A Complex In Vitro Degradation Study on Polydioxanone Biliary Stents during a Clinically Relevant Period with the Focus on Raman Spectroscopy Validation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018103
Ministry of Youth, Education and Sports of the Czech Republic
PROGRES Q40-09
Ministry of Youth, Education and Sports of the Czech Republic
UHK 2215/2022-2023
Ministry of Youth, Education and Sports of the Czech Republic
PubMed
35267761
PubMed Central
PMC8912347
DOI
10.3390/polym14050938
PII: polym14050938
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, Young’s modulus, biliary stent, degradation, differential scanning calorimetry, polydioxanone, tensile strength,
- Publikační typ
- časopisecké články MeSH
Biodegradable biliary stents are promising treatments for biliary benign stenoses. One of the materials considered for their production is polydioxanone (PPDX), which could exhibit a suitable degradation time for use in biodegradable stents. Proper material degradation characteristics, such as sufficient stiffness and disintegration resistance maintained for a clinically relevant period, are necessary to ensure stent safety and efficacy. The hydrolytic degradation of commercially available polydioxanone biliary stents (ELLA-CS, Hradec Králové, Czech Republic) in phosphate-buffered saline (PBS) was studied. During 9 weeks of degradation, structural, physical, and surface changes were monitored using Raman spectroscopy, differential scanning calorimetry, scanning electron microscopy, and tensile and torsion tests. It was found that the changes in mechanical properties are related to the increase in the ratio of amorphous to crystalline phase, the so-called amorphicity. Monitoring the amorphicity using Raman spectroscopy has proven to be an appropriate method to assess polydioxanone biliary stent degradation. At the 1732 cm-1 Raman peak, the normalized shoulder area is less than 9 cm-1 which indicates stent disintegration. The stent disintegration started after 9 weeks of degradation in PBS, which agrees with previous in vitro studies on polydioxanone materials as well as with in vivo studies on polydioxanone biliary stents.
Zobrazit více v PubMed
Škrlová K., Malachová K., Muñoz-Bonilla A., Měřinská D., Rybková Z., Fernández-García M., Plachá D. Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents. Nanomaterials. 2019;9:1548. doi: 10.3390/nano9111548. PubMed DOI PMC
Aibibu D., Hild M., Cherif C. Advances in Braiding Technology, Kyosev, Y., Ed. Woodhead Publishing; Sawston, UK: 2016. 6—An overview of braiding structure in medical textile: Fiber-based implants and tissue engineering; pp. 171–190.
Mbah N., Philips P., Voor M.J., Martin R.C.G., 2nd Optimal radial force and size for palliation in gastroesophageal adenocarcinoma: A comparative analysis of current stent technology. Surg. Endosc. 2017;31:5076–5082. doi: 10.1007/s00464-017-5571-4. PubMed DOI
Hirdes M.M., Vleggaar F.P., de Beule M., Siersema P.D. In vitro evaluation of the radial and axial force of self-expanding esophageal stents. Endoscopy. 2013;45:997–1005. doi: 10.1055/s-0033-1344985. PubMed DOI
Hindy P., Hong J., Lam-Tsai Y., Gress F. A comprehensive review of esophageal stents. Gastroenterol. Hepatol. 2012;8:526–534. PubMed PMC
Isayama H., Mukai T., Itoi T., Maetani I., Nakai Y., Kawakami H., Yasuda I., Maguchi H., Ryozawa S., Hanada K., et al. Comparison of partially covered nitinol stents with partially covered stainless stents as a historical control in a multicenter study of distal malignant biliary obstruction: The WATCH study. Gastrointest. Endosc. 2012;76:84–92. doi: 10.1016/j.gie.2012.02.039. PubMed DOI
Ormiston J.A., Serruys P.W. Bioabsorbable coronary stents. Circ. Cardiovasc. Interv. 2009;2:255–260. doi: 10.1161/CIRCINTERVENTIONS.109.859173. PubMed DOI
Zartner P., Buettner M., Singer H., Sigler M. First biodegradable metal stent in a child with congenital heart disease: Evaluation of macro and histopathology. Catheter. Cardiovasc. Interv. 2007;69:443–446. doi: 10.1002/ccd.20828. PubMed DOI
Alexy R.D., Levi D.S. Materials and Manufacturing Technologies Available for Production of a Pediatric Bioabsorbable Stent. BioMed. Res. Int. 2013;2013:137985. doi: 10.1155/2013/137985. PubMed DOI PMC
Li M., Jiang M., Gao Y., Zheng Y., Liu Z., Zhou C., Huang T., Gu X., Li A., Fang J., et al. Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials. Bioact. Mater. 2021;11:140–153. doi: 10.1016/j.bioactmat.2021.09.025. PubMed DOI PMC
Petrtýl J., Brůha R., Horák L., Zádorová Z., Dosedel J., Laasch H.U. Management of benign intrahepatic bile duct strictures: Initial experience with polydioxanone biodegradable stents. Endoscopy. 2010;42((Suppl. S2)):E89–E90. doi: 10.1055/s-0029-1243880. PubMed DOI
Itoi T., Kasuya K., Abe Y., Isayama H. Endoscopic placement of a new short-term biodegradable pancreatic and biliary stent in an animal model: A preliminary feasibility study (with videos) J. Hepato-Biliary-Pancreat. Sci. 2011;18:463–467. doi: 10.1007/s00534-010-0364-3. PubMed DOI
Cheon K.-H., Park C., Kang M.-H., Park S., Kim J., Jeong S.-H., Kim H.-E., Jung H.-D., Jang T.-S. A combination strategy of functionalized polymer coating with Ta ion implantation for multifunctional and biodegradable vascular stents. J. Magnes. Alloy. 2021;9:2194–2206. doi: 10.1016/j.jma.2021.07.019. DOI
Lorenzo-Zúñiga V., Moreno-de-Vega V., Marín I., Boix J. Biodegradable stents in gastrointestinal endoscopy. World J. Gastroenterol. 2014;20:2212–2217. doi: 10.3748/wjg.v20.i9.2212. PubMed DOI PMC
Adhikari K.R., Stanishevskaya I., Caracciolo P.C., Abraham G.A., Thomas V. Novel Poly(ester urethane urea)/Polydioxanone Blends: Electrospun Fibrous Meshes and Films. Molecules. 2021;26:3847. doi: 10.3390/molecules26133847. PubMed DOI PMC
Makadia H.K., Siegel S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011;3:1377–1397. doi: 10.3390/polym3031377. PubMed DOI PMC
Ha D.-H., Chae S., Lee J.Y., Kim J.Y., Yoon J., Sen T., Lee S.-W., Kim H.J., Cho J.H., Cho D.-W. Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials. 2021;266:120477. doi: 10.1016/j.biomaterials.2020.120477. PubMed DOI
Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17:103–114. doi: 10.1016/0142-9612(96)85755-3. PubMed DOI
Lalezari D., Singh I., Reicher S., Eysselein V.E. Evaluation of fully covered self-expanding metal stents in benign biliary strictures and bile leaks. World J. Gastrointest. Endosc. 2013;5:332–339. doi: 10.4253/wjge.v5.i7.332. PubMed DOI PMC
García-Cano J. Endoscopic management of benign biliary strictures. Curr. Gastroenterol. Rep. 2013;15:336. doi: 10.1007/s11894-013-0336-2. PubMed DOI
Gwon D.I., Ko G.Y., Ko H.K., Yoon H.K., Sung K.B. Percutaneous transhepatic treatment using retrievable covered stents in patients with benign biliary strictures: Mid-term outcomes in 68 patients. Dig. Dis. Sci. 2013;58:3270–3279. doi: 10.1007/s10620-013-2784-9. PubMed DOI
Mauri G., Michelozzi C., Melchiorre F., Poretti D., Pedicini V., Salvetti M., Criado E., Falcò Fages J., De Gregorio M., Laborda A., et al. Benign biliary strictures refractory to standard bilioplasty treated using polydoxanone biodegradable biliary stents: Retrospective multicentric data analysis on 107 patients. Eur. Radiol. 2016;26:4057–4063. doi: 10.1007/s00330-016-4278-6. PubMed DOI
Siiki A., Sand J., Laukkarinen J. A systematic review of biodegradable biliary stents: Promising biocompatibility without stent removal. Eur. J. Gastroenterol. Hepatol. 2018;30:813–818. doi: 10.1097/MEG.0000000000001167. PubMed DOI
De Gregorio M.A., Criado E., Guirola J.A., Alvarez-Arranz E., Pérez-Lafuente M., Barrufet M., Ferrer-Puchol M.D., Lopez-Minguez S., Urbano J., Lanciego C., et al. Absorbable stents for treatment of benign biliary strictures: Long-term follow-up in the prospective Spanish registry. Eur. Radiol. 2020;30:4486–4495. doi: 10.1007/s00330-020-06797-7. PubMed DOI
van den Berg M.W., Walter D., de Vries E.M., Vleggaar F.P., van Berge Henegouwen M.I., van Hillegersberg R., Siersema P.D., Fockens P., van Hooft J.E. Biodegradable stent placement before neoadjuvant chemoradiotherapy as a bridge to surgery in patients with locally advanced esophageal cancer. Gastrointest. Endosc. 2014;80:908–913. doi: 10.1016/j.gie.2014.06.004. PubMed DOI
del-Pozo-García A.J., Piedracoba-Cadahia C., Sánchez-Gómez F., Marín-Gabriel J.C., Rodríguez-Muñoz S. Complete resolution of dysphagia after sequential Polyflex (tm) stenting in a case of recurrent anastomotic stenosis in an adult with congenital esophageal atresia. Rev. Española De Enferm. Dig. 2018;110:826–829. PubMed
Walter D., van den Berg M.W., Hirdes M.M., Vleggaar F.P., Repici A., Deprez P.H., Viedma B.L., Lovat L.B., Weusten B.L., Bisschops R., et al. Dilation or biodegradable stent placement for recurrent benign esophageal strictures: A randomized controlled trial. Endoscopy. 2018;50:1146–1155. doi: 10.1055/a-0602-4169. PubMed DOI
Nogales Ó., Clemente A., Caballero-Marcos A., García-Lledó J., Pérez-Carazo L., Merino B., López-Ibáñez M., Pérez Valderas M.D., Bañares R., González-Asanza C. Endoscopically placed stents: A useful alternative for the management of refractory benign cervical esophageal stenosis. Rev. Esp. Enferm. Dig. Organo Soc. Esp. Patol. Dig. 2017;109:510–515. doi: 10.17235/reed.2017.4795/2016. PubMed DOI
Hirdes M.M., Siersema P.D., van Boeckel P.G., Vleggaar F.P. Single and sequential biodegradable stent placement for refractory benign esophageal strictures: A prospective follow-up study. Endoscopy. 2012;44:649–654. doi: 10.1055/s-0032-1309818. PubMed DOI
Rejchrt S., Kopacova M., Brozik J., Bures J. Biodegradable stents for the treatment of benign stenoses of the small and large intestines. Endoscopy. 2011;43:911–917. doi: 10.1055/s-0030-1256405. PubMed DOI
Griffiths B.T., James P., Morgan G., Diamantopoulos A., Durward A., Nyman A. Biodegradable Stents for the Relief of Vascular Bronchial Compression in Children With Left Atrial Enlargement. J. Bronchol. Interv. Pulmonol. 2020;27:200–204. doi: 10.1097/LBR.0000000000000654. PubMed DOI
Stehlik L., Hytych V., Letackova J., Kubena P., Vasakova M. Biodegradable polydioxanone stents in the treatment of adult patients with tracheal narrowing. BMC Pulm. Med. 2015;15:164. doi: 10.1186/s12890-015-0160-6. PubMed DOI PMC
Novotny L., Crha M., Rauser P., Hep A., Misik J., Necas A., Vondrys D. Novel biodegradable polydioxanone stents in a rabbit airway model. J. Thorac. Cardiovasc. Surg. 2012;143:437–444. doi: 10.1016/j.jtcvs.2011.08.002. PubMed DOI
Stramiello J.A., Mohammadzadeh A., Ryan J., Brigger M.T. The role of bioresorbable intraluminal airway stents in pediatric tracheobronchial obstruction: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2020;139:110405. doi: 10.1016/j.ijporl.2020.110405. PubMed DOI
Antón-Pacheco J.L., Luna C., García E., López M., Morante R., Tordable C., Palacios A., de Miguel M., Benavent I., Gómez A. Initial experience with a new biodegradable airway stent in children: Is this the stent we were waiting for? Pediatric Pulmonol. 2016;51:607–612. doi: 10.1002/ppul.23340. PubMed DOI
Siiki A., Rinta-Kiikka I., Sand J., Laukkarinen J. Endoscopic biodegradable biliary stents in the treatment of benign biliary strictures: First report of clinical use in patients. Dig. Endosc. Off. J. Jpn. Gastroenterol. Endosc. Soc. 2017;29:118–121. doi: 10.1111/den.12709. PubMed DOI
Giménez M.E., Palermo M., Houghton E., Acquafresca P., Finger C., Verde J.M., Cúneo J.C. Biodegradable biliary stents: A new approach for the management of hepaticojejunostomy strictures following bile duct injury. prospective study. Arq. Bras. De Cir. Dig. ABCD = Braz. Arch. Dig. Surg. 2016;29:112–116. doi: 10.1590/0102-6720201600020012. PubMed DOI PMC
Battistel M., Senzolo M., Ferrarese A., Lupi A., Cillo U., Boccagni P., Zanus G., Stramare R., Quaia E., Burra P., et al. Biodegradable Biliary Stents for Percutaneous Treatment of Post-liver Transplantation Refractory Benign Biliary Anastomotic Strictures. Cardiovasc. Interv. Radiol. 2020;43:749–755. doi: 10.1007/s00270-020-02442-4. PubMed DOI
Rejchrt S., Kopáčová M., Bártová J., Vacek Z., Bureš J. Intestinal biodegradable stents. Folia Gastroenterol. Hepatol. 2009;7:7–11.
Doddi N., Versfelt C.C., Wasserman D. Synthetic Absorbable Surgical Devices of Poly-Dioxanone. No. 4,052,988. U.S. Patent. 1977 October 11;
Ishikiriyama K., Pyda M., Zhang G., Forschner T., Grebowicz J., Wunderlich B. Heat capacity of poly-p-dioxanone. J. Macromol. Sci. Part B. 1998;37:27–44. doi: 10.1080/00222349808220453. DOI
Yang K.-K., Wang X.-L., Wang Y.-Z. Poly (p-dioxanone) and its copolymers. J. Macromol. Sci. Part C Polym. Rev. 2002;42:373–398. doi: 10.1081/MC-120006453. DOI
Furuhashi Y., Nakayama A., Monno T., Kawahara Y., Yamane H., Kimura Y., Iwata T. X-Ray and Electron Diffraction Study of Poly (p-dioxanone) Macromol. Rapid Commun. 2004;25:1943–1947. doi: 10.1002/marc.200400399. DOI
Gestí S., Lotz B., Casas M.T., Alemán C., Puiggali J. Morphology and structure of poly (p-dioxanone) Eur. Polym. J. 2007;43:4662–4674. doi: 10.1016/j.eurpolymj.2007.08.007. DOI
Lin H.L., Chu C., Grubb D. Hydrolytic degradation and morphologic study of poly-p-dioxanone. J. Biomed. Mater. Res. 1993;27:153–166. doi: 10.1002/jbm.820270204. PubMed DOI
Ray J.A., Doddi N., Regula D., Williams J.A., Melveger A. Polydioxanone (PDS), a novel monofilament synthetic absorbable suture. Surg. Gynecol. Obstet. 1981;153:497–507. PubMed
Sabino M.A., Feijoo J.L., Müller A.J. Crystallisation and morphology of poly(p-dioxanone) Macromol. Chem. Phys. 2000;201:2687–2698. doi: 10.1002/1521-3935(20001201)201:18<2687::AID-MACP2687>3.0.CO;2-#. DOI
Wang C.-e., Zhang P.-h. Design and characterization of PDO biodegradable intravascular stents. Text. Res. J. 2017;87:1968–1976. doi: 10.1177/0040517516660893. DOI
Bezrouk A., Hosszu T., Hromadko L., Olmrova Zmrhalova Z., Kopecek M., Smutny M., Selke Krulichova I., Macak J.M., Kremlacek J. Mechanical properties of a biodegradable self-expandable polydioxanone monofilament stent: In vitro force relaxation and its clinical relevance. PLoS ONE. 2020;15:e0235842. doi: 10.1371/journal.pone.0235842. PubMed DOI PMC
Tian Y., Zhang J., Cheng J., Wu G., Zhang Y., Ni Z., Zhao G. A poly(L-lactic acid) monofilament with high mechanical properties for application in biodegradable biliary stents. J. Appl. Polym. Sci. 2021;138:49656. doi: 10.1002/app.49656. DOI
Wang P.-J., Ferralis N., Conway C., Grossman J.C., Edelman E.R. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc. Natl. Acad. Sci. USA. 2018;115:2640–2645. doi: 10.1073/pnas.1716420115. PubMed DOI PMC
Vano-Herrera K., Vogt C. Degradation of poly(l lactic acid) coating on permanent coronary metal stent investigated ex vivo by micro Raman spectroscopy. J. Raman Spectrosc. 2017;48:711–719. doi: 10.1002/jrs.5111. DOI
Jaidann M., Brisson J. Conformation study of poly(p-dioxanone) fibers by polarized Raman spectroscopy, X-ray diffraction, and conformation analysis. J. Polym. Sci. Part B Polym. Phys. 2008;46:406–417. doi: 10.1002/polb.21377. DOI
Bower D.I. An Introduction to Polymer Physics. Am. J. Phys. 2003;71:285–286. doi: 10.1119/1.1533063. DOI
Bower D.I., Maddams W.F. The Vibrational Spectroscopy of Polymers. Cambridge University Press; Cambridge, UK: 1989.
Loskot J., Jezbera D., Bezrouk A., Doležal R., Andrýs R., Francová V., Miškář D., Myslivcová Fučíková A. Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation. Materials. 2021;14:5462. doi: 10.3390/ma14185462. PubMed DOI PMC
Schrader B. In: Vibrational spectroscopy of different classes and states of compounds In Infrared and Raman Spectroscopy—Methods and Applications. Schrader B., editor. VCH; Weinhem, Germany: 1995. p. 190.
Greenwald D., Shumway S., Albear P., Gottlieb L. Mechanical comparison of 10 suture materials before and after in vivo incubation. J. Surg. Res. 1994;56:372–377. doi: 10.1006/jsre.1994.1058. PubMed DOI
Kreszinger M., Surgery O.C.f., Toholj B., Banski A., Balpa S., Cincovic M., Pein M., Lipar M., Smolec O. Tensile strength retention of resorptive suture materials applied in the stomach wall—An in vitro study. Vet. Arh. 2018;88:235–243. doi: 10.24099/vet.arhiv.170130. DOI
Ciccone W.J., II, Motz C., Bentley C., Tasto J.P. Bioabsorbable Implants in Orthopaedics: New Developments and Clinical Applications. JAAOS—J. Am. Acad. Orthop. Surg. 2001;9:280–288. doi: 10.5435/00124635-200109000-00001. PubMed DOI
Sabino M.A., Albuerne J., Müller A.J., Brisson J., Prud’homme R.E. Influence of In Vitro Hydrolytic Degradation on the Morphology and Crystallization Behavior of Poly(p-dioxanone) Biomacromolecules. 2004;5:358–370. doi: 10.1021/bm034367i. PubMed DOI
Zhang J.-F., Jones S., Wang D., Wood A., Washington T., Acreman K., Cuevas B., Karau A. Influence of thermal annealing on mechanical properties and in vitro degradation of poly(p-dioxanone) Polym. Eng. Sci. 2019;59:1701–1709. doi: 10.1002/pen.25169. DOI
Chu C.C. Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study. J. Appl. Polym. Sci. 1981;26:1727–1734. doi: 10.1002/app.1981.070260527. DOI
Välimaa T., Laaksovirta S., Tammela T.L.J., Laippala P., Talja M., Isotalo T., Pétas A., Taari K., Törmälä P. Viscoelastic memory and self-expansion of self-reinforced bioabsorbable stents. Biomaterials. 2002;23:3575–3582. doi: 10.1016/S0142-9612(02)00076-5. PubMed DOI
Zilberman M., Nelson K.D., Eberhart R.C. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005;74B:792–799. doi: 10.1002/jbm.b.30319. PubMed DOI
Li G., Li Y., Lan P., Li J., Zhao Z., He X., Zhang J., Hu H. Biodegradable weft-knitted intestinal stents: Fabrication and physical changes investigation in vitro degradation. J. Biomed. Mater. Res. Part A. 2014;102:982–990. doi: 10.1002/jbm.a.34759. PubMed DOI
Černá M., Köcher M., Válek V., Aujeský R., Neoral Č., Andrašina T., Pánek J., Mahathmakanthi S. Covered Biodegradable Stent: New Therapeutic Option for the Management of Esophageal Perforation or Anastomotic Leak. Cardiovasc. Interv. Radiol. 2011;34:1267–1271. doi: 10.1007/s00270-010-0059-9. PubMed DOI
Repici A., Vleggaar F.P., Hassan C., van Boeckel P.G., Romeo F., Pagano N., Malesci A., Siersema P.D. Efficacy and safety of biodegradable stents for refractory benign esophageal strictures: The BEST (Biodegradable Esophageal Stent) study. Gastrointest. Endosc. 2010;72:927–934. doi: 10.1016/j.gie.2010.07.031. PubMed DOI
Vandenplas Y., Hauser B., Devreker T., Urbain D., Reynaert H. A Biodegradable Esophageal Stent in the Treatment of a Corrosive Esophageal Stenosis in a Child. J. Pediatr. Gastroenterol. Nutr. 2009;49:254–257. doi: 10.1097/MPG.0b013e31819de871. PubMed DOI
Chan Y.H. Biostatistics 104: Correlational analysis. Singap. Med. J. 2003;44:614–619. PubMed