A Complex In Vitro Degradation Study on Polydioxanone Biliary Stents during a Clinically Relevant Period with the Focus on Raman Spectroscopy Validation

. 2022 Feb 26 ; 14 (5) : . [epub] 20220226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35267761

Grantová podpora
LM2018103 Ministry of Youth, Education and Sports of the Czech Republic
PROGRES Q40-09 Ministry of Youth, Education and Sports of the Czech Republic
UHK 2215/2022-2023 Ministry of Youth, Education and Sports of the Czech Republic

Biodegradable biliary stents are promising treatments for biliary benign stenoses. One of the materials considered for their production is polydioxanone (PPDX), which could exhibit a suitable degradation time for use in biodegradable stents. Proper material degradation characteristics, such as sufficient stiffness and disintegration resistance maintained for a clinically relevant period, are necessary to ensure stent safety and efficacy. The hydrolytic degradation of commercially available polydioxanone biliary stents (ELLA-CS, Hradec Králové, Czech Republic) in phosphate-buffered saline (PBS) was studied. During 9 weeks of degradation, structural, physical, and surface changes were monitored using Raman spectroscopy, differential scanning calorimetry, scanning electron microscopy, and tensile and torsion tests. It was found that the changes in mechanical properties are related to the increase in the ratio of amorphous to crystalline phase, the so-called amorphicity. Monitoring the amorphicity using Raman spectroscopy has proven to be an appropriate method to assess polydioxanone biliary stent degradation. At the 1732 cm-1 Raman peak, the normalized shoulder area is less than 9 cm-1 which indicates stent disintegration. The stent disintegration started after 9 weeks of degradation in PBS, which agrees with previous in vitro studies on polydioxanone materials as well as with in vivo studies on polydioxanone biliary stents.

Zobrazit více v PubMed

Škrlová K., Malachová K., Muñoz-Bonilla A., Měřinská D., Rybková Z., Fernández-García M., Plachá D. Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents. Nanomaterials. 2019;9:1548. doi: 10.3390/nano9111548. PubMed DOI PMC

Aibibu D., Hild M., Cherif C. Advances in Braiding Technology, Kyosev, Y., Ed. Woodhead Publishing; Sawston, UK: 2016. 6—An overview of braiding structure in medical textile: Fiber-based implants and tissue engineering; pp. 171–190.

Mbah N., Philips P., Voor M.J., Martin R.C.G., 2nd Optimal radial force and size for palliation in gastroesophageal adenocarcinoma: A comparative analysis of current stent technology. Surg. Endosc. 2017;31:5076–5082. doi: 10.1007/s00464-017-5571-4. PubMed DOI

Hirdes M.M., Vleggaar F.P., de Beule M., Siersema P.D. In vitro evaluation of the radial and axial force of self-expanding esophageal stents. Endoscopy. 2013;45:997–1005. doi: 10.1055/s-0033-1344985. PubMed DOI

Hindy P., Hong J., Lam-Tsai Y., Gress F. A comprehensive review of esophageal stents. Gastroenterol. Hepatol. 2012;8:526–534. PubMed PMC

Isayama H., Mukai T., Itoi T., Maetani I., Nakai Y., Kawakami H., Yasuda I., Maguchi H., Ryozawa S., Hanada K., et al. Comparison of partially covered nitinol stents with partially covered stainless stents as a historical control in a multicenter study of distal malignant biliary obstruction: The WATCH study. Gastrointest. Endosc. 2012;76:84–92. doi: 10.1016/j.gie.2012.02.039. PubMed DOI

Ormiston J.A., Serruys P.W. Bioabsorbable coronary stents. Circ. Cardiovasc. Interv. 2009;2:255–260. doi: 10.1161/CIRCINTERVENTIONS.109.859173. PubMed DOI

Zartner P., Buettner M., Singer H., Sigler M. First biodegradable metal stent in a child with congenital heart disease: Evaluation of macro and histopathology. Catheter. Cardiovasc. Interv. 2007;69:443–446. doi: 10.1002/ccd.20828. PubMed DOI

Alexy R.D., Levi D.S. Materials and Manufacturing Technologies Available for Production of a Pediatric Bioabsorbable Stent. BioMed. Res. Int. 2013;2013:137985. doi: 10.1155/2013/137985. PubMed DOI PMC

Li M., Jiang M., Gao Y., Zheng Y., Liu Z., Zhou C., Huang T., Gu X., Li A., Fang J., et al. Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials. Bioact. Mater. 2021;11:140–153. doi: 10.1016/j.bioactmat.2021.09.025. PubMed DOI PMC

Petrtýl J., Brůha R., Horák L., Zádorová Z., Dosedel J., Laasch H.U. Management of benign intrahepatic bile duct strictures: Initial experience with polydioxanone biodegradable stents. Endoscopy. 2010;42((Suppl. S2)):E89–E90. doi: 10.1055/s-0029-1243880. PubMed DOI

Itoi T., Kasuya K., Abe Y., Isayama H. Endoscopic placement of a new short-term biodegradable pancreatic and biliary stent in an animal model: A preliminary feasibility study (with videos) J. Hepato-Biliary-Pancreat. Sci. 2011;18:463–467. doi: 10.1007/s00534-010-0364-3. PubMed DOI

Cheon K.-H., Park C., Kang M.-H., Park S., Kim J., Jeong S.-H., Kim H.-E., Jung H.-D., Jang T.-S. A combination strategy of functionalized polymer coating with Ta ion implantation for multifunctional and biodegradable vascular stents. J. Magnes. Alloy. 2021;9:2194–2206. doi: 10.1016/j.jma.2021.07.019. DOI

Lorenzo-Zúñiga V., Moreno-de-Vega V., Marín I., Boix J. Biodegradable stents in gastrointestinal endoscopy. World J. Gastroenterol. 2014;20:2212–2217. doi: 10.3748/wjg.v20.i9.2212. PubMed DOI PMC

Adhikari K.R., Stanishevskaya I., Caracciolo P.C., Abraham G.A., Thomas V. Novel Poly(ester urethane urea)/Polydioxanone Blends: Electrospun Fibrous Meshes and Films. Molecules. 2021;26:3847. doi: 10.3390/molecules26133847. PubMed DOI PMC

Makadia H.K., Siegel S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011;3:1377–1397. doi: 10.3390/polym3031377. PubMed DOI PMC

Ha D.-H., Chae S., Lee J.Y., Kim J.Y., Yoon J., Sen T., Lee S.-W., Kim H.J., Cho J.H., Cho D.-W. Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials. 2021;266:120477. doi: 10.1016/j.biomaterials.2020.120477. PubMed DOI

Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17:103–114. doi: 10.1016/0142-9612(96)85755-3. PubMed DOI

Lalezari D., Singh I., Reicher S., Eysselein V.E. Evaluation of fully covered self-expanding metal stents in benign biliary strictures and bile leaks. World J. Gastrointest. Endosc. 2013;5:332–339. doi: 10.4253/wjge.v5.i7.332. PubMed DOI PMC

García-Cano J. Endoscopic management of benign biliary strictures. Curr. Gastroenterol. Rep. 2013;15:336. doi: 10.1007/s11894-013-0336-2. PubMed DOI

Gwon D.I., Ko G.Y., Ko H.K., Yoon H.K., Sung K.B. Percutaneous transhepatic treatment using retrievable covered stents in patients with benign biliary strictures: Mid-term outcomes in 68 patients. Dig. Dis. Sci. 2013;58:3270–3279. doi: 10.1007/s10620-013-2784-9. PubMed DOI

Mauri G., Michelozzi C., Melchiorre F., Poretti D., Pedicini V., Salvetti M., Criado E., Falcò Fages J., De Gregorio M., Laborda A., et al. Benign biliary strictures refractory to standard bilioplasty treated using polydoxanone biodegradable biliary stents: Retrospective multicentric data analysis on 107 patients. Eur. Radiol. 2016;26:4057–4063. doi: 10.1007/s00330-016-4278-6. PubMed DOI

Siiki A., Sand J., Laukkarinen J. A systematic review of biodegradable biliary stents: Promising biocompatibility without stent removal. Eur. J. Gastroenterol. Hepatol. 2018;30:813–818. doi: 10.1097/MEG.0000000000001167. PubMed DOI

De Gregorio M.A., Criado E., Guirola J.A., Alvarez-Arranz E., Pérez-Lafuente M., Barrufet M., Ferrer-Puchol M.D., Lopez-Minguez S., Urbano J., Lanciego C., et al. Absorbable stents for treatment of benign biliary strictures: Long-term follow-up in the prospective Spanish registry. Eur. Radiol. 2020;30:4486–4495. doi: 10.1007/s00330-020-06797-7. PubMed DOI

van den Berg M.W., Walter D., de Vries E.M., Vleggaar F.P., van Berge Henegouwen M.I., van Hillegersberg R., Siersema P.D., Fockens P., van Hooft J.E. Biodegradable stent placement before neoadjuvant chemoradiotherapy as a bridge to surgery in patients with locally advanced esophageal cancer. Gastrointest. Endosc. 2014;80:908–913. doi: 10.1016/j.gie.2014.06.004. PubMed DOI

del-Pozo-García A.J., Piedracoba-Cadahia C., Sánchez-Gómez F., Marín-Gabriel J.C., Rodríguez-Muñoz S. Complete resolution of dysphagia after sequential Polyflex (tm) stenting in a case of recurrent anastomotic stenosis in an adult with congenital esophageal atresia. Rev. Española De Enferm. Dig. 2018;110:826–829. PubMed

Walter D., van den Berg M.W., Hirdes M.M., Vleggaar F.P., Repici A., Deprez P.H., Viedma B.L., Lovat L.B., Weusten B.L., Bisschops R., et al. Dilation or biodegradable stent placement for recurrent benign esophageal strictures: A randomized controlled trial. Endoscopy. 2018;50:1146–1155. doi: 10.1055/a-0602-4169. PubMed DOI

Nogales Ó., Clemente A., Caballero-Marcos A., García-Lledó J., Pérez-Carazo L., Merino B., López-Ibáñez M., Pérez Valderas M.D., Bañares R., González-Asanza C. Endoscopically placed stents: A useful alternative for the management of refractory benign cervical esophageal stenosis. Rev. Esp. Enferm. Dig. Organo Soc. Esp. Patol. Dig. 2017;109:510–515. doi: 10.17235/reed.2017.4795/2016. PubMed DOI

Hirdes M.M., Siersema P.D., van Boeckel P.G., Vleggaar F.P. Single and sequential biodegradable stent placement for refractory benign esophageal strictures: A prospective follow-up study. Endoscopy. 2012;44:649–654. doi: 10.1055/s-0032-1309818. PubMed DOI

Rejchrt S., Kopacova M., Brozik J., Bures J. Biodegradable stents for the treatment of benign stenoses of the small and large intestines. Endoscopy. 2011;43:911–917. doi: 10.1055/s-0030-1256405. PubMed DOI

Griffiths B.T., James P., Morgan G., Diamantopoulos A., Durward A., Nyman A. Biodegradable Stents for the Relief of Vascular Bronchial Compression in Children With Left Atrial Enlargement. J. Bronchol. Interv. Pulmonol. 2020;27:200–204. doi: 10.1097/LBR.0000000000000654. PubMed DOI

Stehlik L., Hytych V., Letackova J., Kubena P., Vasakova M. Biodegradable polydioxanone stents in the treatment of adult patients with tracheal narrowing. BMC Pulm. Med. 2015;15:164. doi: 10.1186/s12890-015-0160-6. PubMed DOI PMC

Novotny L., Crha M., Rauser P., Hep A., Misik J., Necas A., Vondrys D. Novel biodegradable polydioxanone stents in a rabbit airway model. J. Thorac. Cardiovasc. Surg. 2012;143:437–444. doi: 10.1016/j.jtcvs.2011.08.002. PubMed DOI

Stramiello J.A., Mohammadzadeh A., Ryan J., Brigger M.T. The role of bioresorbable intraluminal airway stents in pediatric tracheobronchial obstruction: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2020;139:110405. doi: 10.1016/j.ijporl.2020.110405. PubMed DOI

Antón-Pacheco J.L., Luna C., García E., López M., Morante R., Tordable C., Palacios A., de Miguel M., Benavent I., Gómez A. Initial experience with a new biodegradable airway stent in children: Is this the stent we were waiting for? Pediatric Pulmonol. 2016;51:607–612. doi: 10.1002/ppul.23340. PubMed DOI

Siiki A., Rinta-Kiikka I., Sand J., Laukkarinen J. Endoscopic biodegradable biliary stents in the treatment of benign biliary strictures: First report of clinical use in patients. Dig. Endosc. Off. J. Jpn. Gastroenterol. Endosc. Soc. 2017;29:118–121. doi: 10.1111/den.12709. PubMed DOI

Giménez M.E., Palermo M., Houghton E., Acquafresca P., Finger C., Verde J.M., Cúneo J.C. Biodegradable biliary stents: A new approach for the management of hepaticojejunostomy strictures following bile duct injury. prospective study. Arq. Bras. De Cir. Dig. ABCD = Braz. Arch. Dig. Surg. 2016;29:112–116. doi: 10.1590/0102-6720201600020012. PubMed DOI PMC

Battistel M., Senzolo M., Ferrarese A., Lupi A., Cillo U., Boccagni P., Zanus G., Stramare R., Quaia E., Burra P., et al. Biodegradable Biliary Stents for Percutaneous Treatment of Post-liver Transplantation Refractory Benign Biliary Anastomotic Strictures. Cardiovasc. Interv. Radiol. 2020;43:749–755. doi: 10.1007/s00270-020-02442-4. PubMed DOI

Rejchrt S., Kopáčová M., Bártová J., Vacek Z., Bureš J. Intestinal biodegradable stents. Folia Gastroenterol. Hepatol. 2009;7:7–11.

Doddi N., Versfelt C.C., Wasserman D. Synthetic Absorbable Surgical Devices of Poly-Dioxanone. No. 4,052,988. U.S. Patent. 1977 October 11;

Ishikiriyama K., Pyda M., Zhang G., Forschner T., Grebowicz J., Wunderlich B. Heat capacity of poly-p-dioxanone. J. Macromol. Sci. Part B. 1998;37:27–44. doi: 10.1080/00222349808220453. DOI

Yang K.-K., Wang X.-L., Wang Y.-Z. Poly (p-dioxanone) and its copolymers. J. Macromol. Sci. Part C Polym. Rev. 2002;42:373–398. doi: 10.1081/MC-120006453. DOI

Furuhashi Y., Nakayama A., Monno T., Kawahara Y., Yamane H., Kimura Y., Iwata T. X-Ray and Electron Diffraction Study of Poly (p-dioxanone) Macromol. Rapid Commun. 2004;25:1943–1947. doi: 10.1002/marc.200400399. DOI

Gestí S., Lotz B., Casas M.T., Alemán C., Puiggali J. Morphology and structure of poly (p-dioxanone) Eur. Polym. J. 2007;43:4662–4674. doi: 10.1016/j.eurpolymj.2007.08.007. DOI

Lin H.L., Chu C., Grubb D. Hydrolytic degradation and morphologic study of poly-p-dioxanone. J. Biomed. Mater. Res. 1993;27:153–166. doi: 10.1002/jbm.820270204. PubMed DOI

Ray J.A., Doddi N., Regula D., Williams J.A., Melveger A. Polydioxanone (PDS), a novel monofilament synthetic absorbable suture. Surg. Gynecol. Obstet. 1981;153:497–507. PubMed

Sabino M.A., Feijoo J.L., Müller A.J. Crystallisation and morphology of poly(p-dioxanone) Macromol. Chem. Phys. 2000;201:2687–2698. doi: 10.1002/1521-3935(20001201)201:18<2687::AID-MACP2687>3.0.CO;2-#. DOI

Wang C.-e., Zhang P.-h. Design and characterization of PDO biodegradable intravascular stents. Text. Res. J. 2017;87:1968–1976. doi: 10.1177/0040517516660893. DOI

Bezrouk A., Hosszu T., Hromadko L., Olmrova Zmrhalova Z., Kopecek M., Smutny M., Selke Krulichova I., Macak J.M., Kremlacek J. Mechanical properties of a biodegradable self-expandable polydioxanone monofilament stent: In vitro force relaxation and its clinical relevance. PLoS ONE. 2020;15:e0235842. doi: 10.1371/journal.pone.0235842. PubMed DOI PMC

Tian Y., Zhang J., Cheng J., Wu G., Zhang Y., Ni Z., Zhao G. A poly(L-lactic acid) monofilament with high mechanical properties for application in biodegradable biliary stents. J. Appl. Polym. Sci. 2021;138:49656. doi: 10.1002/app.49656. DOI

Wang P.-J., Ferralis N., Conway C., Grossman J.C., Edelman E.R. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc. Natl. Acad. Sci. USA. 2018;115:2640–2645. doi: 10.1073/pnas.1716420115. PubMed DOI PMC

Vano-Herrera K., Vogt C. Degradation of poly(l lactic acid) coating on permanent coronary metal stent investigated ex vivo by micro Raman spectroscopy. J. Raman Spectrosc. 2017;48:711–719. doi: 10.1002/jrs.5111. DOI

Jaidann M., Brisson J. Conformation study of poly(p-dioxanone) fibers by polarized Raman spectroscopy, X-ray diffraction, and conformation analysis. J. Polym. Sci. Part B Polym. Phys. 2008;46:406–417. doi: 10.1002/polb.21377. DOI

Bower D.I. An Introduction to Polymer Physics. Am. J. Phys. 2003;71:285–286. doi: 10.1119/1.1533063. DOI

Bower D.I., Maddams W.F. The Vibrational Spectroscopy of Polymers. Cambridge University Press; Cambridge, UK: 1989.

Loskot J., Jezbera D., Bezrouk A., Doležal R., Andrýs R., Francová V., Miškář D., Myslivcová Fučíková A. Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation. Materials. 2021;14:5462. doi: 10.3390/ma14185462. PubMed DOI PMC

Schrader B. In: Vibrational spectroscopy of different classes and states of compounds In Infrared and Raman Spectroscopy—Methods and Applications. Schrader B., editor. VCH; Weinhem, Germany: 1995. p. 190.

Greenwald D., Shumway S., Albear P., Gottlieb L. Mechanical comparison of 10 suture materials before and after in vivo incubation. J. Surg. Res. 1994;56:372–377. doi: 10.1006/jsre.1994.1058. PubMed DOI

Kreszinger M., Surgery O.C.f., Toholj B., Banski A., Balpa S., Cincovic M., Pein M., Lipar M., Smolec O. Tensile strength retention of resorptive suture materials applied in the stomach wall—An in vitro study. Vet. Arh. 2018;88:235–243. doi: 10.24099/vet.arhiv.170130. DOI

Ciccone W.J., II, Motz C., Bentley C., Tasto J.P. Bioabsorbable Implants in Orthopaedics: New Developments and Clinical Applications. JAAOS—J. Am. Acad. Orthop. Surg. 2001;9:280–288. doi: 10.5435/00124635-200109000-00001. PubMed DOI

Sabino M.A., Albuerne J., Müller A.J., Brisson J., Prud’homme R.E. Influence of In Vitro Hydrolytic Degradation on the Morphology and Crystallization Behavior of Poly(p-dioxanone) Biomacromolecules. 2004;5:358–370. doi: 10.1021/bm034367i. PubMed DOI

Zhang J.-F., Jones S., Wang D., Wood A., Washington T., Acreman K., Cuevas B., Karau A. Influence of thermal annealing on mechanical properties and in vitro degradation of poly(p-dioxanone) Polym. Eng. Sci. 2019;59:1701–1709. doi: 10.1002/pen.25169. DOI

Chu C.C. Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study. J. Appl. Polym. Sci. 1981;26:1727–1734. doi: 10.1002/app.1981.070260527. DOI

Välimaa T., Laaksovirta S., Tammela T.L.J., Laippala P., Talja M., Isotalo T., Pétas A., Taari K., Törmälä P. Viscoelastic memory and self-expansion of self-reinforced bioabsorbable stents. Biomaterials. 2002;23:3575–3582. doi: 10.1016/S0142-9612(02)00076-5. PubMed DOI

Zilberman M., Nelson K.D., Eberhart R.C. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005;74B:792–799. doi: 10.1002/jbm.b.30319. PubMed DOI

Li G., Li Y., Lan P., Li J., Zhao Z., He X., Zhang J., Hu H. Biodegradable weft-knitted intestinal stents: Fabrication and physical changes investigation in vitro degradation. J. Biomed. Mater. Res. Part A. 2014;102:982–990. doi: 10.1002/jbm.a.34759. PubMed DOI

Černá M., Köcher M., Válek V., Aujeský R., Neoral Č., Andrašina T., Pánek J., Mahathmakanthi S. Covered Biodegradable Stent: New Therapeutic Option for the Management of Esophageal Perforation or Anastomotic Leak. Cardiovasc. Interv. Radiol. 2011;34:1267–1271. doi: 10.1007/s00270-010-0059-9. PubMed DOI

Repici A., Vleggaar F.P., Hassan C., van Boeckel P.G., Romeo F., Pagano N., Malesci A., Siersema P.D. Efficacy and safety of biodegradable stents for refractory benign esophageal strictures: The BEST (Biodegradable Esophageal Stent) study. Gastrointest. Endosc. 2010;72:927–934. doi: 10.1016/j.gie.2010.07.031. PubMed DOI

Vandenplas Y., Hauser B., Devreker T., Urbain D., Reynaert H. A Biodegradable Esophageal Stent in the Treatment of a Corrosive Esophageal Stenosis in a Child. J. Pediatr. Gastroenterol. Nutr. 2009;49:254–257. doi: 10.1097/MPG.0b013e31819de871. PubMed DOI

Chan Y.H. Biostatistics 104: Correlational analysis. Singap. Med. J. 2003;44:614–619. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...