Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents

. 2019 Oct 31 ; 9 (11) : . [epub] 20191031

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31683612

Biodegradable polymers are promising materials for use in medical applications such as stents. Their properties are comparable to commercially available resistant metal and polymeric stents, which have several major problems, such as stent migration and stent clogging due to microbial biofilm. Consequently, conventional stents have to be removed operatively from the patient's body, which presents a number of complications and can also endanger the patient's life. Biodegradable stents disintegrate into basic substances that decompose in the human body, and no surgery is required. This review focuses on the specific use of stents in the human body, the problems of microbial biofilm, and possibilities of preventing microbial growth by modifying polymers with antimicrobial agents.

Zobrazit více v PubMed

Góra A., Pliszka D., Mukherjee S., Ramakrishna S. Tubular tissues and organs of human body—Challenges in regenerative medicine. J. Nanosci. Nanotechnol. 2016;16:19–39. doi: 10.1166/jnn.2016.11604. PubMed DOI

He X., Fu W., Zheng J. Cell sources for trachea tissue engineering: Past, present and future. Regen. Med. 2012;7:851–863. doi: 10.2217/rme.12.96. PubMed DOI

McMahon S., Bertollo N., Cearbhaill E.D.O., Salber J., Pierucci L., Duffy P., Dürig T., Bi V., Wang W. Bio-resorbable polymer stents: A review of material progress and prospects. Prog. Polym. Sci. 2018;83:79–96. doi: 10.1016/j.progpolymsci.2018.05.002. DOI

Carey F.A., Sheppard M.N. Diseases of blood vessels. Surgery. 2018;36:259–264. doi: 10.1016/j.mpsur.2018.03.011. DOI

Welch T.R., Nugent A.W., Veeram Reddy S.R. Biodegradable stents for congenital heart disease. Interv. Cardiol. Clin. 2019;8:81–94. doi: 10.1016/j.iccl.2018.08.009. PubMed DOI

Meraj P.M., Jauhar R., Singh A. Bare metal stents versus drug eluting stents: Where do we stand in 2015? Curr. Treat. Options Cardiovasc. Med. 2015;17:39. doi: 10.1007/s11936-015-0393-y. PubMed DOI

Iqbal J., Gunn J., Serruys P.W. Coronary stents: Historical development, current status and future directions. Br. Med. Bull. 2013;106:193–211. doi: 10.1093/bmb/ldt009. PubMed DOI

Holm A.N., De la Mora Levy J.G., Gostout C.J., Topazian M.D., Baron T.H. Self-expanding plastic stents in treatment of benign esophageal conditions. Gastrointest. Endosc. 2008;67:20–25. doi: 10.1016/j.gie.2007.04.031. PubMed DOI

Testoni P.A., Testoni P.A., Gastroenterology D. Endoscopic pancreatic duct stent placement for inflammatory pancreatic diseases. World J. Gastroenterol. 2007;13:5971–5978. doi: 10.3748/wjg.v13.45.5971. PubMed DOI PMC

Kobayashi S., Ueno M., Kameda R., Moriya S., Irie K., Goda Y., Tezuka S., Yanagida N., Ohkawa S., Aoyama T., et al. Duodenal stenting followed by systemic chemotherapy for patients with pancreatic cancer and gastric outlet obstruction. Pancreatology. 2016;16:1085–1091. doi: 10.1016/j.pan.2016.07.007. PubMed DOI

Gerber T.C., Fasseas P., Lennon R.J., Valeti V.U., Wood C.P., Breen J.F., Berger P.B. Clinical safety of magnetic resonanceimaging early after coronary artery stent placement. J. Am. Coll. Cardiol. 2003;42:1295–1298. doi: 10.1016/S0735-1097(03)00993-8. PubMed DOI

Park J., Kim J.-K., Park S.A., Lee D.-W. Biodegradable polymer material based smart stent: Wireless pressure sensor and 3D printed stent. Microelectron. Eng. 2019;206:1–5. doi: 10.1016/j.mee.2018.12.007. DOI

Hermawan H., Dubé D., Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6:1693–1697. doi: 10.1016/j.actbio.2009.10.006. PubMed DOI

Park S.A., Lee S.J., Lim K.S., Bae I.H., Lee J.H., Kim W.D., Jeong M.H., Park J.K. In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system. Mater. Lett. 2015;141:355–358. doi: 10.1016/j.matlet.2014.11.119. DOI

Died 2017-Institute of Health Information and Statistics of the Czech Republic, 2017. [(accessed on 30 August 2019)]; Available online: https://www.uzis.cz/system/files/demozem2017.pdf.

Cassar A., Holmes D.R., Rihal C.S., Gersh B.J. Chronic coronary artery disease: Diagnosis and management. Mayo Clin. Proc. 2009;84:1130–1146. doi: 10.4065/mcp.2009.0391. PubMed DOI PMC

Károly D., Charalambous D., Pogácsás B., Micsik T., Barile C., Casavola K. Preparation of explanted coronary stents for investigation of material properties. Mater. Today Proc. 2016;3:997–1002. doi: 10.1016/j.matpr.2016.03.036. DOI

Tomberli B., Mattesini A., Baldereschi G.I., Di Mario C. Breve historia de los stents coronarios. Rev. Española Cardiol. 2018;71:312–319. doi: 10.1016/j.recesp.2017.11.016. PubMed DOI

Rebagay G., Bangalore S. Biodegradable polymers and stents: The next generation? Curr. Cardiovasc. Risk Rep. 2019;13:2–7. doi: 10.1007/s12170-019-0617-x. DOI

Zanchin C., Ueki Y., Zanchin T., Häner J., Otsuka T., Stortecky S., Koskinas K.C., Siontis G.C.M., Praz F., Moschovitis A., et al. Everolimus-eluting biodegradable polymer versus everolimus-eluting durable polymer stent for coronary revascularization in routine clinical practice. JACC Cardiovasc. Interv. 2019;2019:1–11. doi: 10.1016/j.jcin.2019.04.046. PubMed DOI

Buiten R.A., Ploumen E.H., Zocca P., Doggen C.J.M., Danse P.W., Schotborgh C.E., Scholte M., Stoel M.G., Hartmann M., Tjon R.M., et al. Thin, very thin, or ultrathin strut biodegradable- or durable-polymer- coated drug-eluting stents. JACC Cardiovasc. Interv. 2019;12:1650–1660. doi: 10.1016/j.jcin.2019.04.054. PubMed DOI

Windecker S., Serruys P.W., Wandel S., Buszman P., Trznadel S., Linke A., Lenk K., Ischinger T., Klauss V., Eberli F., et al. Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): A randomised non-inferiority trial. Lancet. 2008;372:1163–1173. doi: 10.1016/S0140-6736(08)61244-1. PubMed DOI

Kereiakes D.J., Meredith I.T., Windecker S., Lee Jobe R., Mehta S.R., Sarembock I.J., Feldman R.L., Stein B., Dubois C., Grady T., et al. Efficacy and safety of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent. Circ. Cardiovasc. Interv. 2015;8:1–8. doi: 10.1161/CIRCINTERVENTIONS.114.002372. PubMed DOI

Staehr P. ABSORB bioresorbable vascular scaffold system—The 4th revolution in interventional cardiology; Proceedings of the 17th Asian Harmonization Working Party Annual Conference; Taipei, Taiwan. 2–6 November 2012.

Gogas B.D. Coronary interventions bioresorbable scaffolds for percutaneous coronary interventions. Glob. Cardiol. Sci. Pr. 2014;2014:409–427. PubMed PMC

Regazzoli D., Leone P.P., Colombo A., Latib A. New generation bioresorbable scaffold technologies: An update on novel devices and clinical results. J. Thorac. Dis. 2017;9:979–985. doi: 10.21037/jtd.2017.07.104. PubMed DOI PMC

Capodanno D. Bioresorbable scaffolds in coronary intervention: Unmet needs and evolution. Korean Circ. J. 2018;48:24–35. doi: 10.4070/kcj.2017.0194. PubMed DOI PMC

Verheye S., Ormiston J.A., Stewart J., Webster M., Sanidas E., Costa R., Costa J.R., Chamie D., Abizaid A.S., Pinto I., et al. A next-generation bioresorbable coronary scaffold system: From bench to first clinical evaluation. JACC Cardiovasc. Interv. 2014;7:89–99. doi: 10.1016/j.jcin.2013.07.007. PubMed DOI

Nef H.M., Wiebe J., Foin N., Blachutzik F., Dörr O., Toyloy S., Hamm C.W. A new novolimus-eluting bioresorbable coronary scaffold: Present status and future clinical perspectives. Int. J. Cardiol. 2017;227:127–133. doi: 10.1016/j.ijcard.2016.11.033. PubMed DOI

Serruys P.W., Regar E., Carter A.J. Rapamycin eluting stent: The onset of a new era in interventional cardiology. BMJ. 2002:305–308. doi: 10.1136/heart.87.4.305. PubMed DOI PMC

Iqbal J., Onuma Y., Ormiston J., Abizaid A., Waksman R., Serruys P. Bioresorbable scaffolds: Rationale, current status, challenges, and future. Eur. Heart J. 2014;35:765–776. doi: 10.1093/eurheartj/eht542. PubMed DOI

Verheye S., Webster M., Stewart J., Abizaid A., Costa R., Costa J., Yan J., Bhat V., Morrison L., Toyloy S., et al. TCT-563 multi-center, first-in-man evaluation of the myolimus-eluting bioresorbable coronary scaffold: 6-month clinical and imaging results. J. Am. Coll. Cardiol. 2012;60:B163. doi: 10.1016/j.jacc.2012.08.598. DOI

Mattesini A., Bartolini S., Dini C.S., Valente S., Parodi G., Meucci F., Mario C. Di The DESolve novolimus bioresorbable Scaffold: From bench to bedside. J. Thorac. Disease. 2017;9:950–958. doi: 10.21037/jtd.2017.07.25. PubMed DOI PMC

Sreenivas A. Interventional cardiology indigenous stents: Examining the clinical data on new technologies. Interv. Cardiol. 2014;6:319–333.

Zhang Y., Li M., Wei L., Zhu L., Hu S., Wu S., Ma S., Gao Y. Differential protein expression in perfusates from metastasized rat livers. Proteome Sci. 2013;11:37. doi: 10.1186/1477-5956-11-37. PubMed DOI PMC

Rao A.S., Makaroun M.S., Marone L.K., Cho J.S., Rhee R., Chaer R.A. Long-term outcomes of internal carotid artery dissection. J. Vasc. Surg. 2011;54:370–375. doi: 10.1016/j.jvs.2011.02.059. PubMed DOI

Fiorani P., Speziale F., Calisti A., Misuraca M., Zaccagnini D., Rizzo L., Giannoni M.F. Endovascular graft infection: Preliminary results of an international enquiry. J. Endovasc. Ther. 2004;10:919–927. doi: 10.1177/152660280301000512. PubMed DOI

Vögeling H., Pinnapireddy S.R., Seitz B., Bakowsky U. Indocyanine green loaded PLGA film coated coronary stents for photo-triggered in situ biofilm eradication. Colloids Interface Sci. Commun. 2018;27:35–39. doi: 10.1016/j.colcom.2018.10.002. DOI

Tanaka Y., Yoshida K., Suetsugu T., Imai T., Matsuhashi N., Yamaguchi K. Recent advancements in esophageal cancer treatment in Japan. Ann. Gastroenterol. Surg. 2018;2:253–265. doi: 10.1002/ags3.12174. PubMed DOI PMC

Fuccio L., Scagliarini M., Frazzoni L., Battaglia G. Development of a prediction model of adverse events after stent placement for esophageal cancer. Gastrointest. Endosc. 2016;83:746–752. doi: 10.1016/j.gie.2015.08.047. PubMed DOI

Repici A., Conio M., De Angelis C., Battaglia E., Musso A., Pellicano R., Goss M., Venezia G., Rizzetto M., Saracco G. Temporary placement of an expandable polyester silicone-covered stent for treatment of refractory benign esophageal strictures. Gastrointest. Endosc. 2004;60:513–519. doi: 10.1016/S0016-5107(04)01882-6. PubMed DOI

Langer F.B., Wenzl E., Prager G., Salat A., Miholic J., Mang T., Zacherl J. Management of postoperative esophageal leaks with the polyflex self-expanding covered plastic stent. Ann. Thorac. Surg. 2005;79:398–403. doi: 10.1016/j.athoracsur.2004.07.006. PubMed DOI

Lin M., Firoozi N., Tsai C.-T., Wallace M.B., Kang Y. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomater. 2019;83:119–129. doi: 10.1016/j.actbio.2018.10.035. PubMed DOI

Saito Y. Usefulness of biodegradable stents constructed of poly-l-lactic acid monofilaments in patients with benign esophageal stenosis. World J. Gastroenterol. 2007;13:3977. doi: 10.3748/wjg.v13.i29.3977. PubMed DOI PMC

Tanaka T., Takahashi M., Nitta N., Furukawa A., Andoh A., Saito Y., Fujiyama Y., Murata K. Newly developed biodegradable stents for benign gastrointestinal tract stenoses: A preliminary clinical trial. Digestion. 2006;74:199–205. doi: 10.1159/000100504. PubMed DOI

Griffiths E.A., Gregory C.J., Pursnani K.G., Ward J.B., Stockwell R.C. The use of biodegradable (SX-ELLA) oesophageal stents to treat dysphagia due to benign and malignant oesophageal disease. Surg. Endosc. 2012;26:2367–2375. doi: 10.1007/s00464-012-2192-9. PubMed DOI

Imaz-Iglesia I., García-Pérez S., Nachtnebel A., Martín-Águeda B., Sánchez-Piedra C., Karadayi B., Demirbaş A.R. Biodegradable stents for the treatment of refractory or recurrent benign esophageal stenosis. Expert Rev. Med. Devices. 2016;13:583–599. doi: 10.1080/17434440.2016.1184967. PubMed DOI

DiMagno E.P., Reber H.A., Tempero M.A. AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. Gastroenterology. 1999;117:1464–1484. doi: 10.1016/S0016-5085(99)70298-2. PubMed DOI

Adler D. Endoscopic palliation of malignant gastric outlet obstruction using self-expanding metal stents: Experience in 36 patients. Am. J. Gastroenterol. 2002;97:72–78. doi: 10.1111/j.1572-0241.2002.05423.x. PubMed DOI

Kozarek R.A., Ball T.J., Patterson D.J. Metallic self-expanding stent application in the upper gastrointestinal tract: Caveats and concerns. Gastrointest. Endosc. 1992;38:1–6. doi: 10.1016/S0016-5107(92)70321-6. PubMed DOI

Tokar J.L., Banerjee S., Barth B.A., Desilets D.J., Kaul V., Kethi S.R., Pedrosa M.C., Pfau P.R., Pleskow D.K., Varadarajulu S., et al. Drug-eluting/biodegradable stents. Gastrointest. Endosc. 2011;74:954–958. doi: 10.1016/j.gie.2011.07.028. PubMed DOI

Wong Y.T., Brams D.M., Munson L., Sanders L., Heiss F., Chase M., Birkett D.H. Gastric outlet obstruction secondary to pancreatic cancer. Surg. Endosc. Other Interv. Tech. 2002;16:310–312. doi: 10.1007/s00464-001-9061-2. PubMed DOI

Wang Z., Li N., Li R., Li Y., Ruan L. Biodegradable intestinal stents: A review. Prog. Nat. Sci. Mater. Int. 2014;24:423–432. doi: 10.1016/j.pnsc.2014.08.008. DOI

Calcagno P., Viti M., Cornelli A., Galli D., Urbano C.D. Intestinal obstruction caused by endometriosis: Endoscopic stenting and expedited laparoscopic resection avoiding stoma. A case report and review of the literature. Int. J. Surg. Case Rep. 2018;44:75–77. doi: 10.1016/j.ijscr.2018.02.012. PubMed DOI PMC

Sherman S., Alvarez C., Robert M., Ashley S.W., Reber H.A., Lehman G.A. Polyethylene pancreatic duct stent-induced changes in the normal dog pancreas. Gastrointest. Endosc. 1993;39:658–664. doi: 10.1016/S0016-5107(93)70218-7. PubMed DOI

Kassab C., Prat F., Liguory C., Meduri B., Ducot B., Fritsch J., Choury A.D., Pelletier G. Endoscopic management of post-laparoscopic cholecystectomy biliary strictures. Gastroentérologie Clin. Biol. 2006;30:124–129. doi: 10.1016/S0399-8320(06)73127-X. PubMed DOI

Piñol V., Castells A., Bordas J.M., Real M.I., Llach J., Montañà X., Feu F., Navarro S. Percutaneous self-expanding metal stents versus endoscopic polyethylene endoprostheses for treating malignant biliary obstruction: Randomized clinical trial. Radiology. 2002;225:27–34. doi: 10.1148/radiol.2243011517. PubMed DOI

Schneider G., Siveke J.T., Eckel F., Schmid R.M. Pancreatic cancer: Basic and clinical aspects. Gastroenterology. 2005;128:1606–1625. doi: 10.1053/j.gastro.2005.04.001. PubMed DOI

Lubezky N., Konikoff F.M., Rosin D., Carmon E., Kluger Y., Ben-Haim M. Endoscopic sphincterotomy and temporary internal stenting for bile leaks following complex hepatic trauma. Br. J. Surg. 2006;93:78–81. doi: 10.1002/bjs.5195. PubMed DOI

Weber A., Zellner S., Wagenpfeil S., Schneider J., Gerngross C., Baur D.M., Neu B., Bajbouj M., von Delius S., Algül H., et al. Long-term follow-up after endoscopic stent therapy for benign biliary strictures. J. Clin. Gastroenterol. 2014;48:88–93. doi: 10.1097/MCG.0b013e3182972eab. PubMed DOI

Lee J.H., Ahmed O. Endoscopic management of pancreatic cancer. Surg. Oncol. Clin. N. Am. 2019;28:147–159. doi: 10.1016/j.soc.2018.07.002. PubMed DOI

Lee T.H., Jung M.K., Kim T.-K., Pack C.G., Park Y.K., Kim S.-O., Park D.H. Safety and efficacy of a metal stent covered with a silicone membrane containing integrated silver particles in preventing biofilm and sludge formation in endoscopic drainage of malignant biliary obstruction: Phase II pilot study. Gastrointest. Endosc. 2019;90:663–672. doi: 10.1016/j.gie.2019.06.007. PubMed DOI

Shroff S. Polymers as ureteral stents. J. Endourol. 2010;24:191–198. PubMed

Forbes C., Scotland K.B., Lange D., Chew B.H. Innovations in ureteral stent technology. Urol. Clin. North Am. 2019;46:245–255. doi: 10.1016/j.ucl.2018.12.013. PubMed DOI

Mah T.-F.C., O’Toole G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–39. doi: 10.1016/S0966-842X(00)01913-2. PubMed DOI

Brierly R.D., Mostafid A.H., Kontothanassis D., Thomas P.J., Fletcher M.S., Harrison N.W. Is transurethral resection of the prostate safe and effective in the over 80-year-old? Ann. R. Coll. Surg. Engl. 2001;83:50–53. PubMed PMC

Rutman M.P. A Comprehensive Guide to the Prostate: Eastern and Western Approaches for Management of BPH. Academic Press; Cambridge, MA, USA: 2018. Prostatic Stents. Chapter 19.

Nordling J., Ovesen H., Poulsen A.L. The intraprostatic spiral: Clinical results in 150 consecutive patients. J. Urol. 1992;147:645–647. doi: 10.1016/S0022-5347(17)37333-0. PubMed DOI

Pétas A., Vuopio-Varkila J., Siitonen A., Välimaa T., Talja M., Taari K. Bacterial adherence to self-reinforced polyglycolic acid and self-reinforced poly-lactic acid 96 urological spiral stents in vitro. Biomaterials. 1998;19:677–681. doi: 10.1016/S0142-9612(97)00171-3. PubMed DOI

Madersbacher S. Stents for prostatic diseases: Any progress after 25 years? Eur. Urol. 2006;49:212–214. doi: 10.1016/j.eururo.2005.12.016. PubMed DOI

Davey M.E., O’toole G.A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 2000;64:847–867. doi: 10.1128/MMBR.64.4.847-867.2000. PubMed DOI PMC

O’Toole G., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000;54:49–79. doi: 10.1146/annurev.micro.54.1.49. PubMed DOI

Donlan R.M., Costerton J.W. Biofilms: Survivalmechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002;15:167–193. doi: 10.1128/CMR.15.2.167-193.2002. PubMed DOI PMC

Fletcher M. Wiley Series in Ecological and Applied Microbiology. John Wiley & Sons; Hoboken, NJ, USA: 1996. Bacterial adhesion: Molecular and ecological diversity; p. 361.

Szczotka-Flynn L.B., Pearlman E., Ghannoum M. Microbial contamination of contact lenses, lens care solutions, and their accessories: A literature review. Eye Contact Lens Sci. Clin. Pract. 2010;36:116–129. doi: 10.1097/ICL.0b013e3181d20cae. PubMed DOI PMC

Archibald L.K., Gaynes R.P. Hospital-acquired infections in the United States. Infect. Dis. Clin. North Am. 1997;11:245–255. doi: 10.1016/S0891-5520(05)70354-8. PubMed DOI

Maria-Litrán T., Allison D.G., Gilbert P. An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate. J. Antimicrob. Chemother. 2000;45:789–795. doi: 10.1093/jac/45.6.789. PubMed DOI

Costerton J.W. Bacterial biofilms: A common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI

Kuhn D.M. Comparison of biofilms formed by candidaalbicans and candidaparapsilosis on bioprosthetic surfaces. Infect. Immun. 2002;70:878–888. doi: 10.1128/IAI.70.2.878-888.2002. PubMed DOI PMC

Stein P.D., Harken D.E., Dexter L. The nature and prevention of prosthetic valve endocarditis. Am. Heart J. 1966;71:393–407. doi: 10.1016/0002-8703(66)90482-0. PubMed DOI

Shah H., Bosch W., Thompson K.M., Hellinger W.C. Intravascular catheter-related bloodstream infection. Neurohospitalist. 2013;3:144–151. doi: 10.1177/1941874413476043. PubMed DOI PMC

Nickel J.C., Costerton J.W. Bacterial biofilms and catheters: A key to understanding bacterial strategies in catheter-associated urinary tract infection. Can. J. Infect. Dis. 1992;3:261–267. doi: 10.1155/1992/517456. PubMed DOI PMC

Song Z., Borgwardt L., Høiby N., Wu H., Sørensen T.S., Borgwardt A. Prosthesis infections after orthopedic joint replacement: The possible role of bacterial biofilms. Orthop. Rev. (Pavia) 2013;5:14. doi: 10.4081/or.2013.e14. PubMed DOI PMC

Gibbs K., Holzman I.R. Endotracheal tube: Friend or foe? Bacteria, the endotracheal tube, and the impact of colonization and infection. Semin. Perinatol. 2012;36:454–461. doi: 10.1053/j.semperi.2012.06.008. PubMed DOI

Molinari G., Pugliese V., Schito G.C., Guzmán C.A. Bacteria involved in the blockage of biliary stents and their susceptibility to antibacterial agents. Eur. J. Clin. Microbiol. Infect. Dis. 1996;15:88–92. doi: 10.1007/BF01586194. PubMed DOI

Baerlocher M.O., Asch M.R., Vellahottam A., Puri G., Andrews K., Myers A. Safety and efficacy of gastrointestinal stents in cancer patients at a community hospital. Can. J. Surg. 2008;51:130-4. PubMed PMC

Kim J.H., Song H.-Y., Shin J.H., Choi E., Kim T.W., Lee S.K., Kim B.S. Stent Collapse as a delayed complication of placement of a covered gastroduodenal stent. Am. J. Roentgenol. 2007;188:1495–1499. doi: 10.2214/AJR.06.1385. PubMed DOI

Borowicz M.R., Adams D.B., Simpson J.P., Cunningham J.T. Management of biliary strictures due to laparoscopic cholecystectomy. J. Surg. Res. 1995;58:86–89. doi: 10.1006/jsre.1995.1014. PubMed DOI

Christoforidis E., Vasiliadis K., Goulimaris I., Tsalis K., Kanellos I., Papachilea T., Tsorlini E., Betsis D. A single center experience in minimally invasive treatment of postcholecystectomy bile leak, complicated with biloma formation. J. Surg. Res. 2007;141:171–175. doi: 10.1016/j.jss.2006.07.012. PubMed DOI

Baillie J. Clinical trial report: Endoscopic treatment of postoperative bile duct strictures using multiple stents: Long-term results. Curr. Gastroenterol. Rep. 2011;13:114–116. doi: 10.1007/s11894-010-0173-5. PubMed DOI

Warshaw A.L., Castillo C.F. Pancreatic carcinoma. N. Engl. J. Med. 1992;326:455–465. doi: 10.1056/NEJM199202133260706. PubMed DOI

Ballinger A.B., McHugh M., Catnach S.M., Alstead E.M., Clark M.L. Symptom relief and quality of life after stenting for malignant bile duct obstruction. Gut. 1994;35:467–470. doi: 10.1136/gut.35.4.467. PubMed DOI PMC

Cubiella J., Castells A., Fondevila C., Sans M., Sabater L., Navarro S., Fernández-Cruz L. Prognostic factors in nonresectable pancreatic adenocarcinoma: A rationale to design therapeutic trials. Am. J. Gastroenterol. 1999;94:1271. doi: 10.1111/j.1572-0241.1999.01018.x. PubMed DOI

Salgado S.M., Gaidhane M., Kahaleh M. Endoscopic palliation of malignant biliary strictures. World J. Gastrointest. Oncol. 2016;8:240. doi: 10.4251/wjgo.v8.i3.240. PubMed DOI PMC

Donelli G., Guaglianone E., Di Rosa R., Fiocca F., Basoli A. Plastic biliary stent occlusion: Factors involved and possible preventive approaches. Clin. Med. Res. 2007;5:53–60. doi: 10.3121/cmr.2007.683. PubMed DOI PMC

Rejchrt S., Kopacova M., Brozik J., Bures J. Biodegradable stents for the treatment of benign stenoses of the small and large intestines. Endoscopy. 2011;43:911–917. doi: 10.1055/s-0030-1256405. PubMed DOI

Zuber-Jerger I., Hempel U., Rockmann F., Klebl F. Temporary stent placement in 2 cases of aortoesophageal fistula. Gastrointest. Endosc. 2008;68:599–602. doi: 10.1016/j.gie.2007.12.010. PubMed DOI

Pfau P.R., Pleskow D.K., Banerjee S., Barth B.A., Bhat Y.M., Desilets D.J., Gottlieb K.T., Maple J.T., Siddiqui U.D., Tokar J.L., et al. Pancreatic and biliary stents. Gastrointest. Endosc. 2013;77:319–327. doi: 10.1016/j.gie.2012.09.026. PubMed DOI

Ruys A.T., Rauws E.A., Busch O.R.C., Lameris J.S., Gouma D.J., van Gulik T.M. Hilar Cholangiocarcinoma. Springer; Dordrecht, The Netherlands: 2013. Preoperative biliary drainage; pp. 139–146.

Weber A., Prinz C., Gerngro C., Ludwig L., Huber W., Neu B., Ebert M.P., Meining A., Weidenbach H., Schmid R.M., et al. Long-term outcome of endoscopic and/or percutaneous transhepatic therapy in patients with biliary stricture after orthotopic liver transplantation. J. Gastroenterol. 2009;44:1195–1202. doi: 10.1007/s00535-009-0123-x. PubMed DOI

Hermann R.E. Shackelford’s surgery of the alimentary tract. JAMA J. Am. Med. Assoc. 1991;266:1576. doi: 10.1001/jama.1991.03470110122050. DOI

Laasch H.-U., Martin D.F. Management of benign biliary strictures. Cardiovasc. Intervent. Radiol. 2002;25:457–466. doi: 10.1007/s00270-002-1888-y. PubMed DOI

Padillo F.J., Cruz A., Briceño J., Martin-Malo A., Pera-Madrazo C., Sitges-Serra A. Multivariate analysis of factors associated with renal dysfunction in patients with obstructive jaundice. Br. J. Surg. 2005;92:1388–1392. doi: 10.1002/bjs.5091. PubMed DOI

Son J.H., Kim J., Lee S.H., Hwang J.-H., Ryu J.K., Kim Y.-T., Yoon Y.B., Jang J.-Y., Kim S.-W., Cho J.Y., et al. The optimal duration of preoperative biliary drainage for periampullary tumors that cause severe obstructive jaundice. Am. J. Surg. 2013;206:40–46. doi: 10.1016/j.amjsurg.2012.07.047. PubMed DOI

Bismuth H., Majno P.E. Biliary strictures: Classification based on the principles of surgical treatment. World J. Surg. 2001;25:1241–1244. doi: 10.1007/s00268-001-0102-8. PubMed DOI

Perri V., Familiari P., Tringali A., Boskoski I., Costamagna G. Plastic biliary stents for benign biliary diseases. Gastrointest. Endosc. Clin. N. Am. 2011;21:405–433. doi: 10.1016/j.giec.2011.04.012. PubMed DOI

Costamagna G., Pandolfi M. Endoscopic stenting for biliary and pancreatic malignancies. J. Clin. Gastroenterol. 2004;38:59–67. doi: 10.1097/00004836-200401000-00013. PubMed DOI

Van Boeckel P.G., Vleggaar F.P., Siersema P.D. Plastic or metal stents for benign extrahepatic biliary strictures: A systematic review. BMC Gastroenterol. 2009;9:96. doi: 10.1186/1471-230X-9-96. PubMed DOI PMC

Stern N., Sturgess R. Endoscopic therapy in the management of malignant biliary obstruction. Eur. J. Surg. Oncol. 2008;34:313–317. doi: 10.1016/j.ejso.2007.07.210. PubMed DOI

Isayama H., Mukai T., Itoi T., Maetani I., Nakai Y., Kawakami H., Yasuda I., Maguchi H., Ryozawa S., Hanada K., et al. Comparison of partially covered nitinol stents with partially covered stainless stents as a historical control in a multicenter study of distal malignant biliary obstruction: The WATCH study. Gastrointest. Endosc. 2012;76:84–92. doi: 10.1016/j.gie.2012.02.039. PubMed DOI

Davids P.H.P., Groen A.K., Rauws E.A.J., Tytgat G.N.J., Huibregtse K. Randomised trial of self-expanding metal stents versus polyethylene stents for distal malignant biliary obstruction. Lancet. 1992;340:1488–1492. doi: 10.1016/0140-6736(92)92752-2. PubMed DOI

Yeoh K.G., Zimmerman M.J., Cunningham J.T., Cotton P.B. Comparative costs of metal versus plastic biliary stent strategies for malignant obstructive jaundice by decision analysis. Gastrointest. Endosc. 1999;49:466–471. doi: 10.1016/S0016-5107(99)70044-1. PubMed DOI

Prat F., Chapat O., Ducot B., Ponchon T., Pelletier G., Fritsch J., Choury A.D., Buffet C. A randomized trial of endoscopic drainage methods for inoperable malignant strictures of the common bile duct. Gastrointest. Endosc. 1998;47:1–7. doi: 10.1016/S0016-5107(98)70291-3. PubMed DOI

Parviainen M., Sand J., Harmoinen A., Kainulainen H., Välimaa T., Törmälä P., Nordback I. A new biodegradable stent for the pancreaticojejunal anastomosis after pancreaticoduodenal resection: In vitro examination and pilot experiences in humans. Pancreas. 2000;21:14–21. doi: 10.1097/00006676-200007000-00047. PubMed DOI

Soehendra N., Reynders-Frederix V. Palliative bile duct drainage—A new endoscopic method of introducing a transpapillary drain. Endoscopy. 1980;12:8–11. doi: 10.1055/s-2007-1021702. PubMed DOI

Swidsinski A. Bacterial biofilm within diseased pancreatic and biliary tracts. Gut. 2005;54:388–395. doi: 10.1136/gut.2004.043059. PubMed DOI PMC

Catalano M.F., Geenen J.E., Lehman G.A., Siegel J.H., Jacob L., McKinley M.J., Raijman I., Meier P., Jacobson I., Kozarek R., et al. “Tannenbaum” Teflon stents versus traditional polyethylene stents for treatment of malignant biliary stricture. Gastrointest. Endosc. 2002;55:354–358. doi: 10.1067/mge.2002.121879. PubMed DOI

Sung J.Y., Leung J.W.C., Shaffer E.A., Lam K., Costerton J.W. Bacterial biofilm, brown pigment stone and blockage of biliary stents. J. Gastroenterol. Hepatol. 1993;8:28–34. doi: 10.1111/j.1440-1746.1993.tb01171.x. PubMed DOI

Van Berkel A.M., Boland C., Redekop W.K., Bergman J.J.G.H.M., Groen A.K., Tytgat G.N.J., Huibregtse K. A Prospective randomized trial of teflon versus polyethylene stents for distal malignant biliary obstruction. Endoscopy. 1998;30:681–686. doi: 10.1055/s-2007-1001388. PubMed DOI

England R.E., Martin D.F., Morris J., Sheridan M.B., Frost R., Freeman A., Lawrie B., Deakin M., Fraser I., Smith K. A prospective randomised multicentre trial comparing 10 Fr Teflon Tannenbaum stents with 10 Fr polyethylene Cotton-Leung stents in patients with malignant common duct strictures. Gut. 2000;46:395–400. doi: 10.1136/gut.46.3.395. PubMed DOI PMC

Terruzzi V., Comin U., De Grazia F., Toti G.L., Zambelli A., Beretta S., Minoli G. Prospective randomized trial comparing Tannenbaum Teflon and standard polyethylene stents in distal malignant biliary stenosis. Gastrointest. Endosc. 2000;51:23–27. doi: 10.1016/S0016-5107(00)70381-6. PubMed DOI

Speer A.G., Cotton P.B., MacRae K.D. Endoscopic management of malignant biliary obstruction: Stents of 10 French gauge are preferable to stents of 8 French gauge. Gastrointest. Endosc. 1988;34:412–417. doi: 10.1016/S0016-5107(88)71407-8. PubMed DOI

Pedersen F.M. Endoscopic management of malignant biliary obstruction is stent size of 10 french gauge better than 7 french gauge? Scand. J. Gastroenterol. 1993;28:185–189. doi: 10.3109/00365529309096068. PubMed DOI

Huibregtse K., Haverkamp H.J., Tytgat G.N. Transpapillary positioning of a large 3.2 mm biliary endoprosthesis. Endoscopy. 1981;13:217–219. doi: 10.1055/s-2007-1021688. PubMed DOI

Weber A., Mittermeyer T., Wagenpfeil S., Schmid R.M., Prinz C. Self-expanding metal stents versus polyethylene stents for palliative treatment in patients with advanced pancreatic cancer. Pancreas. 2009;38:e7–e12. doi: 10.1097/MPA.0b013e3181870ab8. PubMed DOI

Leong Q.W., Shen M.L., Au K.W., Luo D., Lau J.Y., Wu J.C., Chan F.K., Sung J.J. A prospective, randomized study of the patency period of the plastic antireflux biliary stent: An interim analysis. Gastrointest. Endosc. 2016;83:387–393. doi: 10.1016/j.gie.2015.04.027. PubMed DOI

Torki M.M., Hassanajili S., Jalisi M.M. Design optimizations of PLA stent structure by FEM and investigating its function in a simulated plaque artery. Math. Comput. Simul. 2019 doi: 10.1016/j.matcom.2019.09.011. DOI

Petrtýl J., Brůha R., Horák L., Zádorová Z., Doseděl J., Laasch H.-U. Management of benign intrahepatic bile duct strictures: Initial experience with polydioxanone biodegradable stents. Endoscopy. 2010;42:E89–E90. doi: 10.1055/s-0029-1243880. PubMed DOI

Itoi T., Kasuya K., Abe Y., Isayama H. Endoscopic placement of a new short-term biodegradable pancreatic and biliary stent in an animal model: A preliminary feasibility study (with videos) J. Hepatobiliary Pancreat. Sci. 2011;18:463–467. doi: 10.1007/s00534-010-0364-3. PubMed DOI

Yaszemski M. Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996;17:175–185. doi: 10.1016/0142-9612(96)85762-0. PubMed DOI

Isotalo T., Alarakkola E., Talja M., Tammela T.L.J., Välimaa T., Törmälä P. Biocompatibility testing of a new bioabsorbable X-ray positive sr-pla 96/4 urethral stent. J. Urol. 1999;162:1764–1767. doi: 10.1016/S0022-5347(05)68235-3. PubMed DOI

Poole-Warren L.A., Patton A.J. Biosynthetic Polymers for Medical Applications. Elsevier; Amsterdam, The Netherlands: 2016. Introduction to biomedical polymers and biocompatibility; pp. 3–31.

Baudis S., Behl M., Lendlein A. Smart polymers for biomedical applications. Macromol. Chem. Phys. 2014;215:2399–2402. doi: 10.1002/macp.201400561. DOI

Uhrich K.E., Abdelhamid D. Biosynthetic Polymers for Medical Applications. Elsevier; Amsterdam, The Netherlands: 2016. Biodegradable and bioerodible polymers for medical applications; pp. 63–83.

Lasprilla A.J.R., Martinez G.A.R., Lunelli B.H., Jardini A.L., Filho R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012;30:321–328. doi: 10.1016/j.biotechadv.2011.06.019. PubMed DOI

Lim L.-T., Auras R., Rubino M. Processing technologies for poly(lactic acid) Prog. Polym. Sci. 2008;33:820–852. doi: 10.1016/j.progpolymsci.2008.05.004. DOI

Liu H., Song W., Chen F., Guo L., Zhang J. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules. 2011;44:1513–1522. doi: 10.1021/ma1026934. DOI

Carrasco F., Pagès P., Gámez-Pérez J., Santana O.O., Maspoch M.L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 2010;95:116–125. doi: 10.1016/j.polymdegradstab.2009.11.045. DOI

Avérous L. Monomers, Polymers and Composites from Renewable Resources. Elsevier; Amsterdam, The Netherlands: 2008. Polylactic Acid: Synthesis, Properties and Applications; pp. 433–450.

Laukkarinen J., Nordback I., Mikkonen J., Kärkkäinen P., Sand J. A novel biodegradable biliary stent in the endoscopic treatment of cystic-duct leakage after cholecystectomy. Gastrointest. Endosc. 2007;65:1063–1068. doi: 10.1016/j.gie.2006.11.059. PubMed DOI

Laukkarinen J., Sand J., Leppiniemi J., Kellomäki M., Nordback I. A novel technique for hepaticojejunostomy for nondilated bile ducts: A purse-string anastomosis with an intra-anastomotic biodegradable biliary stent. Am. J. Surg. 2010;200:124–130. doi: 10.1016/j.amjsurg.2009.05.012. PubMed DOI

Laukkarinen J.M., Sand J.A., Chow P., Juuti H., Kellomäki M., Kärkkäinen P., Isola J., Yu S., Somanesan S., Kee I., et al. A novel biodegradable biliary stent in the normal duct hepaticojejunal anastomosis: An 18-month follow-up in a large animal model. J. Gastrointest. Surg. 2007;11:750–757. doi: 10.1007/s11605-007-0141-z. PubMed DOI

Lämsä T., Jin H., Mikkonen J., Laukkarinen J., Sand J., Nordback I. Biocompatibility of a new bioabsorbable radiopaque stent material (BaSO4 containing poly-L,D-lactide) in the rat pancreas. Pancreatology. 2006;6:301–305. doi: 10.1159/000092772. PubMed DOI

Xu X., Liu T., Zhang K., Liu S., Shen Z., Li Y., Jing X. Biodegradation of poly(l-lactide-co-glycolide) tube stents in bile. Polym. Degrad. Stab. 2008;93:811–817. doi: 10.1016/j.polymdegradstab.2008.01.022. DOI

Ginsberg G., Cope C., Shah J., Martin T., Carty A., Habecker P., Kaufmann C., Clerc C., Nuutinen J.-P., Törmälä P. In vivo evaluation of a new bioabsorbable self-expanding biliary stent. Gastrointest. Endosc. 2003;58:777–784. doi: 10.1016/S0016-5107(03)02016-9. PubMed DOI

Xu X., Liu T., Liu S., Zhang K., Shen Z., Li Y., Jing X. Feasibility of biodegradable PLGA common bile duct stents: An in vitro and in vivo study. J. Mater. Sci. Mater. Med. 2009;20:1167–1173. doi: 10.1007/s10856-008-3672-2. PubMed DOI

Meng B., Wang J., Zhu N., Meng Q.-Y., Cui F.-Z., Xu Y.-X. Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J. Mater. Sci. Mater. Med. 2006;17:611–617. doi: 10.1007/s10856-006-9223-9. PubMed DOI

van Natta F.J., Hill J.W., Carothers W.H. Studies of polymerization and ring formation. XXIII. 1 ε-caprolactone and its polymers. J. Am. Chem. Soc. 1934;56:455–457. doi: 10.1021/ja01317a053. DOI

Luciani A., Coccoli V., Orsi S., Ambrosio L., Netti P.A. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials. 2008;29:4800–4807. doi: 10.1016/j.biomaterials.2008.09.007. PubMed DOI

Lee K.H., Kim H.Y., Khil M.S., Ra Y.M., Lee D.R. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer (Guildf) 2003;44:1287–1294. doi: 10.1016/S0032-3861(02)00820-0. DOI

Marrazzo C., Di Maio E., Iannace S. Conventional and nanometric nucleating agents in poly(ε-caprolactone) foaming: Crystals vs. bubbles nucleation. Polym. Eng. Sci. 2008;48:336–344. doi: 10.1002/pen.20937. DOI

Cama G., Mogosanu D.E., Houben A., Dubruel P. Science and Principles of Biodegradable and Bioresorbable Medical Polymers. Elsevier; Amsterdam, The Netherlands: 2017. Synthetic biodegradable medical polyesters; pp. 79–105.

Aikawa M., Miyazawa M., Okada K., Toshimitsu Y., Torii T., Otani Y., Koyama I., Ikada Y. Regeneration of extrahepatic bile duct—Possibility to clinical application by recognition of the regenerative process. J. Smooth Muscle Res. 2007;43:211–218. doi: 10.1540/jsmr.43.211. PubMed DOI

Grolich T., Crha M., Novotný L., Kala Z., Hep A., Nečas A., Hlavsa J., Mitáš L., Misík J. Self-expandable biodegradable biliary stents in porcine model. J. Surg. Res. 2015;193:606–612. doi: 10.1016/j.jss.2014.08.006. PubMed DOI

Hellmann M., Mehta S.D., Bishai D.M., Mears S.C., Zenilman J.M. The estimated magnitude and direct hospital costs of prosthetic joint infections in the United States, 1997 to 2004. J. Arthroplasty. 2010;25:766–771. doi: 10.1016/j.arth.2009.05.025. PubMed DOI

Hall-Stoodley L., Costerton J.W., Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004;2:95–108. doi: 10.1038/nrmicro821. PubMed DOI

Arciola C.R., Campoccia D., Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018;16:397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI

Uçkay I., Hoffmeyer P., Lew D., Pittet D. Prevention of surgical site infections in orthopaedic surgery and bone trauma: State-of-the-art update. J. Hosp. Infect. 2013;84:5–12. doi: 10.1016/j.jhin.2012.12.014. PubMed DOI

Rojas K., Canales D., Amigo N., Montoille L., Cament A., Rivas L.M., Gil-Castell O., Reyes P., Ulloa M.T., Ribes-Greus A., et al. Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Compos. Part B Eng. 2019;172:173–178. doi: 10.1016/j.compositesb.2019.05.054. DOI

Sullivan D.J., Azlin-Hasim S., Cruz-Romero M., Cummins E., Kerry J.P., Morris M.A. Natural Antimicrobial Materials for Use in Food Packaging. Elsevier Inc.; Amsterdam, The Netherlands: 2018.

Lv W., Luo J., Deng Y., Sun Y. Biomaterials immobilized with chitosan for rechargeable antimicrobial drug delivery. J. Biomed. Mater. Res. Part A. 2013;101A:447–455. doi: 10.1002/jbm.a.34350. PubMed DOI

Bazaka K., Jacob M.V., Crawford R.J., Ivanova E.P. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl. Microbiol. Biotechnol. 2012;95:299–311. doi: 10.1007/s00253-012-4144-7. PubMed DOI

Vasilev K., Cook J., Griesser H.J. Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices. 2009;6:553–567. doi: 10.1586/erd.09.36. PubMed DOI

Schrand A.M., Rahman M.F., Hussain S.M., Schlager J.J., Smith D.A., Syed A.F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:544–568. doi: 10.1002/wnan.103. PubMed DOI

Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010;74:417–433. doi: 10.1128/MMBR.00016-10. PubMed DOI PMC

Coates A., Hu Y., Bax R., Page C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 2002;1:895–910. doi: 10.1038/nrd940. PubMed DOI

Fukuda R.K. Antimicrobial Resistance Global Report on Surveillance. World Health Organization; Cham, Switzerland: 2014.

Piddock L.J. V The crisis of no new antibiotics-what is the way forward? Lancet Infect. Dis. 2012;12:249–253. doi: 10.1016/S1473-3099(11)70316-4. PubMed DOI

Hasan J., Chatterjee K. Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale. 2015;7:15568–15575. doi: 10.1039/C5NR04156B. PubMed DOI PMC

Jaggessar A., Shahali H., Mathew A., Yarlagadda P.K.D.V. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 2017;15:1–20. doi: 10.1186/s12951-017-0306-1. PubMed DOI PMC

Nayak D., Pradhan S., Ashe S., Rauta P.R., Nayak B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci. 2015;457:329–338. doi: 10.1016/j.jcis.2015.07.012. PubMed DOI

Moghaddam A.B., Namvar F., Moniri M., Tahir P.M., Azizi S., Mohamad R. Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules. 2015;20:16540–16565. doi: 10.3390/molecules200916540. PubMed DOI PMC

Zhang X.F., Choi Y.J., Han J.W., Kim E., Park J.H., Gurunathan S., Kim J.H. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int. J. Nanomedicine. 2015;10:1335–1357. PubMed PMC

Hill R.T. Plasmonic biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015;7:152–168. doi: 10.1002/wnan.1314. PubMed DOI PMC

Anjum S., Sharma A., Tummalapalli M., Joy J., Bhan S., Gupta B. A novel route for the preparation of silver loaded polyvinyl alcohol nanogels for wound care systems. Int. J. Polym. Mater. Polym. Biomater. 2015;64:894–905. doi: 10.1080/00914037.2015.1030660. DOI

Ansari M.A., Khan H.M., Khan A.A., Cameotra S.S., Alzohairy M.A. Anti-biofi lm effi cacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J. Med. Microbiol. 2015;33:101–109. doi: 10.4103/0255-0857.148402. PubMed DOI

Gosheger G. Silver-coated megaendoprostheses in a rabbit model—An analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25:5547–5556. doi: 10.1016/j.biomaterials.2004.01.008. PubMed DOI

Maharubin S., Nayak C., Phatak O., Kurhade A., Singh M., Zhou Y., Tan G. Polyvinylchloride coated with silver nanoparticles and zinc oxide nanowires for antimicrobial applications. Mater. Lett. 2019;249:108–111. doi: 10.1016/j.matlet.2019.04.058. DOI

Dutta P., Wang B. Zeolite-supported silver as antimicrobial agents. Coord. Chem. Rev. 2019;383:1–29. doi: 10.1016/j.ccr.2018.12.014. DOI

Zheng K., Setyawati M.I., Leong D.T., Xie J. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018;357:1–17. doi: 10.1016/j.ccr.2017.11.019. DOI

Gao A., Chen H., Hou A., Xie K. Efficient antimicrobial silk composites using synergistic effects of violacein and silver nanoparticles. Mater. Sci. Eng. C. 2019;103:109821. doi: 10.1016/j.msec.2019.109821. PubMed DOI

Thokala N., Kealey D.C., Kennedy D.J., Brady D.D.B., Farrell D.J. Comparative activity of silver-based antimicrobial composites for urinary catheters. Int. J. Antimicrob. Agents. 2018;52:166–171. doi: 10.1016/j.ijantimicag.2018.03.015. PubMed DOI

Falconer J.L., Grainger D.W. 1.4 Silver antimicrobial biomaterials. Compr. Biomater. II. 2017;1:79–91.

Baygar T., Sarac N., Ugur A., Karaca I.R. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg. Chem. 2019;86:254–258. doi: 10.1016/j.bioorg.2018.12.034. PubMed DOI

Ontong J.C., Paosen S., Shankar S., Voravuthikunchai S.P. Eco-friendly synthesis of silver nanoparticles using Senna alata bark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation. J. Microbiol. Methods. 2019;165:105692. doi: 10.1016/j.mimet.2019.105692. PubMed DOI

Song W.-H., Ryu H.S., Hong S.-H. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation. J. Biomed. Mater. Res. Part A. 2009;88A:246–254. doi: 10.1002/jbm.a.31877. PubMed DOI

Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000;52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3. PubMed DOI

Panáček A., Kvítek L., Smékalová M., Večeřová R., Kolář M., Röderová M., Dyčka F., Šebela M., Prucek R., Tomanec O., et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 2018;13:65–71. doi: 10.1038/s41565-017-0013-y. PubMed DOI

Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353. doi: 10.1088/0957-4484/16/10/059. PubMed DOI

Albers C.E., Hofstetter W., Siebenrock K.A., Landmann R., Klenke F.M. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology. 2013;7:30–36. doi: 10.3109/17435390.2011.626538. PubMed DOI

Agnihotri S., Mukherji S., Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974–3983. doi: 10.1039/C3RA44507K. DOI

Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC

Shang L., Nienhaus K., Nienhaus G.U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014;12:1–11. doi: 10.1186/1477-3155-12-5. PubMed DOI PMC

Mehtar S., Wiid I., Todorov S.D. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: An in-vitro study. J. Hosp. Infect. 2008;68:45–51. doi: 10.1016/j.jhin.2007.10.009. PubMed DOI

Li K., Xia C., Qiao Y., Liu X. Dose-response relationships between copper and its biocompatibility/antibacterial activities. J. Trace Elem. Med. Biol. 2019;55:127–135. doi: 10.1016/j.jtemb.2019.06.015. PubMed DOI

Prokhorov E., España-Sánchez B.L., Luna-Bárcenas G., Padilla-Vaca F., Cruz-Soto M.E., Vázquez-Lepe M.O., Kovalenko Y., Elizalde-Peña E.A. Chitosan/copper nanocomposites: Correlation between electrical and antibacterial properties. Colloids Surfaces B Biointerfaces. 2019;180:186–192. doi: 10.1016/j.colsurfb.2019.04.047. PubMed DOI

Rauf A., Ye J., Zhang S., Shi L., Akram M.A., Ning G. Synthesis, structure and antibacterial activity of a copper(II) coordination polymer based on thiophene-2,5-dicarboxylate ligand. Polyhedron. 2019;166:130–136. doi: 10.1016/j.poly.2019.03.039. DOI

Mercer J.F.B. The molecular basis of copper-transport diseases. Trends Mol. Med. 2001;7:64–69. doi: 10.1016/S1471-4914(01)01920-7. PubMed DOI

Brayner R., Ferrari-Iliou R., Brivois N., Djediat S., Benedetti M.F., Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006;6:866–870. doi: 10.1021/nl052326h. PubMed DOI

Zhang L., Jiang Y., Ding Y., Povey M., York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) J. Nanoparticle Res. 2007;9:479–489. doi: 10.1007/s11051-006-9150-1. DOI

Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods. 2003;54:177–182. doi: 10.1016/S0167-7012(03)00037-X. PubMed DOI

Jones N., Ray B., Ranjit K.T., Manna A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008;279:71–76. doi: 10.1111/j.1574-6968.2007.01012.x. PubMed DOI

Applerot G., Lipovsky A., Dror R., Perkas N., Nitzan Y., Lubart R., Gedanken A. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 2009;19:842–852. doi: 10.1002/adfm.200801081. DOI

Thill A., Flank A.M. Cytotoxicity of CeO 2 Nanoparticles physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 2006;40:6151–6156. doi: 10.1021/es060999b. PubMed DOI

Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007;90:10–13. doi: 10.1063/1.2742324. PubMed DOI PMC

Ghaffari-Moghaddam M., Hadi-Dabanlou R. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J. Ind. Eng. Chem. 2014;20:739–744. doi: 10.1016/j.jiec.2013.09.005. DOI

Holešová S., Hundáková M., Pazdziora E. Antibacterial kaolinite based nanocomposites. Procedia Mater. Sci. 2016;12:124–129. doi: 10.1016/j.mspro.2016.03.022. DOI

Plachá D., Rosenbergová K., Slabotínský J., Kutláková K.M., Študentová S., Martynková G.S. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection. J. Hazard. Mater. 2014;271:65–72. doi: 10.1016/j.jhazmat.2014.01.059. PubMed DOI

Shah N.J., Hong J., Hyder M.N., Hammond P.T. Osteophilic multilayer coatings for accelerated bone tissue growth. Adv. Mater. 2012;24:1445–1450. doi: 10.1002/adma.201104475. PubMed DOI PMC

Chen J., Peng H., Wang X., Shao F., Yuan Z., Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 2014;6:1879–1889. doi: 10.1039/C3NR04941H. PubMed DOI

Zou X., Zhang L., Wang Z., Luo Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016;138:2064–2077. doi: 10.1021/jacs.5b11411. PubMed DOI

He J., Zhu X., Qi Z., Wang C., Mao X., Zhu C., He Z., Li M., Tang Z. Killing dental pathogens using antibacterial graphene oxide. ACS Appl. Mater. Interfaces. 2015;7:5605–5611. doi: 10.1021/acsami.5b01069. PubMed DOI

Akhavan O., Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–5736. doi: 10.1021/nn101390x. PubMed DOI

Li C., Wang X., Chen F., Zhang C., Zhi X., Wang K., Cui D. The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials. 2013;34:3882–3890. doi: 10.1016/j.biomaterials.2013.02.001. PubMed DOI

Liu S., Zeng T.H., Hofmann M., Burcombe E., Wei J., Jiang R., Kong J., Chen Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano. 2011;5:6971–6980. doi: 10.1021/nn202451x. PubMed DOI

Li N., Zeng C., Qin Q., Zhang B., Chen L., Luo Z. Powerful antibacterial activity of graphene/nanoflower-like nickelous hydroxide nanocomposites. Nanomedicine. 2018;13:2901–2916. doi: 10.2217/nnm-2018-0200. PubMed DOI

Jaleel J.A., Sruthi S., Pramod K. Reinforcing nanomedicine using graphene family nanomaterials. J. Control. Release. 2017;255:218–230. doi: 10.1016/j.jconrel.2017.04.041. PubMed DOI

Wang Y.W., Cao A.N., Jiang Y., Zhang I., Liu J.H., Liu Y.F., Wang H.F. Superior antibacterial activity of zinc oxide/graphene oxide composites localized around bacteria. ACS Appl. Mater. Interfaces. 2014;6:2790–2797. PubMed

Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C. Graphene-based antibacterial paper. ACS Nano. 2010;4:4317–4323. doi: 10.1021/nn101097v. PubMed DOI

Lyon D.Y., Brunet L., Hinkal G.W., Wiesner M.R., Alvarez P.J.J. Antibacterial activity of fullerene water suspensions (nC 60) is not due to ROS-mediated damage. Nano Lett. 2008;8:1539–1543. doi: 10.1021/nl0726398. PubMed DOI

Ruiz O.N., Fernando K.A.S., Wang B., Brown N.A., Luo P.G., McNamara N.D., Vangsness M., Sun Y.-P., Bunker C.E. Graphene oxide: A nonspecific enhancer of cellular growth. ACS Nano. 2011;5:8100–8107. doi: 10.1021/nn202699t. PubMed DOI

Kavitha T., Gopalan A.I., Lee K.P., Park S.Y. Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids. Carbon NY. 2012;50:2994–3000. doi: 10.1016/j.carbon.2012.02.082. DOI

de Faria A.F., Martinez D.S.T., Meira S.M.M., de Moraes A.C.M., Brandelli A., Filho A.G.S., Alves O.L. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surfaces B Biointerfaces. 2014;113:115–124. doi: 10.1016/j.colsurfb.2013.08.006. PubMed DOI

Liu L., Liu J., Wang Y., Yan X., Sun D.D. Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J. Chem. 2011;35:1418. doi: 10.1039/c1nj20076c. DOI

Das M.R., Sarma R.K., Saikia R., Kale V.S., Shelke M.V., Sengupta P. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surfaces B Biointerfaces. 2011;83:16–22. doi: 10.1016/j.colsurfb.2010.10.033. PubMed DOI

Ali Q., Ahmed W., Lal S., Sen T. Science direct novel multifunctional carbon nanotube containing silver and iron oxide nanoparticles for antimicrobial applications in water treatment. Mater. Today Proc. 2017;4:57–64. doi: 10.1016/j.matpr.2017.01.193. DOI

Wojciechowski K., Klodzinska E. Zeta potential study of biodegradable antimicrobial polymers. Colloids Surfaces A Physicochem. Eng. Asp. 2015;483:204–208. doi: 10.1016/j.colsurfa.2015.04.033. DOI

Muñoz-Bonilla A., Fernández-García M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012;37:281–339. doi: 10.1016/j.progpolymsci.2011.08.005. DOI

Muñoz-Bonilla A., Echeverria C., Sonseca Á., Arrieta M.P., Fernández-García M. Bio-based polymers with antimicrobial properties towards sustainable development. Materials (Basel) 2019;12:641. doi: 10.3390/ma12040641. PubMed DOI PMC

Paris J.-B., Seyer D., Jouenne T., Thébault P. Various methods to combine hyaluronic acid and antimicrobial peptides coatings and evaluation of their antibacterial behaviour. Int. J. Biol. Macromol. 2019;139:468–474. doi: 10.1016/j.ijbiomac.2019.07.188. PubMed DOI

Sharma D., Choudhary M., Vashistt J., Shrivastava R., Bisht G.S. Cationic antimicrobial peptide and its poly-N-substituted glycine congener: Antibacterial and antibiofilm potential against A. baumannii. Biochem. Biophys. Res. Commun. 2019;518:472–478. doi: 10.1016/j.bbrc.2019.08.062. PubMed DOI

Koehbach J., Craik D.J. The Vast Structural diversity of antimicrobial peptides. Trends Pharmacol. Sci. 2019;40:517–528. doi: 10.1016/j.tips.2019.04.012. PubMed DOI

Marcocci M.E., Amatore D., Villa S., Casciaro B., Aimola P., Franci G., Grieco P., Galdiero M., Palamara A.T., Mangoni M.L., et al. The amphibian antimicrobial peptide temporin b inhibits in vitro herpes simplex virus 1 infection. Antimicrob. Agents Chemother. 2018;62:e02367-17. doi: 10.1128/AAC.02367-17. PubMed DOI PMC

Carter V., Underhill A., Baber I., Sylla L., Baby M., Larget-Thiery I., Zettor A., Bourgouin C., Langel Ü., Faye I., et al. Killer bee molecules: Antimicrobial peptides as effector molecules to target sporogonic stages of plasmodium. PLoS Pathog. 2013;9:e1003790. doi: 10.1371/journal.ppat.1003790. PubMed DOI PMC

Felício M.R., Silva O.N., Gonçalves S., Santos N.C., Franco O.L. Peptides with dual antimicrobial and anticancer activities. Front. Chem. 2017;5:1–9. doi: 10.3389/fchem.2017.00005. PubMed DOI PMC

Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA. 1987;84:5449–5453. doi: 10.1073/pnas.84.15.5449. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...