomed. Mater. Res. 109B 410–419. 10.1002/jbm.b.34709 PubMed DOI
Gomes An, van Oosten M., Bijker K. L. B., Boiten K. E., Salomon E. N., Rosema S., et al. (2018). Sonication of heart valves detects more bacteria in infective endocarditis. Sci. Rep. 8:12967. 10.1038/s41598-018-31029-w PubMed DOI PMC
Guttenplan S. B., Kearns D. B. (2013). Regulation of flagellar motility during biofilm formativ. FEMS Microbiol. Rev. 37 849–871. 10.1111/1574-6976.12018 PubMed DOI PMC
Hayat S., Muzammil S., Shabana, Aslam B., Siddique M. H., Saqalein M., et al. (2019). Quorum quenching: Role of nanoparticles as signal jammers in gram-negative bacteria. Future Microbiol. 14 61–72. 10.2217/fmb-2018-0257 PubMed DOI
Herten M., Bisdas T., Knaack D., Becker K., Osada N., Torsello G. B., et al. (2017). Rapid in vitro quantification of s. aureus biofilms on vascular graft surfaces. Front. Microbiol. 8:2333. 10.3389/fmicb.2017.02333 PubMed DOI PMC
International Organization for Standardization [ISO]. (2009). ISO 10993-5 International Organization for Standardization ISO 10993-5:2009. Biological Evaluation Of Medical Devices – Part 5: Tests for in Vitro Cytotoxicity. Geneva, CH: International Organization for Standardization.
International Organization for Standardization [ISO]. (2012). ISO 10993-12 International Organization for Standardization ISO 10993-12:2012. Biological Evaluation Of Medical Devices – Part 12: Sample Preparation and Reference Materials. Geneva, CH: International Organization for Standardization.
International Organization for Standardization [ISO]. (2019). ISO 20076-1 International Organization for Standardization ISO 20076-1:2019. Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices – Part 1: Broth Micro-Dilution Reference Method for Testing the in Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. Geneva, CH: International Organization for Standardization.
Jałowiecki L., Zur J., Chojniak J., Ejhed H., Płaza G. (2018). Properties of antibiotic-resistant bacteria isolated from onsite wastewater treatment plant in relation to biofilm formation. Curr. Microbiol. 75 639–649. 10.1007/s00284-017-1428-2 PubMed DOI PMC
Jaworski S., Wierzbicki M., Sawosz E., Jung A., Gielerak G., Biernat J., et al. (2018). Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res. Lett. 13:116. 10.1186/s11671-018-2533-2 PubMed DOI PMC
Kanno S., Hirano S., Kato H., Fukuta M., Mukai T., Aoki Y. (2020). Benzalkonium chloride and cetylpyridinium chloride induce apoptosis in human lung epithelial cells and alter surface activity of pulmonary surfactant monolayers. Chem. Biol. Interact. 317:108962. 10.1016/j.cbi.2020.108962 PubMed DOI
Khammassi S., Tarfaoui M., Škrlová K., Mìřínská D., Plachá D., Erchiqui F. (2022). Poly (Lactic Acid)(PLA)-based nanocomposites: Impact of vermiculite, silver, and graphene oxide on thermal stability, isothermal crystallization, and local mechanical behavior. J. Compos. Sci. 6:112. 10.3390/jcs6040112 DOI
Khatoon Z., McTiernan C. D., Suuronen E. J., Mah T.-F., Alarcon E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4:e01067. 10.1016/j.heliyon.2018.e01067 PubMed DOI PMC
Lade H., Park J. H., Chung S. H., Kim I. H., Kim J.-M., Joo H.-S., et al. (2019). Biofilm formation by staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J. Clin. Med. 8:1853. 10.3390/jcm8111853 PubMed DOI PMC
Laukkarinen J., Nordback I., Mikkonen J., Kärkkäinen P., Sand J. (2007). A novel biodegradable biliary stent in the endoscopic treatment of cystic-duct leakage after cholecystectomy. Gastrointest. Endosc. 65 1063–1068. 10.1016/j.gie.2006.11.059 PubMed DOI
Lee T. H., Jung M. K., Kim T.-K., Pack C. G., Park Y. K., Kim S.-O., et al. (2019). Safety and efficacy of a metal stent covered with a silicone membrane containing integrated silver particles in preventing biofilm and sludge formation in endoscopic drainage of malignant biliary obstruction: Phase II pilot study. Gastrointest. Endosc. 90 663–672. 10.1016/j.gie.2019.06.007 PubMed DOI
Liu X., Rodeheaver D. P., White J. C., Wright A. M., Walker L. M., Zhang F., et al. (2018). A comparison of in vitro cytotoxicity assays in medical device regulatory studies. Regul. Toxicol. Pharmacol. 97 24–32. 10.1016/j.yrtph.2018.06.003 PubMed DOI
Lukáč M., Mrva M., Garajová M., Mojžišová G., Varinská L., Mojžiš J., et al. (2013). Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivates of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride. Eur. J. Med. Chem. 66 46–55. 10.1016/j.ejmech.2013.05.033 PubMed DOI
Malachová K., Praus P., Pavlíčková Z., Turicová M. (2009). Activity of antibacterial compounds immobilised on montmorillonite. Appl. Clay Sci. 43 364–368. 10.1016/j.clay.2008.11.003 DOI
Mao X., Auer D. L., Buchalla W., Hiller K. A., Maisch T., Hellwig E., et al. (2020). Cetylpyridinium chloride: Mechanism of action, antimicrobial efficacy in biofilms, and potential risks of resistance. Antimicrob. Agents Chemother. 64:e576–20. 10.1128/AAC.00576-20 PubMed DOI PMC
Mohammadnejad J., Yazdian F., Omidi M., Rostami A. D., Rasekh B., Fathinia A. (2018). Graphene oxide/silver nanohybrid: Optimization, antibacterial activity and its impregnation on bacterial cellulose as a potential wound dressing based on GO-Ag nanocomposite-coated BC. Eng. Life Sci. 18 298–307. 10.1002/elsc.201700138 PubMed DOI PMC
Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65 55–63. 10.1016/0022-1759(83)90303-4 PubMed DOI
Mûller H. D., Eick S., Moritz A., Lussi A., Gruber R. (2017). Cytotoxicity and antimicrobial activity of oral rinses in vitro. Biomed. Res. Int. 2017:4019723. 10.1155/2017/4019723 PubMed DOI PMC
Munusamy K., Vadivelu J., Tay S. T. (2018). A study on candida biofilm growth characteristics and its susceptibility to aureobasidin A. Rev. Iberoam. Micol. 35 68–72. 10.1016/j.riam.2017.07.001 PubMed DOI
Nicoletti G., Boghossian V., Gurevitch F., Borland R., Morgenroth P. (1993). The antimicrobial activity in vitro of chlorhexidine, a mixture of isothiazolinones (’Kathon’CG) and cetyl trimethyl ammonium bromide (CTAB). J. Hosp. Infect. 23 87–111. 10.1016/0195-6701(93)90014-Q PubMed DOI
O’May C., Tufenkji N. (2011). The swarming motility of pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl. Environ. Microbiol. 77 3061–3067. 10.1128/AEM.02677-10 PubMed DOI PMC
Plachá D., Martynková G. S., Bachmatiuk A., Peikertová P., Seidlerová J., Rümmeli M. H. (2014a). The influence of pH on organovermiculite structure stability. Appl. Clay Sci. 93-94 17–22. 10.1016/j.clay.2014.03.008 DOI
Plachá D., Rosenbergová K., Slabotínský J., Kutláková K. M., Študentová S., Martynková G. S. (2014b). Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection. J. Hazard. Mater. 271 65–72. 10.1016/j.jhazmat.2014.01.059 PubMed DOI
Plachá D., Martynková G. S., Rümmeli M. H. (2008). Preparation of organovermiculites using HDTMA: Structure and sorptive properties using naphthalene. J. Colloid Interf. Sci. 327 341–347. 10.1016/j.jcis.2008.08.026 PubMed DOI
Plachá D., Martynková G. S., Rümmeli M. H. (2010). Variations in the sorptive properties of organovermiculites modified with hexadecyltrimethylammonium and hexadecylpyridinium cations. J. Sci. Conf. Proc. 2 36–41. 10.1166/jcp.2010.1006 DOI
Plachá D., Muñoz-Bonilla A., Škrlová K., Echeverria C., Chiloeches A., Petr M., et al. (2020a). Antibacterial character of cationic polymers attached to carbon-based nanomaterials. Nanomaterials 10:1218. 10.3390/nano10061218 PubMed DOI PMC
Plachá D., Kovář P., Vaněk J., Mikeska M., Škrlová K., Dutko O., et al. (2020b). Adsorption of nerve agent simulants onto vermiculite structure: Experiments and modelling. J. Hazardous Mat. 382:121001. 10.1016/j.jhazmat.2019.121001 PubMed DOI
Pollitt E. J. G., Diggle S. P. (2017). Defining motility in the staphylococci. Cell Mol. Life Sci. 74 2943–2958. 10.1007/s00018-017-2507-z PubMed DOI PMC
R Core Team (2016). Version 3.4.0. Vienna: The R Foundation for Statistical Computing.
Raksha L., Gangashettappa N., Shantala G. B., Nandan B. R., Sinha D. (2020). Study of biofilm formation in bacterial isolates from contact lens wearers. Indian J. Ophthalmol. 68 23–28. 10.4103/ijo.IJO_947_19 PubMed DOI PMC
Ramot Y., Haim-Zada M., Domb A. J., Nyska A. (2016). Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliv. Rev. 107 153–162. 10.1016/j.addr.2016.03.012 PubMed DOI
Ramot Y., Touitou D., Levin G., Ickowicz D. E., Zada M. H., Abbas R., et al. (2015). Interspecies differences in reaction to a biodegradable subcutaneous tissue filler: Severe inflammatory granulomatous reaction in the sinclair minipig. Toxicol. Pathol. 43 267–271. 10.1177/0192623314534995 PubMed DOI
Râpă M., Stefan L. M., Zaharescu T., Seciu A. M., Turcanu A. A., Matei E., et al. (2020). Development of bionanocomposites based on pla, collagen and agnps and characterization of their stability and in vitro biocompatibility. Appl. Sci. 10:2265. 10.3390/app10072265 DOI
Saeb A. T. M., Al-Rubeaan K. A., Abouelhoda M., Selvaraju M., Tayeb H. T. (2017). Genome sequencing and analysis of the first spontaneous nanosilver resistant bacterium proteus mirabilis strain SCDR1. Antimicrob. Resist. Infect. Control 6:119. 10.1186/s13756-017-0277-x PubMed DOI PMC
Samad T., Billings N., Birjiniuk A., Crouzier T., Doyle P. S., Ribbeck K. (2017). Swimming bacteria promote dispersal of non-motile staphylococcal species. ISME J. 11 1933–1937. 10.1038/ismej.2017.23 PubMed DOI PMC
Siddique M. H., Aslam B., Imran M., Ashraf A., Nadeem H., Hayat S., et al. (2020). Effect of silver nanoparticles on biofilm formation and eps production of multidrug-resistant klebsiella pneumoniae. Biomed. Res. Int. 2020:6398165. 10.1155/2020/6398165 PubMed DOI PMC
Silva D., Kaduria M., Poleya M., Adir O., Krinsky N., Shainsky-Roitman J., et al. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 340 9–14. 10.1016/j.cej.2018.01.010 PubMed DOI PMC
Škrlová K., Malachová K., Muñoz-Bonilla A., Měřinská D., Rybková Z., Fernández-García M., et al. (2019). Biocompatible polymer materials with antimicrobial properties for preparation of stents. Nanomaterials 9:1548. 10.3390/nano9111548 PubMed DOI PMC
Škrlová K., Rybková Z., Stachurová T., Zagora J., Malachová K., Měřinská D., et al. (2022). Long-term antimicrobial effect of polylactide-based composites suitable for biomedical use. Polym. Test. 116:107760. 10.1016/j.polymertesting.2022.107760 DOI
Sorroche F. G., Spesia M. B., Zorreguieta Á, Giordano W. (2012). A positive correlation between bacterial autoaggregation and biofilm formation in native sinorhizobium meliloti isolates from argentina. Appl. Environ. Microbiol. 78 4092–4101. 10.1128/AEM.07826-11 PubMed DOI PMC
Stachurová T., Malachová K., Semerád J., Sterniša M., Rybková Z., Smole Možina S. (2020). Tetracycline induces the formation of biofilm of bacteria from different phases of wastewater treatment. Processes 8:989. 10.3390/pr8080989 DOI
Sterniša M., Klančnik A., Smole Možina S. (2019). Spoilage pseudomonas biofilm with escherichia coli protection in fish meat at 5 °C. J. Sci. Food Agric. 99 4635–4641. 10.1002/jsfa.9703 PubMed DOI
Stockert J. C., Horobin R. W., Colombo L. L., Blázques-Castro A. (2018). Tetrazolium salts and formazan products in cell biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 120 159–167. 10.1016/j.acthis.2018.02.005 PubMed DOI
Tang Y., Shen Y., Huang L., Lv G., Lei C., Fan X., et al. (2015). In vitro cytotoxicity of gold nanorods in A549 cells. Environ. Toxicol. Pharmacol. 39 871–878. 10.1016/j.etap.2015.02.003 PubMed DOI
Valentina I., Haroutioun A., Fabrice L., Vincent V., Roberto P. (2018). Poly(lactic acid)-based nanobiocomposites with modulated degradation rates. Materials 11:1943. 10.3390/ma11101943 PubMed DOI PMC
Wang H., Zhang Y., Xu X., Yang F., Li K., Wei D., et al. (2020). Efficient loading of silver nanoparticles on graphene oxide and its antibacterial properties. Nano Express 1:010041. 10.1088/2632-959X/ab9546 DOI
Yang A., Tang W. S., Si T., Tang J. X. (2017). Influence of physical effects on the swarming motility of pseudomonas aeruginosa. Biophys. J. 112 1462–1471. 10.1016/j.bpj.2017.02.019 PubMed DOI PMC
Zaaba N. F., Jaafar M. (2020). A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 60 2061–2075. 10.1002/pen.25511 DOI