• This record comes from PubMed

Biodegradable Polymers: Properties, Applications, and Environmental Impact

. 2025 Jul 18 ; 17 (14) : . [epub] 20250718

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

The accelerating global demand for sustainable materials has brought biodegradable polymers to the forefront of scientific and industrial innovation. These polymers, capable of decomposing through biological processes into environmentally benign byproducts, are increasingly seen as viable alternatives to conventional plastics in sectors such as packaging, agriculture, and biomedicine. However, despite significant advancements, the field remains fragmented due to the diversity of raw materials, synthesis methods, degradation mechanisms, and application requirements. This review aims to provide a comprehensive synthesis of the current state of biodegradable polymer development, including their classifications, sources (natural, synthetic, and microbially derived), degradation pathways, material properties, and commercial applications. It highlights critical scientific and technological challenges-such as optimizing degradation rates, ensuring mechanical performance, and scaling up production from renewable feedstocks. By consolidating recent research findings and regulatory considerations, this review serves as a crucial reference point for researchers, material scientists, and policymakers. It strives to bridge knowledge gaps in order to accelerate the deployment of biodegradable polymers as integral components of a circular and low-impact material economy.

See more in PubMed

Huang C., Liao Y., Zou Z., Chen Y., Jin M., Zhu J., Hussain Abdalkarim S.Y., Zhou Y., Yu H.Y. Novel Strategy to Interpret the Degradation Behaviors and Mechanisms of Bio- and Non-Degradable Plastics. J. Clean. Prod. 2022;355:131757. doi: 10.1016/j.jclepro.2022.131757. DOI

Ciuffi B., Fratini E., Rosi L. Plastic Pretreatment: The Key for Efficient Enzymatic and Biodegradation Processes. Polym. Degrad. Stab. 2024;222:110698. doi: 10.1016/j.polymdegradstab.2024.110698. DOI

Sasimowski E., Majewski Ł., Grochowicz M. Study on the Biodegradation of Poly(Butylene Succinate)/Wheat Bran Biocomposites. Materials. 2023;16:6843. doi: 10.3390/ma16216843. PubMed DOI PMC

La Fuente C.I.A., Maniglia B.C., Tadini C.C. Biodegradable Polymers: A Review about Biodegradation and Its Implications and Applications. Packag. Technol. Sci. 2023;36:81–95. doi: 10.1002/pts.2699. DOI

Li X., Liu Z., Xue R., Dai Y., Yue T., Zhao J. Biodegradation of Typical Plastics and Its Mechanisms. Kexue Tongbao/Chinese Sci. Bull. 2021;66:2573–2589. doi: 10.1360/TB-2020-1347. DOI

Shi C., Quinn E.C., Diment W.T., Chen E.Y.X. Recyclable and (Bio)Degradable Polyesters in a Circular Plastics Economy. Chem. Rev. 2024;124:4393–4478. doi: 10.1021/acs.chemrev.3c00848. PubMed DOI

Gupta V., Biswas D., Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. Materials. 2022;15:5899. doi: 10.3390/ma15175899. PubMed DOI PMC

Mukherjee C., Varghese D., Krishna J.S., Boominathan T., Rakeshkumar R., Dineshkumar S., Brahmananda Rao C.V.S., Sivaramakrishna A. Recent Advances in Biodegradable Polymers–Properties, Applications and Future Prospects. Eur. Polym. J. 2023;192:112068. doi: 10.1016/j.eurpolymj.2023.112068. DOI

Iwata T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 2015;54:3210–3215. doi: 10.1002/anie.201410770. PubMed DOI

Beltrán-Sanahuja A., Benito-Kaesbach A., Sánchez-García N., Sanz-Lázaro C. Degradation of Conventional and Biobased Plastics in Soil under Contrasting Environmental Conditions. Sci. Total Environ. 2021;787:147678. doi: 10.1016/j.scitotenv.2021.147678. DOI

Panou A., Karabagias I.K. Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings. 2023;13:1176. doi: 10.3390/coatings13071176. DOI

Pareta R., Edirisinghe M.J. A Novel Method for the Preparation of Starch Films and Coatings. Carbohydr. Polym. 2006;63:425–431. doi: 10.1016/j.carbpol.2005.09.018. DOI

Mazhar H., Shehzad F., Hong S.-G., Al-Harthi M.A. Thermal Degradation Kinetics Analysis of Ethylene-Propylene Copolymer and EP-1-Hexene Terpolymer. Polymers. 2022;14:634. doi: 10.3390/polym14030634. PubMed DOI PMC

Fredi G., Dorigato A. Recycling of bioplastic waste: A review. Adv. Ind. Eng. Polym. Res. 2021;4:159–177. doi: 10.1016/j.aiepr.2021.06.006. DOI

Niaounakis M. Biopolymers: Processing and Products. William Andrew; Norwich, NY, USA: 2015. pp. 1–77. DOI

Niaounakis M. Biopolymers Reuse, Recycling, and Disposal. William Andrew; Norwich, NY, USA: 2013. p. 432. (Plastics Design Library (PDL)). Chapter 10.

Li Z., Shen Y., Li Z. Ring-Opening Polymerization of Lactones to Prepare Closed-Loop Recyclable Polyesters. Macromolecules. 2024;57:1919–1940. doi: 10.1021/acs.macromol.3c01912. DOI

Kim S., Chung H. Biodegradable polymers: From synthesis methods to applications of lignin-graft-polyester. Green Chem. 2024;26:10774–10803. doi: 10.1039/D4GC03558E. DOI

Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick W.J., Jr., Hallett J.P., Leak D.J., Liotta C.L., et al. The Path Forward for Biofuels and Biomaterials. Science. 2006;311:484–489. doi: 10.1126/science.1114736. PubMed DOI

Poliakoff M., Licence P. Sustainable Technology: Green Chemistry. Nature. 2007;450:810–812. doi: 10.1038/450810a. PubMed DOI

Biermann U., Friedt W., Lang S., Lühs W., Machmüller G., Metzger J.O., Klaas M.R., Schäfer H.J., Schneider M.P. New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry. Angew. Chem. Int. Ed. 2000;39:2206–2224. doi: 10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P. PubMed DOI

Jenck J.F., Agterberg F., Droescher M.J. Products and Processes for a Sustainable Chemical Industry: A Review of Achievements and Prospects. Green Chem. 2004;6:544–556. doi: 10.1039/b406854h. DOI

Li J., Stayshich R.M., Meyer T.Y. Exploiting Sequence to Control the Hydrolysis Behavior of Biodegradable PLGA Copolymers. J. Am. Chem. Soc. 2011;133:6910–6913. doi: 10.1021/ja200895s. PubMed DOI

Cooke T.F. Biodegradability of Polymers and Fibres—A Review of the Literature. J. Polym. Eng. 1990;9:171–211. doi: 10.1515/POLYENG.1990.9.3.171. DOI

Corden T.J., Jones I.A., Rudd C.D., Christian P., Downes S., McDougall K.E. Physical and Biocompatibility Properties of Poly-ε-Caprolactone Produced Using In Situ Polymerisation: A Novel Manufacturing Technique for Long-Fibre Composite Materials. Biomaterials. 2000;21:713–724. doi: 10.1016/S0142-9612(99)00236-7. PubMed DOI

Agrawal C.M., Haas K.F., Leopold D.A., Clark H.G. Evaluation of Poly(L-lactic Acid) as a Material for Intravascular Polymeric Stents. Biomaterials. 1992;13:176–182. doi: 10.1016/0142-9612(92)90068-Y. PubMed DOI

Bu Y., Ma J., Bei J., Wang S. Surface Modification of Aliphatic Polyester to Enhance Biocompatibility. Front. Bioeng. Biotechnol. 2019;7:98. doi: 10.3389/fbioe.2019.00098. PubMed DOI PMC

Kirsh I., Bannikova O., Beznaeva O., Tveritnikova I., Romanova V., Zagrebina D., Frolova Y., Myalenko D. Research of the Influence of Ultrasonic Treatment on the Melts of Polymeric Compositions for the Creation of Packaging Materials with Antimicrobial Properties and Biodegradability. Polymers. 2020;2:275. doi: 10.3390/polym12020275. PubMed DOI PMC

Haider T.P., Völker C., Kramm J., Landfester K., Wurm F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chemie Int. Ed. 2019;58:50–62. doi: 10.1002/anie.201805766. PubMed DOI

Mamin E.A., Pantyukhov P.V., Olkhov A.A. Oxo-Additives for Polyolefin Degradation: Kinetics and Mechanism. Macromol. 2023;3:477–506. doi: 10.3390/macromol3030029. DOI

Papež N., Pisarenko T., Ščasnovič E., Sobola D., Ţălu Ş., Dallaev R., Částková K., Sedlák P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. Coatings. 2022;12:1429. doi: 10.3390/coatings12101429. DOI

Delacuvellerie A., Benali S., Cyriaque V., Moins S., Raquez J.M., Gobert S., Wattiez R. Microbial Biofilm Composition and Polymer Degradation of Compostable and Non-Compostable Plastics Immersed in the Marine Environment. J. Hazard. Mater. 2021;419:126526. doi: 10.1016/j.jhazmat.2021.126526. PubMed DOI

Donlan R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002;8:881–890. doi: 10.3201/eid0809.020063. PubMed DOI PMC

Mohan K., Srivastava T. Microbial Deterioration and Degradation of Polymeric Materials. J. Biochem. Technol. 2010;2:210–215. doi: 10.51847/cydohbk. DOI

Klinkov A.S., Belyaev P.S., Sokolov M.V. Recycling and Secondary Processing of Polymer Materials. Tambov State Technical University; Tambov Oblast, Russia: 2005. 80p

Balykhyn M.G., Kirsh I.A., Gubanova M.I., Bannikova O.A., Bezneva O.V., Chalykh A.E., Shcherbina A.A., Iordansky A.L., Olkhov A.A., Schetinin M.P., et al. Recycling of Packaging and Biodegradable Polymeric Materials: Monograph. Prospekt; Petersburg, Russia: 2021. pp. 120–190.

Mazhitova A.K., Aminova G.K., Zaripov I.I., Vikhareva I.N. Biodegradable Polymeric Materials and Modifying Additives: State of the art. Part II. Nanotechnol. Constr. 2021;13:32–38. doi: 10.15828/2075-8545-2021-13-1-32-38. DOI

Litvyak V.V. Prospects for the Production of Modern Packaging Materials Using Biodegradable Polymer Compositions. J. Belarusian State Univ. Ecol. 2019;2:84–94.

Choi D., Chipman D., Bents S., Brown R. A techno-economic analysis of polyhydroxyalkanoates and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 2010;160:1032–1046. doi: 10.1007/s12010-009-8560-9. PubMed DOI

Maness P.C., Weaver P.F. Production of poly-3-hydroxyalkanoates from CO and H2 by a novel photosynthetic bacterium. Appl. Biochem. Biotechnol. 1994;45:395–406. doi: 10.1007/BF02941814. DOI

Braun R., Drosg B., Bochmann G., Weiss S., Kirchmayr R. Recent developments in bio-energy recovery through fermentation. In: Insam H., Franke-Whittle I., Goberna M., editors. Microbes at Work, from Waste to Resources. Springer; Berlin/Heidelberg, Germany: 2010. pp. 35–58.

Gumel A.M., Annuar M.S.M., Heidelberg T. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida BET001 isolated from palm oil mill effluent. PLoS ONE. 2012;7:e45214. doi: 10.1371/journal.pone.0045214. PubMed DOI PMC

Md Din M.F., Ponraj M., van Loosdrecht M.C.M., Ujang Z., Chelliapan S., Zambare V. The utilization of palm oil mill effluent for polyhydroxyalkanoate production and nutrient removal using statistical design. Int. J. Environ. Sci. Technol. 2013;11:671–684. doi: 10.1007/s13762-013-0253-9. DOI

Adetunji A.I., Erasmus M. Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review. Polymers. 2024;16:1322. doi: 10.3390/polym16101322. PubMed DOI PMC

Kabasci S. Bio-Based Plastics: Materials and Applications. John Wiley & Sons Inc.; Chichester, UK: 2014.

Marset D., Dolza C., Boronat T., Montanes N., Balart R., Sanchez-Nacher L., Quiles-Carrillo L. Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes. Polymers. 2020;12:1503. doi: 10.3390/polym12071503. PubMed DOI PMC

Harlan G., Kmiec C. Degradable Polymers. Springer; Dordrecht, The Netherlands: 1995. Ethylene-carbon monoxide copolymers; pp. 153–168. DOI

Getino L., Martín J.L., Chamizo-Ampudia A. A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste. Microorganisms. 2024;12:2028. doi: 10.3390/microorganisms12102028. PubMed DOI PMC

Castilho L.R., Mitchell D.A., Freire D.M.G. Production of Polyhydroxyalkanoates (PHAs) from Waste Materials and Byproducts by Submerged and Solid-State Fermentation. Bioresour. Technol. 2009;100:5996–6009. doi: 10.1016/j.biortech.2009.03.088. PubMed DOI

Sudesh K., Abe H. Practical Guide to Microbial Polyhydroxyalkanoates. Smithers Rapra Technology; Shrewsbury, UK: 2010. p. 160.

Main P., Petersmann S., Wild N., Feuchter M., Duretek I., Edeleva M., Ragaert P., Cardon L., Lucyshyn T. Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylene. Polymers. 2023;15:4126. doi: 10.3390/polym15204126. PubMed DOI PMC

Dintcheva N.T., Infurna G., Baiamonte M., D’Anna F. Natural Compounds as Sustainable Additives for Biopolymers. Polymers. 2020;12:732. doi: 10.3390/polym12040732. PubMed DOI PMC

Verbeek C.J.R., van den Berg L.E. Extrusion Processing and Properties of Protein-Based Thermoplastics. Macromol. Mater. Eng. 2009;295:10–21. doi: 10.1002/mame.200900167. DOI

Cinelli P., Seggiani M., Mallegni N., Gigante V., Lazzeri A. Processability and Degradability of PHA-Based Composites in Terrestrial Environments. Int. J. Mol. Sci. 2019;20:284. doi: 10.3390/ijms20020284. PubMed DOI PMC

Ramesh B.N.G., Anitha N., Rani H.K.R. Recent Trends in Biodegradable Products from Biopolymers. Adv. Biotechnol. 2010;9:30–34.

Babu R.P., O’Connor K., Seeram R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013;2:8. doi: 10.1186/2194-0517-2-8. PubMed DOI PMC

Shen L., Haufe J., Patel M.K. Report for the European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics. Utrecht University; Utrecht, The Netherlands: 2009. Product overview and market projection of emerging bio-based plastics PRO-BIP 2009.

Niaounakis M. Recycling of Biopolymers–The Patent Perspective. Eur. Polym. J. 2019;114:464–475. doi: 10.1016/j.eurpolymj.2019.02.027. DOI

Jha S., Akula B., Enyioma H., Novak M., Amin V., Liang H. Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Polymers. 2024;16:2262. doi: 10.3390/polym16162262. PubMed DOI PMC

Righetti G.I.C., Faedi F., Famulari A. Embracing Sustainability: The World of Bio-Based Polymers in a Mini Review. Polymers. 2024;16:950. doi: 10.3390/polym16070950. PubMed DOI PMC

Latour-Paczka K., Luciński R. Artificial Biopolymers Derived from Transgenic Plants: Applications and Properties—A Review. Int. J. Mol. Sci. 2024;25:13628. doi: 10.3390/ijms252413628. PubMed DOI PMC

Gunatillake T., Adhikari R. Biodegradable Synthetic Polymers for Tissue Engineering. Eur. Cells Mater. 2003;5:1–16. doi: 10.22203/eCM.v005a01. PubMed DOI

Mecking S. Nature or Petrochemistry?–Biologically Degradable Polymers. Angew. Chem. Int. Ed. 2004;43:1078–1085. doi: 10.1002/anie.200301655. PubMed DOI

Weerasinghe M.A.S.N., McBeth P.A., Mancini M.C., Raji I.O., Needham P.M., Yehl K., Oestreicher Z., Konkolewicz D. Controlling Photodegradation in Vinyl Ketone Polymers. Chem. Eng. J. 2024;483:149307. doi: 10.1016/j.cej.2024.149307. DOI

Morgen T.O., Baur M., Göttker-Schnetmann I., Mecking S. Photodegradable branched polyethylenes from carbon monoxide copolymerization under benign conditions. Nat. Commun. 2020;11:17542. doi: 10.1038/s41467-020-17542-5. PubMed DOI PMC

Laycock B., Nikolić M., Colwell J.M., Gauthier E., Halley P., Bottle S., George G. Lifetime prediction of biodegradable polymers. Prog. Polym. Sci. 2017;71:144–189. doi: 10.1016/j.progpolymsci.2017.02.004. DOI

Norrish R.G.W., Bamford C.H. Photo-decomposition of aldehydes and ketones. Nature. 1937;140:195–196. doi: 10.1038/140195b0. DOI

Loong-Tak L. Biodegradable Packaging for Food Products. Milk Process. 2011;6:61–63.

Rahman M.H., Bhoi P.R. An Overview of Non-Biodegradable Bioplastics. J. Clean. Prod. 2021;294:126218. doi: 10.1016/j.jclepro.2021.126218. DOI

Ojeda T.F., Dalmolin E., Forte M.M., Jacques R.J., Bento F.M., Camargo F.A. Abiotic and biotic degradation of oxo-biodegradable polyethylene’s. Polym. Degrad. Stab. 2009;94:965–970. doi: 10.1016/j.polymdegradstab.2009.03.011. DOI

Al-Salem S.M., Al-Hazza’a A., Karam H.J., Al-Wadi M.H., Al-Dhafeeri A.T., Al-Rowaih A.A. Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene thin films. J. Environ. Manag. 2019;250:109475. doi: 10.1016/j.jenvman.2019.109475. PubMed DOI

Zhang Y.H., Wang X.L., Wang Y.Z., Yang K.K., Li J. A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene succinate) Polym. Degrad. Stab. 2005;88:294–299. doi: 10.1016/j.polymdegradstab.2004.11.003. DOI

Ali S., Isha, Chang Y.-C. Ecotoxicological Impact of Bioplastics Biodegradation: A Comprehensive Review. Processes. 2023;11:3445. doi: 10.3390/pr11123445. DOI

Zhang X., Yin Z., Xiang S., Yan H., Tian H. Degradation of Polymer Materials in the Environment and Its Impact on the Health of Experimental Animals: A Review. Polymers. 2024;16:2807. doi: 10.3390/polym16192807. PubMed DOI PMC

Cai Z., Li M., Zhu Z., Wang X., Huang Y., Li T., Gong H., Yan M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms. 2023;11:1661. doi: 10.3390/microorganisms11071661. PubMed DOI PMC

Rabek J.F. Photosensitized Degradation of Polymers. Volume 18. American Chemical Society (ACS); Washington, DC, USA: 1976. pp. 255–271. DOI

Samir A., Ashour F.H., Hakim A.A.A., Bassyouni M. Recent Advances in Biodegradable Polymers for Sustainable Applications. Npj Mater. Degrad. 2022;6:68. doi: 10.1038/s41529-022-00277-7. DOI

Legonkova O. Once Again About the Biodegradation of Polymeric Materials. Packag. Contain. 2006;2:57–58.

Karpunin I.I., Kuzmich V.V., Balabanova T.F. Classification of biodegradable polymers. Sci. Tech. 2015;5:53–59.

Zeng S., Duan P., Shen M., Xue Y. Preparation and degradation mechanisms of biodegradable polymer: A review. IOP Conf. Ser. Mater. Sci. Eng. 2016;137:012003. doi: 10.1088/1757-899X/137/1/012003. DOI

Bangar S.P., Purewal S.S., Trif M., Maqsood S., Kumar M., Manjunatha V., Rusu A.V. Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods. 2021;10:2181. doi: 10.3390/foods10092181. PubMed DOI PMC

Bian Y., Hu T., Lv Z., Xu Y., Wang Y., Wang H., Zhu W., Feng B., Liang R., Tan C., et al. Bone Tissue Engineering for Treating Osteonecrosis of the Femoral Head. Exploration. 2023;3:20210105. doi: 10.1002/EXP.20210105. PubMed DOI PMC

Rasheed F. Production of Sustainable Bioplastic Materials from Wheat Gluten Proteins. The Swedish University of Agricultural Sciences; Uppsala, Sweden: 2011. No. 4.

Jiménez-Rosado M., Zarate-Ramírez L.S., Romero A., Bengoechea C., Partal P., Guerrero A. Bioplastics Based on Wheat Gluten Processed by Extrusion. J. Clean Prod. 2019;239:117994. doi: 10.1016/j.jclepro.2019.117994. DOI

Andonegi M., Irastorza A., Izeta A., Cabezudo S., de la Caba K., Guerrero P. A Green Approach towards Native Collagen Scaffolds: Environmental and Physicochemical Assessment. Polymers. 2020;12:1597. doi: 10.3390/polym12071597. PubMed DOI PMC

Rinaudo M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006;31:603–632. doi: 10.1016/j.progpolymsci.2006.06.001. DOI

Shahidi F., Arachchi J.K.V., Jeon Y.J. Food Applications of Chitin and Chitosans. Trends Food Sci. Technol. 1999;10:37–51. doi: 10.1016/S0924-2244(99)00017-5. DOI

Pillai C.K.S., Paul W., Sharma C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009;34:641–678. doi: 10.1016/j.progpolymsci.2009.04.001. DOI

Tasekeev M.S., Eremeeva L.M. Production of Biopolymers as a Solution to Ecological and Agricultural Problems: Analytical Review. NC NTI; Almaty, Kazakhstan: 2009. p. 7.

Alharbi R.A., Alminderej F.M., Al-Harby N.F., Elmehbad N.Y., Mohamed N.A. Preparation and Characterization of a New Bis-Uracil Chitosan-Based Hydrogel as Efficient Adsorbent for Removal of Anionic Congo Red Dye. Polymers. 2023;15:1529. doi: 10.3390/polym15061529. PubMed DOI PMC

Castro J.I., Valencia-Llano C.H., Zapata M.E.V., Restrepo Y.J., Hernandez J.H.M., Navia-Porras D.P., Valencia Y., Valencia C., Grande-Tovar C.D. Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers. 2021;13:3753. doi: 10.3390/polym13213753. PubMed DOI PMC

Yan D., Li Y., Liu Y., Li N., Zhang X., Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules. 2021;26:7136. doi: 10.3390/molecules26237136. PubMed DOI PMC

Kryuk T.V., Mikhaltchuk V.M., Petrenko L.V. Prospective Oxidation Inhibitors for Polyethylene Glycol in Aqueous Solutions. Khim.-Farm. Zh. 2002;36:31–34.

Pribil M.M. Ph.D. Thesis. Moscow State University; Moscow, Russia: 2015. Highly Efficient Lactate Biosensors Based on Immobilized Lactate Oxidase Engineering.163p

Pan Y., Zhang Y., Zhang Y., Wang K., Zhao Y., Li J. Preparation and Properties of Microcrystalline Cellulose/Fish Gelatin Composite Film. Materials. 2020;13:4370. doi: 10.3390/ma13194370. PubMed DOI PMC

Aung H.T. Ph.D. Thesis. Moscow State University; Moscow, Russia: 2020. Production of Composite Materials Based on Rice Husk Derivatives.

Kirsh I.A. Development of Biodegradable Polymer Compositions Based on Agro-Industrial Waste. Int. J. Adv. Biotechnol. Res. 2019;2:15–23.

Maharana T., Mohanty B., Negi Y.S. Melt-solid polycondensation of lactic acid and its biodegradability. Progr. Polym. Sci. 2009;34:99–124.42. doi: 10.1016/j.progpolymsci.2008.10.001. DOI

Garlotta D. A Literature Review of Poly(Lactic Acid) J. Polym. Environ. 2001;9:63–84. doi: 10.1023/A:1020200822435. DOI

Kamluk A.N., Likhamanau A.O. Experimental Determination of the Rational Geometrical Parameters of the Sprinkler Frame Arms and Deflector on the Expansion Rate and Stability of Foam. Proc. Natl. Acad. Sci. USA Belarus Phys. Tech. Ser. 2019;64:60–68. doi: 10.29235/1561-8358-2019-64-1-60-68. DOI

Ayyoob M., Lee S., Kim Y.J. Well-Defined High Molecular Weight Polyglycolide-b-Poly(L-lactide)-b-Polyglycolide Triblock Copolymers: Synthesis, Characterization and Microstructural Analysis. J. Polym. Res. 2020;27:109. doi: 10.1007/s10965-019-2001-4. DOI

Hu Y., Jiang X., Ding Y., Zhang L., Yang C., Zhang J., Chen J., Yang Y. Preparation and Drug Release Behaviors of Nimodipine-Loaded Poly(caprolactone)-Poly(ethylene oxide)-Polylactide Amphiphilic Copolymer Nanoparticles. Biomaterials. 2003;24:2395–2404. doi: 10.1016/S0142-9612(03)00021-8. PubMed DOI

Bourges J.L., Gautier S.E., Delie F., Bejjani R.A., Jeanny J.C., Gurny R., BenEzra D., Behar-Cohen F.F. Ocular Drug Delivery Targeting the Retina and Retinal Pigment Epithelium Using Polylactide Nanoparticles. Investig. Ophthalmol. Vis. Sci. 2003;44:3562–3569. doi: 10.1167/iovs.02-1068. PubMed DOI

Singh M., Shirley B., Bajwa K., Samara E., Hora M., O’Hagan D. Controlled Release of Recombinant Insulin-like Growth Factor from a Novel Formulation of Polylactide-Co-Glycolide Microparticles. J. Control. Release. 2001;70:21–28. doi: 10.1016/S0168-3659(00)00313-8. PubMed DOI

Romero-Cano M.S., Vincent B. Controlled Release of 4-Nitroanisole from Poly(lactic acid) Nanoparticles. J. Control. Release. 2002;82:127–135. doi: 10.1016/S0168-3659(02)00130-X. PubMed DOI

Ouchi T., Saito T., Kontani T., Ohya Y. Encapsulation and/or Release Behavior of Bovine Serum Albumin within and from Polylactide-Grafted Dextran Microspheres. Macromol. Biosci. 2004;4:458–463. doi: 10.1002/mabi.200300106. PubMed DOI

Olivier J.C. Drug Transport to the Brain with Targeted Nanoparticles. NeuroRx. 2005;2:108–119. doi: 10.1602/neurorx.2.1.108. PubMed DOI PMC

Gross R.A., Kalra B. Biodegradable Polymers for the Environment. Science. 2002;297:803–807. doi: 10.1126/science.297.5582.803. PubMed DOI

Danner H., Braun R. Biotechnology for the Production of Commodity Chemicals from Biomass. Chem. Soc. Rev. 1999;28:395–405. doi: 10.1039/a806968i. DOI

Thomas C.M. Stereocontrolled Ring-Opening Polymerization of Lactide: Synthesis of Stereoregular Polyesters Using Chiral Catalysts. Chem. Soc. Rev. 2010;39:165–173. doi: 10.1039/B810065A. PubMed DOI

Letcher T.M. Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions. Academic Press; Cambridge, MA, USA: 2020.

Narayanan N., Roychoudhury P.K., Srivastava A. L(+) Lactic Acid Fermentation and Its Product Polymerization. Electron. J. Biotechnol. 2004;7:167–179. doi: 10.2225/vol7-issue2-fulltext-7. DOI

Avérous L. Monomers, Polymers and Composites from Renewable Resources. Elsevier; Amsterdam, The Netherlands: 2008. Chapter 21—Polylactic Acid: Synthesis, Properties and Applications; pp. 433–450. DOI

Tsuji H., Ikada Y. Properties and morphologies of poly(L-lactide): 1. Annealing condition effects on properties and morphologies of poly(L-lactide) Biomaterials. 2000;21:343–350. doi: 10.1016/0032-3861(95)93647-5. DOI

Lucas N., Bienaime C., Belloy C., Queneudec M., Silvestre F., Nava-Saucedo J.E. Polymer Biodegradation: Mechanisms and Estimation Techniques—A Review. Chemosphere. 2008;73:429–442. doi: 10.1016/j.chemosphere.2008.06.064. PubMed DOI

Savenkova L., Gercberga Z., Nikolaeva V., Dzene A., Bibers I., Kalmin M. Mechanical properties and biodegradation characteristics of poly-(hydroxy butyrate)-based films. Process Biochem. 2000;35:573–579. doi: 10.1016/S0032-9592(99)00107-7. DOI

Bagde P., Nadanathangam V. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydr. Polym. 2019;222:115021. doi: 10.1016/j.carbpol.2019.115021. PubMed DOI

Lamberti F.M., Román-Ramírez L.A., Wood J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020;28:2551–2571. doi: 10.1007/s10924-020-01795-8. DOI

Singhvi M.S., Zinjarde S.S., Gokhale D.V. Polylactic Acid: Synthesis and Biomedical Applications. J. Appl. Microbiol. 2019;127:1612–1626. doi: 10.1111/jam.14290. PubMed DOI

McLain S., Drysdale N. Process for Preparing Polylactide. 5,028,667. U.S. Patent. 1991 July 2;

McLain S., Ford T., Drysdale N. Synthesis of Polylactide Using Yttrium Alkoxide Catalysts. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 1992;33:463–464.

Momeni S., Craplewe K., Safder M., Luz S., Sauvageau D., Elias A. Accelerating the Biodegradation of Poly(lactic acid) through the Inclusion of Plant Fibers: A Review of Recent Advances. ACS Sustain. Chem. Eng. 2023;11:12345–12356. doi: 10.1021/acssuschemeng.3c04240. PubMed DOI PMC

Jamshidi K., Hyon S.H., Ikada Y. Thermal Characterization of Polylactides. Polymer. 1988;29:2229–2234. doi: 10.1016/0032-3861(88)90116-4. DOI

Zhang Y., Qi H., Park C. Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials. 2022;15:4312. doi: 10.3390/ma15124312. PubMed DOI PMC

Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Int. J. Biol. Macromol. 2016;83:374–386. doi: 10.1016/j.addr.2016.06.012. PubMed DOI

Yang Y., Zhang M., Ju Z., Tam P.Y., Hua T., Younas M.W., Kamrul H., Hu H. Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Text. Res. J. 2021;91:1641–1669. doi: 10.1177/0040517520984101. DOI

Balla E., Daniilidis V., Karlioti G., Kalamas T., Stefanidou M., Bikiaris N.D., Vlachopoulos A., Koumentakou I., Bikiaris D.N. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers. 2021;13:1822. doi: 10.3390/polym13111822. PubMed DOI PMC

Castro-Aguirre E., Iñiguez-Franco F., Samsudin H., Fang X., Auras R. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016;107:333–366. doi: 10.1016/j.addr.2016.03.010. PubMed DOI

Ranakoti L., Gangil B., Bhandari P., Singh T., Sharma S., Singh J., Singh S. Promising Role of Polylactic Acid as an Ingenious Biomaterial in Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants: Research Developments, and Prospective Applications. Molecules. 2023;28:485. doi: 10.3390/molecules28020485. PubMed DOI PMC

Lasprilla A.J.R., Martinez G.A.R., Lunelli B.H., Jardini A.L., Filho R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012;30:321–328. doi: 10.1016/j.biotechadv.2011.06.019. PubMed DOI

Fuoco T., Mathisen T., Finne-Wistrand A. Poly(L-Lactide) and Poly(L-Lactide-Co-Trimethylene Carbonate) Melt-Spun Fibers: Structure-Processing-Properties Relationship. Biomacromolecules. 2019;20:1346–1361. doi: 10.1021/acs.biomac.8b01739. PubMed DOI

Ali A., El-Dessouky H. An insight on the process–property relationships of melt spun polylactic acid fibers. Text. Res. J. 2019;89:4959–4966. doi: 10.1177/0040517519845684. DOI

Capuana E., Lopresti F., Ceraulo M., La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers. 2022;14:1153. doi: 10.3390/polym14061153. PubMed DOI PMC

Penning J.P., Dijkstra H., Pennings A.J. Preparation and Properties of Absorbable Fibres from L-Lactide Copolymers. Polymer. 1993;34:942–951. doi: 10.1016/0032-3861(93)90212-S. DOI

Dorigato A., Sebastiani M., Pegoretti A., Fambri L. Effect of silica nanoparticles on the mechanical performances of poly(lactic acid) J. Polym. Environ. 2012;20:713–725. doi: 10.1007/s10924-012-0425-6. DOI

Tait M., Pegoretti A., Dorigato A., Kalaitzidou K. The effect of filler type and content and the manufacturing process on the performance of multifunctional carbon/poly-lactide composites. Carbon. 2011;49:4280–4290. doi: 10.1016/j.carbon.2011.06.009. DOI

Fambri L., Dorigato A., Pegoretti A. Role of surface-treated silica nanoparticles on the thermo-mechanical behavior of poly(lactide) Appl. Sci. 2020;10:6731. doi: 10.3390/app10196731. DOI

Bhatia S.K., Otari S.V., Jeon J.M., Gurav R., Choi Y.K., Bhatia R.K., Pugazhendhi A., Kumar V., Banu J.R., Yoon J.J., et al. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresour. Technol. 2021;326:124733. doi: 10.1016/j.biortech.2021.124733. PubMed DOI

Colombo B., Sciarria T.P., Reis M., Scaglia B., Adani F. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresour. Technol. 2016;218:692–699. doi: 10.1016/j.biortech.2016.07.024. PubMed DOI

Pulingam T., Appaturi J.N., Parumasivam T., Ahmad A., Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers. 2022;14:2141. doi: 10.3390/polym14112141. PubMed DOI PMC

Zhang X., You S., Tian Y., Li J. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Sci. Hortic. 2019;249:38–48. doi: 10.1016/j.scienta.2019.01.037. DOI

Mukherjee A., Knoch S., Tavares J.R. Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosyst. Eng. 2019;180:121–145. doi: 10.1016/j.biosystemseng.2019.01.017. DOI

Briassoulis D., Giannoulis A. Evaluation of the functionality of bio-based plastic mulching films. Polym. Test. 2018;67:99–109. doi: 10.1016/j.polymertesting.2018.02.019. DOI

Bucci D.Z., Tavares L.B.B. PHB packaging for the storage of food products. Polym. Test. 2005;24:564–571. doi: 10.1016/j.polymertesting.2005.02.008. DOI

Verlinden R.A.J., Hill D.J., Kenward M.A., Williams C.D., Radecka I. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 2007;102:1437–1449. doi: 10.1111/j.1365-2672.2007.03335.x. PubMed DOI

Zhou W., Bergsma S., Colpa D.I., Euverink G.J.W., Krooneman J. Polyhydroxyalkanoates (PHAs) Synthesis and Degradation by Microbes and Applications towards a Circular Economy. J. Environ. Manage. 2023;341:118033. doi: 10.1016/j.jenvman.2023.118033. PubMed DOI

Girotto F., Alibardi L., Cossu R. Food waste generation and industrial uses: A review. Waste Manag. 2015;45:32–41. doi: 10.1016/j.wasman.2015.06.008. PubMed DOI

Dietrich K., Dumont M.-J., Del Rio L.F., Orsat V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. 2017;9:58–70. doi: 10.1016/j.spc.2016.09.001. DOI

Jiang Y., Marang L., Tamis J., van Loosdrecht M.C., Dijkman H., Kleerebezem R. Waste to resource: Converting paper mill wastewater to bioplastic. Water Res. 2012;46:5517–5530. doi: 10.1016/j.watres.2012.07.028. PubMed DOI

Javaid H., Nawaz A., Riaz N., Mukhtar H., Ul-Haq I., Shah K.A., Khan H., Naqvi S.M., Shakoor S., Rasool A., et al. Biosynthesis of polyhydroxyalkanoates (PHAs) by the valorization of biomass and synthetic waste. Molecules. 2020;25:5539. doi: 10.3390/molecules25235539. PubMed DOI PMC

Kenny S.T., Runic J.N., Kaminsky W., Woods T., Babu R.P., Keely C.M., Blau W., O’Connor K.E. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate) Environ. Sci. Technol. 2008;42:7696–7701. doi: 10.1021/es801010e. PubMed DOI

Devi E.S., Vijayendra S.V.N., Shamala T.R. Exploration of rice bran, an agro-industry residue, for the production of intra- and extra-cellular polymers by Sinorhizobium meliloti MTCC 100. Biocatal. Agric. Biotechnol. 2012;1:80–84. doi: 10.1016/j.bcab.2011.08.014. DOI

Pérez-Rivero C., López-Gómez J.P., Roy I. A Sustainable Approach for the Downstream Processing of Bacterial Polyhydroxyalkanoates: State-of-the-art and latest developments. Biochem. Eng. J. 2019;150:107283. doi: 10.1016/j.bej.2019.107283. DOI

Mirpoor S.F., Patanè G.T., Corrado I., Giosafatto C.V.L., Ginestra G., Nostro A., Foti A., Gucciardi P.G., Mandalari G., Barreca D., et al. Functionalization of Polyhydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities. Int. J. Mol. Sci. 2023;24:11628. doi: 10.3390/ijms241411628. PubMed DOI PMC

Zinn M., Hany R. Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv. Eng. Mater. 2005;7:408–411. doi: 10.1002/adem.200500053. DOI

Kunze C., Bernd H.E., Androsch R., Nischan C., Freier T., Kramer S., Kramp B., Schmitz K.P. In vitro and in vivo studies on blends of isotactic and atactic poly(3-hydroxybutyrate) for development of a dura substitute material. Biomaterials. 2006;27:192–201. doi: 10.1016/j.biomaterials.2005.05.095. PubMed DOI

Lee M.S., Park W.H. Compatibility and thermal properties of poly(3-hydroxybutyrate)/poly(glycidyl methacrylate) blends. J. Polym. Sci. A Polym. Chem. 2002;40:351–358. doi: 10.1002/pola.10128. DOI

Gao Y., Kong L., Zhang L., Gong Y.D., Chen G.Q., Zhao N.M., Zhang X.F. Improvement of mechanical properties of poly(DL-lactide) films by blending with poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Eur. Polym. J. 2006;42:764–775. doi: 10.1016/j.eurpolymj.2005.09.028. DOI

Wang Y.W., Wu Q., Chen G.Q. Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application. Biomacromolecules. 2005;6:566–571. doi: 10.1021/bm049342d. PubMed DOI

Reichert C.L., Bugnicourt E., Coltelli M.-B., Cinelli P., Lazzeri A., Canesi I., Braca F., Martínez B.M., Alonso R., Agostinis L., et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers. 2020;12:1558. doi: 10.3390/polym12071558. PubMed DOI PMC

Tatai L., Moore T.G., Adhikari R., Malherbe F., Jayasekara R., Griffiths I., Gunatillake A. Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials. 2007;28:5407–5417. doi: 10.1016/j.biomaterials.2007.08.035. PubMed DOI

Zhang J.Y., Beckman E.J., Piesco N.P., Agrawal S. A new peptide-based urethane polymer: Synthesis, biodegradation and potential to support cell growth in-vitro. Biomaterials. 2000;21:1247–1258. doi: 10.1016/S0142-9612(00)00005-3. PubMed DOI PMC

Chen G.-Q. A microbial polyhydroxyalkanoates (PHA)-based bio-and materials industry. Chem. Soc. Rev. 2009;38:2434–2446. doi: 10.1039/b812677c. PubMed DOI

Lule Z.C., Shiferaw E.W., Kim J. Thermomechanical Properties of SiC-Filled Polybutylene Succinate Composite Fabricated via Melt Extrusion. Polymers. 2020;12:418. doi: 10.3390/polym12020418. PubMed DOI PMC

Lule Z.C., Kim J. Thermally Conductive Polybutylene Succinate Composite Filled with Si-O-N-C Functionalized Silicon Carbide Fabricated via Low-Speed Melt Extrusion. Eur. Polym. J. 2020;134:109849. doi: 10.1016/j.eurpolymj.2020.109849. DOI

Lule Z.C., Kim J. Compatibilization Effect of Silanized SiC Particles on Polybutylene Adipate Terephthalate/Polycarbonate Blends. Mater. Chem. Phys. 2021;258:123879. doi: 10.1016/j.matchemphys.2020.123879. DOI

Gontard N., Sonesson U., Birkved M. A Research Challenge Vision Regarding Management of Agricultural Waste in a Circular Bio-Based Economy. Crit. Rev. Environ. Sci. Technol. 2018;48:614–654. doi: 10.1080/10643389.2018.1471957. DOI

Chen T.T., Cai T.J., Jin Q., Ji J. Design and Fabrication of Functional Polycaprolactone. E-Polymers. 2015;15:3–13. doi: 10.1515/epoly-2014-0158. DOI

Hajiali F., Tajbakhsh S., Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polym. Rev. 2018;58:164–207. doi: 10.1080/15583724.2017.1332640. DOI

Chan D.S., Fnais N., Ibrahim I., Daniel S., Manoukian J. Exploring Polycaprolactone in Tracheal Surgery: A Scoping Review of In-Vivo Studies. Int. J. Pediatr. Otorhinolaryngol. 2019;123:38–42. doi: 10.1016/j.ijporl.2019.04.039. PubMed DOI

Ghavimi A.A.A., Ebrahimzadeh M.H., Solati-Hashjin M., Osman N.A.A. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications. J. Biomed. Mater. Res. A. 2015;103:2482–2498. doi: 10.1002/jbm.a.35371. PubMed DOI

Sadeghi A., Mousavi S.M., Saljoughi E., Kiani S. Biodegradable Membrane Based on Polycaprolactone/Polybutylene Succinate: Characterization and Performance Evaluation in Wastewater Treatment. J. Appl. Polym. Sci. 2021;138:50332. doi: 10.1002/app.50332. DOI

Follain N., Joly C., Dole P., Bliard C. Properties of Starch-Based Blends. Part 2: Influence of Polyvinyl Alcohol Addition and Photocrosslinking on Mechanical Properties. Carbohydr. Polym. 2005;60:185–192. doi: 10.1016/j.carbpol.2004.12.003. DOI

Zhai M.L., Yoshii F., Kume T., Hashim K. Synthesis of PVA/Starch Grafted Hydrogels by Irradiation. Carbohydr. Polym. 2002;50:295–303. doi: 10.1016/S0144-8617(02)00031-0. DOI

Xiao C.M., Yang M.L. Controlled Preparation of Physical Cross-Linked Starch-g-PVA Hydrogel. Carbohydr. Polym. 2006;64:37–40. doi: 10.1016/j.carbpol.2005.10.020. DOI

Aslam M., Kalyar M.A., Raza Z.A. Polyvinyl Alcohol: A Review of Research Status and Use of Polyvinyl Alcohol-Based Nanocomposites. Polym. Eng. Sci. 2018;58:2119–2132. doi: 10.1002/pen.24855. DOI

Baker M.I., Walsh S.P., Schwartz Z., Boyan B.D. A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. J. Biomed. Mater. Res. B Appl. Biomater. 2012;100B:1451–1457. doi: 10.1002/jbm.b.32694. PubMed DOI

Sapalidis A.A. Porous Polyvinyl Alcohol Membranes: Preparation Methods and Applications. Symmetry. 2020;12:960. doi: 10.3390/sym12060960. DOI

Pavlenok A.V., Davydova O.V., Drobychevskaya N.E., Poddenezhny E.N., Boyko A.A., Shapovalov V.M. Development and Properties of Biodegradable Composite Materials Based on Polyvinyl Alcohol and Starch. Vestn. GGTU im. P.O. Sukhoi. 2018;1:1–9.

Watanabe Y., Hameda N., Morita M., Tsujisaka Y. Purification and Properties of a Polyvinyl Alcohol-Degrading Enzyme Produced by a Strain of Pseudomonas. Arch. Biochem. Biophys. 1976;174:575–581. doi: 10.1016/0003-9861(76)90386-6. PubMed DOI

Haugwitz M., Pudman P., Müller S. Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade. Angew. Chem. Int. Ed. 2023;62:e202216962. doi: 10.1002/anie.202216962. PubMed DOI

Sanaei Ataabadi H., Mirzaei E., Sedaghatdoost A. Effect of Polypropylene and Polyvinyl Alcohol Fibers on Characteristics and Microstructure of Polymer Composite. Polym. Compos. 2021;42:1782–1794. doi: 10.1002/pc.25933. DOI

Shen Y., Li Q., Xu S., Liu X. Electromagnetic Wave Absorption of Multifunctional Cementitious Composites Incorporating Polyvinyl Alcohol (PVA) Fibers and Fly Ash: Effects of Microstructure and Hydration. Cement Concr. Res. 2021;143:106389. doi: 10.1016/j.cemconres.2021.106389. DOI

Lule Z.C., Kim J. Properties of Economical and Eco-Friendly Polybutylene Adipate Terephthalate Composites Loaded with Surface-Treated Coffee Husk. Compos. Part A Appl. Sci. Manuf. 2021;140:106154. doi: 10.1016/j.compositesa.2020.106154. DOI

Kim K.S., Yoo J., Shim J.S., Ryu Y.I., Choi S., Lee J.Y., Lee H.M., Koo J., Kang S.K. Biodegradable Molybdenum/Polybutylene Adipate Terephthalate Conductive Paste for Flexible and Stretchable Transient Electronics. Adv. Mater. Technol. 2021;6:2001297. doi: 10.1002/admt.202001297. DOI

Terzopoulou Z., Papadopoulos L., Zamboulis A., Papageorgiou D.G., Papageorgiou G.Z., Bikiaris D.N. Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review. Polymers. 2020;12:1209. doi: 10.3390/polym12061209. PubMed DOI PMC

Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI

Pina S., Ferreira J.M.F. Bioresorbable plates and screws for clinical applications: A review. J. Healthc. Eng. 2012;3:243–260. doi: 10.1260/2040-2295.3.2.243. DOI

Middleton J.C., Tipton A.J. Synthetic Biodegradable Polymers as Orthopedic Devices. Biomaterials. 2000;21:2335–2346. doi: 10.1016/S0142-9612(00)00101-0. PubMed DOI

Shi X., Jing Z., Zhang G. Crystallization and Properties of Poly(Lactide)/Poly(δ-Valerolactone) Alternating Supramolecular Copolymers Adjusted by Stereocomplexation. ACS Omega. 2019;4:11145–11151. doi: 10.1021/acsomega.9b00380. PubMed DOI PMC

Srithep Y., Pholharn D., Akkaprasa T. Effect of Molecular Weight of Poly(L-Lactic Acid) on the Stereocomplex Formation between Enantiomeric Poly(Lactic Acid)s Blendings. IOP Conf. Ser. Mater. Sci. Eng. 2019;526:012024. doi: 10.1088/1757-899X/526/1/012024. DOI

Oyama H.T., Tanishima D., Ogawa R. Biologically Safe Poly(l-Lactic Acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties. Biomacromolecules. 2017;18:1281–1292. doi: 10.1021/acs.biomac.7b00016. PubMed DOI

Chakoli A.N. Poly(L-Lactide) Bionanocomposites. In: Varkey J.T., editor. Peptide Synthesis. IntechOpen; London, UK: 2019.

Puricelli C., Gigliotti C.L., Stoppa I., Sacchetti S., Pantham D., Scomparin A., Rolla R., Pizzimenti S., Dianzani U., Boggio E., et al. Use of Poly Lactic-Co-Glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation. Pharmaceutics. 2023;15:1772. doi: 10.3390/pharmaceutics15061772. PubMed DOI PMC

Taşkor Önel G. Synthesis of L-Ornithine- and L-Glutamine-Linked PLGAs as Biodegradable Polymers. Polymers. 2023;15:3998. doi: 10.3390/polym15193998. PubMed DOI PMC

Li S., Tian M., Wang J., Du F., Li L., Xue Z. Poly (Ethylene Oxide)-Based Block Copolymer Electrolytes Formed via Ligand-Free Iron-Mediated Atom Transfer Radical Polymerization. Polymers. 2020;12:763. doi: 10.3390/polym12040763. PubMed DOI PMC

Zhu K.J., Hendren R.W., Jensen K., Pitt C.G. Synthesis, Properties and Biodegradation of Poly(1,3-Trimethylene Carbonate) Macromolecules. 1991;24:1736–1740. doi: 10.1021/ma00008a008. DOI

Kim B.K., Seo J.W., Jeong H.M. Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. 2003;39:85–91. doi: 10.1016/S0014-3057(02)00173-8. DOI

Olivito F., Jagdale P., Oza G. Synthesis and Biodegradation Test of a New Polyether Polyurethane Foam Produced from PEG 400, L-Lysine Ethyl Ester Diisocyanate (L-LDI) and Bis-hydroxymethyl Furan (BHMF) Toxics. 2023;11:698. doi: 10.3390/toxics11080698. PubMed DOI PMC

Wu G., Song X., Yang Z., Li Y., Zhang H. Synthesis and Characterization of Biodegradable Polyester/Polyether WPU as the Environmental Protection Coating. J. Polym. Environ. 2022;30:528–540. doi: 10.1007/s10924-021-02221-3. DOI

Han J., Chen B., Ye L., Zhang A.-Y., Zhang J., Feng Z.-G. Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on L-lysine diisocyanate and L-lysine chain extender. J. Biomed. Mater. Res. Part A. 2011;96A:705–714. doi: 10.1002/jbm.a.33023. PubMed DOI

Storey R.F., Wiggins J.S., Puckett A.D. Hydrolysable poly(ester urethane) networks from L-lysine diisocyanate and D,L-lactide/ε-caprolactone homo- and copolyester triols. J. Polym. Sci. A Polym. Chem. 1994;32:2342–2345. doi: 10.1002/pola.1994.080321216. DOI

Lu Y., Tighzert L., Dole P., Erre D. Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer. 2005;46:9863–9870. doi: 10.1016/j.polymer.2005.08.026. DOI

Lu Y., Tighzert L., Berzin F., Rondot S. Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydr. Polym. 2005;61:174–182. doi: 10.1016/j.carbpol.2005.04.013. DOI

Siracusa V., Blanco I. Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in biobased polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers. 2020;12:1641. doi: 10.3390/polym12081641. PubMed DOI PMC

European Bioplastics Association . Bioplastics: Facts and Figures. European Bioplastics e.V.; Berlin, Germany: 2019.

Pinaeva L.G., Noskov A.S. Biodegradable Biopolymers: Real Impact to Environment Pollution. Sci. Total Environ. 2024;947:174445. doi: 10.1016/j.scitotenv.2024.174445. PubMed DOI

Tao J., Song C., Cao M., Hu D., Liu L., Liu N., Wang S. Thermal Properties and Degradability of Poly(Propylene Carbonate)/Poly(β-Hydroxybutyrate-Co-β-Hydroxyvalerate) (PPC/PHBV) Blends. Polym. Degrad. Stab. 2009;94:575–583. doi: 10.1016/j.polymdegradstab.2009.01.017. DOI

Arvanitoyannis I., Nakayama A., Aiba S. Edible Films Made from Hydroxypropyl Starch and Gelatin and Plasticized by Polyols and Water. Carbohydr. Polym. 1998;36:105–119. doi: 10.1016/S0144-8617(98)00017-4. DOI

Wei R., Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 2017;10:1302–1307. doi: 10.1111/1751-7915.12714. PubMed DOI PMC

Kurowiak J., Mackiewicz A., Klekiel T., Będziński R. Material Characteristic of an Innovative Stent for the treatment of Urethral Stenosis. Acta Mech. Autom. 2023;17:477–484. doi: 10.2478/ama-2023-0055. DOI

Zhang W., Kanwal F., Rehman M.F.U., Wan X. Efficacy of Biodegradable Polydioxanone and Polylactic Acid Braided Biodegrad able Biliary Stents for the Management of Benign Biliary Strictures. Turk. J. Gastroenterol. 2021;32:651–660. doi: 10.5152/tjg.2021.201174. PubMed DOI PMC

Loskot J., Jezbera D., Zmrhalová Z.O., Nalezinková M., Alferi D., Lelkes K., Voda P., Andrýs R., Fučíková A.M., Hosszú T., et al. A Complex In Vitro Degradation Study on Polydioxanone Biliary Stents during a Clinically Relevant Period with the Focus on RamanSpectroscopy Validation. Polymers. 2022;14:938. doi: 10.3390/polym14050938. PubMed DOI PMC

Miah M.R., Dong Y., Wang J., Zhu J. Recent Progress on Sustainable 2,5-Furandicarboxylate-Based Polyesters: Properties and Applications. ACS Sustain. Chem. Eng. 2024;12:2927–2961. doi: 10.1021/acssuschemeng.3c06878. DOI

Avérous L. Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. J. Macromol. Sci. Polym. Rev. 2004;C4:231–274. doi: 10.1081/MC-200029326. DOI

Takahashi M. Biodegradable, Dust-Capturing Hair Caps. 2002345541. JP Patent. 2001 May 29;

Tsai F.-J.D., Balogh B.A. Breathable, Biodegradable/Compostable Laminate for Disposable Personal Care Product. 2002053376. WO Patent. 2000 July 25;

Kawanaka S., Ueda A., Miyake M. Biodegradable Sanitary Products Containing Galactomannan-Based Water Absorbents. 2002035037. JP Patent. 2000 July 25;

Mueller D.H. Biodegradable nonwovens–natural and polymer fibers, technology, properties; Proceedings of the International Nonwovens Technical Conference; Baltimore, MD, USA. 15–18 September 2003.

Parikh D.V., Calamari T.A. Performance of Nonwoven Cellulosic Composites for Automotive Interiors. Int. Nonwovens J. 2000;9:83–85. doi: 10.1177/1558925000OS-900218. DOI

Yachmenev V.G., Parikh D.V., Calamari T.A., Jr. Thermal Insulation Properties of Biodegradable, Cellulosic-based Nonwoven Composites for Automotive Application. J. Ind. Text. 2002;31:283–296. doi: 10.1106/152808302029087. DOI

Takano N., Ryoichi Hane R., Nakano Y. Biodegradable Nonwoven Fabric Filtering Material for Sink Drain. 2005113278A. JP Patent. 2003 October 3;

Omori T. Biodegradable Pleated Filter Material and Filter Unit for Air Purification and Liquid Filtration. A-2003-299924. JP Patent. 2002 April 5;

Okada M. Chemical Syntheses of Biodegradable Polymers. Prog. Polym. Sci. 2002;27:87–133. doi: 10.1016/S0079-6700(01)00039-9. DOI

Rass-Hansen J., Falsig H., Jorgensen B., Christensen C.H.J. Bioethanol: Fuel or feedstock? Chem. Technol. Biotechnol. 2007;82:329–333. doi: 10.1002/jctb.1665. DOI

Rogovina S.Z., Aleksanyan K.V., Prut E.V. Biodegradable chitin and chitosan blends with synthetic polymers. Encycl. Chem. Eng. 2011;6:32–38.

Drumright R.E., Gruber P.R., Henton E.H. Polylactic Acid Technology. Adv. Mater. 2000;12:1841–1846. doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E. DOI

Hiljanen-Vainio M., Varpomaa P., Seppälä J., Törmälä P. Modification of Poly(L-Lactides) by Blending: Mechanical and Hydrolytic Behavior. Macromol. Chem. Phys. 1996;197:1503–1523. doi: 10.1002/macp.1996.021970427. DOI

Sarasua J.-R., Prud’homme R.E., Wisniewski M., Le Borgne A., Spassky N. Crystallization and Melting Behavior of Polylactides. Macromolecules. 1998;31:3895–3905. doi: 10.1021/ma971545p. DOI

Tsuji H., Ikada Y. Crystallization from the Melt of Poly(Lactide)s with Different Optical Purities and Their Blends. Macromol. Chem. Phys. 1996;197:3483–3499. doi: 10.1002/macp.1996.021971033. DOI

Nakamura C.E., Whited G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 2003;14:454–459. doi: 10.1016/j.copbio.2003.08.005. PubMed DOI

Kluge M., Perocheau Arnaud S., Robert T. 1,3-Propanediol and its application in bio-based polyesters for resin applications. Chem. Afr. 2018;2:215–221. doi: 10.1007/s42250-018-0026-4. DOI

Ma G.-Q., Sun Z.-B., Ren J.-Y., Zeng Y., Jia D.-Z., Li Y., Guan B., Zhong G.-J., Li Z.-M. Reorganization of Hydrogen Bonding in Biobased Polyamide 5,13 under the Thermo-Mechanical Field: Hierarchical Microstructure Evolution and Achieving Excellent Mechanical Performance. Biomacromolecules. 2022;23:3990–4003. doi: 10.1021/acs.biomac.2c00826. PubMed DOI

Iglesias J., Martínez-Salazar I., Maireles-Torres P., Martin Alonso D., Mariscal R., López Granados M. Advances in Catalytic Routes for the Production of Carboxylic Acids from Biomass: A Step Forward for Sustainable Polymers. Chem. Soc. Rev. 2020;49:5704–5771. doi: 10.1039/D0CS00177E. PubMed DOI

Maurya A., Bhattacharya A., Khare S.K. Enzymatic remediation of polyethylene terephthalate (PET)-based polymers for effective management of plastic wastes: An overview. Front. Bioeng. Biotechnol. 2020;8:602325. doi: 10.3389/fbioe.2020.602325. PubMed DOI PMC

Pillai C.K.S., Sharma C.P. Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. J. Biomater. Appl. 2010;25:291–366. doi: 10.1177/0885328210384890. PubMed DOI

Ikada Y., Tsuji H. Biodegradable Polyesters for Medical and Ecological Applications. Macromol. Rapid Commun. 2000;21:117–132. doi: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X. DOI

Sinisaari I. Ph.D. Thesis. Helsingin Yliopisto; Helsinki, Finland: 2004. Infections and Bioabsorbable Implants in Orthopedic and Trauma Surgery—With Special Reference to the Treatment of Ankle Fractures.

Holland S.J., Tighe B.J., Gould P.L. Polymers for Biodegradable Medical Devices. I. The Potential of Polyesters as Controlled Macromolecular Release Systems. J. Control. Release. 1986;4:155–180. doi: 10.1016/0168-3659(86)90001-5. DOI

Blasi P. Poly(Lactic Acid)/Poly(Lactic-Co-Glycolic Acid)-Based Microparticles: An Overview. J. Pharm. Investig. 2019;49:337–346. doi: 10.1007/s40005-019-00453-z. DOI

Langer R. New Methods of Drug Delivery. Science. 1990;249:1527–1533. doi: 10.1126/science.2218494. PubMed DOI

Wang H.T., Palmer H., Linhardt R.J., Flanagan D.R., Schmitt E. Degradation of Poly(ester) Microspheres. Biomaterials. 1990;11:679–685. doi: 10.1016/0142-9612(90)90026-M. PubMed DOI

Liu Y.-Y., Fernández Blázquez J.P., Yin G.-Z., Wang D.-Y., Llorca J., Echeverry-Rendón M. A Strategy to Tailor the Mechanical and Degradation Properties of PCL-PEG-PCL Based Copolymers for Biomedical Application. Polymers. 2023;15:1234. doi: 10.1016/j.eurpolymj.2023.112388. DOI

Dobrzyńska-Mizera M., Dodda J.M., Liu X., Knitter M., Oosterbeek R.N., Salinas P., Pozo E., Ferreira A.M., Sadiku E.R. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv. Healthc. Mater. 2024;13:2301674. doi: 10.1002/adhm.202401674. PubMed DOI PMC

Xu Y., Saiding Q., Zhou X., Wang J., Cui W., Chen X. Electrospun Fiber-Based Immune Engineering in Regenerative Medicine. Smart Med. 2024;3:100034. doi: 10.1002/SMMD.20230034. PubMed DOI PMC

Zhang M., Xu S., Wang R., Che Y., Han C., Feng W., Wang C., Zhao W. Electrospun Nanofiber/Hydrogel Composite Materials and Their Tissue Engineering Applications. J. Mater. Sci. Technol. 2023;162:157–178. doi: 10.1016/j.jmst.2023.04.015. DOI

Kurowiak J., Klekiel T., Będziński R. Biodegradable Polymers in Biomedical Applications: A Review—Developments, Perspectives and Future Challenges. Int. J. Mol. Sci. 2023;24:16952. doi: 10.3390/ijms242316952. PubMed DOI PMC

Gomzyak V.I., Demina V.A., Razuvaeva E.V., Sedush N.G., Chvalun S.N. Biodegradable Polymer Materials for Medical Applications: From Implants to Organs. Fine Chem. Technol. 2017;12:5–20. doi: 10.32362/2410-6593-2017-12-5-5-20. DOI

Martins J.A., Lach A.A., Morris H.L., Carr A.J., Mouthuy P.A. Polydioxanone implants: A systematic review on safety and performance in patients. J Biomater Appl. 2020;34:902–916. doi: 10.1177/0885328219888841. PubMed DOI PMC

Reed A.M., Gilding D.K. Biodegradable Polymers for Use in Surgery—Poly(glycolic)/Poly(lactic acid) Homo- and Copolymers: 2. In Vitro Degradation. Polymer. 1981;22:342–352.

Boden S.D. Bioactive Factors for Bone Tissue Engineering. Clin. Orthop. Relat. Res. 1999;367S:S84–S94. doi: 10.1097/00003086-199910001-00009. PubMed DOI

Khardenavis A.A., Kumar M.S., Mudliar S.N., Chakrabarti T. Biotechnological Conversion of Agro-Industrial Wastewaters into Biodegradable Plastic, Poly β-Hydroxybutyrate. Bioresour. Technol. 2007;98:3579–3584. doi: 10.1016/j.biortech.2006.11.024. PubMed DOI

Sinha Ray S., Okamoto M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003;28:1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002. DOI

Sinha Ray S., Okamoto M. New Polylactide/Layered Silicate Nanocomposites. Part 6. Macromol. Mater. Eng. 2003;288:936–944. doi: 10.1002/mame.200300156. DOI

Krikorian V., Pochan D.J. Poly(L-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties. Chem. Mater. 2003;15:4317–4324. doi: 10.1021/cm034369+. DOI

Maiti P., Yamada K., Okamoto M., Ueda K., Okamoto K. New Polylactide/Layered Silicate Nanocomposites: Role of Organoclays. Chem. Mater. 2002;14:4654–4661. doi: 10.1021/cm020391b. DOI

Fujimoto Y., Sinha Ray S., Okamoto M., Ogami A., Yamada K., Ueda K. Well-Controlled Biodegradable Nanocomposite Foams: From Microcellular to Nanocellular. Macromol. Rapid Commun. 2003;24:457–461. doi: 10.1002/marc.200390068. DOI

Sarazin P., Roy X., Favis B.D. Controlled Preparation and Properties of Porous Poly(L-Lactide) Obtained from a Co-Continuous Blend of Two Biodegradable Polymers. Biomaterials. 2004;25:5965–5978. doi: 10.1016/j.biomaterials.2004.01.065. PubMed DOI

Vert M., Schwarch G., Coudane J. Present and Future of PLA Polymers. J. Macromol. Sci. A. 1995;32:787–796. doi: 10.1080/10601329508010289. DOI

Hoogsteen W., Postema A.R., Pennings A.J., Ten Brinke G., Zugenmaier P. Crystal Structure, Conformation, and Morphology of Solution-Spun Poly(L-Lactide) Fibers. Macromolecules. 1990;23:634–642. doi: 10.1021/ma00204a041. DOI

Mainil-Varlet P., Rahm R., Gogolewski S. Long-Term In Vivo Degradation and Bone Reaction to Various Polylactides. Biomaterials. 1997;18:257–266. doi: 10.1016/S0142-9612(96)00126-3. PubMed DOI

Vert M., Li S.M., Spenlehauer G., Guerin P. Bioresorbability and Biocompatibility of Aliphatic Polyesters. J. Mater. Sci. Mater. Med. 1992;3:432–446. doi: 10.1007/BF00701240. DOI

Duncan R., Kopeček J. Soluble Synthetic Polymers as Potential Drug Carriers. Adv. Polym. Sci. 1984;57:51–101.

Kopitar D., Marasovic P., Jugov N., Schwarz I. Biodegradable Nonwoven Agrotextile and Films—A Review. Polymers. 2022;14:2272. doi: 10.3390/polym14112272. PubMed DOI PMC

Kiselevsky M.V., Sitdikova S.M., Tenchurin T.K., Khomchenko A.Y. Contemporary Approaches and Perspectives to Creation of Tracheal Bioimplants. Russ. Biother. J. 2014;13:127–131.

Rodina A.V., Tenchurin T.K., Saprykin V.P., Shepelev A.D., Mamagulashvili V.G., Grigor’ev T.E., Lukanina K.I., Orekhov A.S., Moskaleva E.Y., Chvalun S.N. Migration and Proliferative Activity of Mesenchymal Stem Cells in 3D Polylactide Scaffolds Depends on Cell Seeding Technique and Collagen Modification. Bull. Exp. Biol. Med. 2016;162:120–126. doi: 10.1007/s10517-016-3560-6. PubMed DOI

Xu F., Wang H., Zhang J., Jiang L., Zhang W., Hu Y. A Facile Design of EGF Conjugated PLA/Gelatin Electrospun Nanofibers for Nursing Care of In Vivo Wound Healing Applications. J. Ind. Text. 2020;51:152808372097634. doi: 10.1177/1528083720976348. DOI

Zheng J., Northrup S.R., Hornsby P.J. Modification of materials formed from poly(L-lactic acid) to enable covalent binding of biopolymers: Application to high-density three-dimensional cell culture in foams with attached collagen. Vitr. Cell Dev. Biol.—Anim. 1998;34:679–684. doi: 10.1007/s11626-998-0063-4. PubMed DOI

Mikos A.G., Thorsen A.J., Czerwonka L.A., Bao Y., Langer R., Winslow D.N., Vacanti J.P. Preparation and characterization of poly(L-lactic acid) foams. Polymer. 1994;35:1068–1077. doi: 10.1016/0032-3861(94)90953-9. DOI

Whang K., Thomas C.H., Healy K.E., Nuber G.A. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36:837–842. doi: 10.1016/0032-3861(95)93115-3. DOI

Nam Y.S., Yoon J.J., Park T.G. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J. Biomed. Mater. Res. Part A. 2000;53:1–7. doi: 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R. PubMed DOI

Mooney D.J., Baldwin D.F., Suh N.P., Vacanti J.P., Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996;17:1417–1422. doi: 10.1016/0142-9612(96)87284-X. PubMed DOI

van de Witte P., Esselbrugge H., Dijkstra P.J., van den Berg J.W.A., Feijen J. A morphological study of membranes obtained from the systems polylactide-dioxane-methanol, polylactide-dioxane-water, and polylactide-N-methyl-2-pyrrolidone-water. J. Polym. Sci. Part B: Polym. Phys. 1996;34:2569–2577. doi: 10.1002/(SICI)1099-0488(19961115)34:15<2569::AID-POLB4>3.0.CO;2-O. DOI

Aslan S., Calandrelli L., Laurenzio P., Malinconico M., Migliaresi C. Poly(D,L-lactic acid)/poly(ε-caprolactone) blends membranes: Preparation and morphological characterisation. J. Mater. Sci. 2000;35:1615–1622. doi: 10.1023/A:1004787326273. DOI

Zoppi R.A., Contant S., Duek E.A.R., Marques F.R., Wada M.L.F., Nunes S.P. Porous poly(L-lactide) films obtained by immersion precipitation process: Morphology, phase separation and culture of VERO cells. Polymer. 1999;40:3275–3289. doi: 10.1016/S0032-3861(98)00562-X. DOI

Hua F.J., Kim G.E., Lee J.D., Son Y.K., Lee D.S. Macroporous Poly(L-Lactide) Scaffold 1. Preparation of a Macroporous Scaffold by Liquid-Liquid Phase Separation of a PLLA-Dioxane-Water System. J. Biomed. Mater. Res. 2002;63:161–167. doi: 10.1002/jbm.10121. PubMed DOI

Tsuji H., Smith R., Bonfield W., Ikada Y. Porous biodegradable polyesters. I. Preparation of porous poly(L-lactide) films by extraction of poly(ethylene oxide) from their blends. J. Appl. Polym. Sci. 2000;75:629–637. doi: 10.1002/(SICI)1097-4628(20000131)75:5<629::AID-APP5>3.0.CO;2-A. DOI

Shastri V.P., Martin I., Langer R. Macroporous polymer foams by hydrocarbon templating. Proc. Natl. Acad. Sci. USA. 2000;97:1970–1975. doi: 10.1073/pnas.97.5.1970. PubMed DOI PMC

Lukanina K.I., Shepelev A.D., Budyka A.K. Synthesis of ultrafine fibers from L- and D,L-isomers of polylactide by electrospinning. Fibre Chem. 2012;43:332–338. doi: 10.1007/s10692-012-9357-0. DOI

Sytina E.V., Tenchurin T.K., Rudyak S.G., Saprykin V.P., Romanova O.A., Orehov A.S., Vasiliev A.L., Alekseev A.A., Chvalun S.N., Paltsev M.A., et al. Comparative biocompatibility of nonwoven polymer scaffolds obtained by electrospinning and their use for development of 3D dermal equivalents. Mol. Meditsina (Mol. Med.) 2014;6:38–47.

Whang K., Healy K.E., Elenz D.R., Nam E.K., Tsai D.C., Thomas C.H., Nuber G.W., Glorieux F.H., Travers R., Sprague S.M. Engineered bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng. 1999;5:35–51. doi: 10.1089/ten.1999.5.35. PubMed DOI

Boyan B.D., Lohmann C.H., Romero J., Schwartz Z. Bone and cartilage tissue engineering. Tissue Eng. 1999;94:627–645. doi: 10.1016/S0094-1298(20)32662-6. PubMed DOI

Cornell C.N. Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop. Clin. N. Am. 1999;30:591–598. doi: 10.1016/S0030-5898(05)70112-7. PubMed DOI

Nilawar S., Uddin M., Chatterjee K. Surface engineering of biodegradable implants: Emerging trends in bioactive ceramic coatings and mechanical treatments. Mater. Adv. 2021;2:7820–7841. doi: 10.1039/D1MA00733E. DOI

Amini A.R., Wallace J.S., Nukavarapu S.P. Short-Term and Long-Term Effects of Orthopedic Biodegradable Implants. J. Long Term Eff. Med. Implant. 2012;21:93–122. doi: 10.1615/JLongTermEffMedImplants.v21.i2.10. PubMed DOI PMC

Godavitarne C., Robertson A., Peters J., Rogers B. Biodegradable materials. Orthop. Trauma. 2017;31:316–320. doi: 10.1016/j.mporth.2017.07.011. DOI

Athanasiou K.A., Agrawal C.E., Barber F.A., Burkhart S.S. Orthopaedic applications for PLA/PGA biodegradable polymers. Arthrosc. J. Arthrosc. Relat. Surg. 1998;14:726–737. doi: 10.1016/S0749-8063(98)70099-4. PubMed DOI

Wang E.A., Rosen V., D’Alessandro J.S., Bauduy M., Cordes P., Harada T., Isreal D.I., Hewick R.M., Kerns K.M., LaPan P., et al. Recombinant human bone morphogenic protein induces bone formation. Proc. Natl. Acad. Sci. USA. 1990;87:2220–2224. doi: 10.1073/pnas.87.6.2220. PubMed DOI PMC

Ramchandani M., Robinson D. In vitro release of ciprofloxacin from PLGA 50:50 implants. J. Control. Release. 1998;54:167–175. doi: 10.1016/S0168-3659(97)00113-2. PubMed DOI

Yoshie N., Nakasato K., Fujiwara M., Kasuya K., Abe H., Doi Y., Inoue Y. Effect of low molecular weight additives on enzymatic degradation of poly(3-hydroxybutyrate) Polymer. 2000;41:3227–3234. doi: 10.1016/S0032-3861(99)00547-9. DOI

Chen G.Q., Wu Q., Wang Y., Zheng Z. Application of microbial polyesters-polyhydroxyalkanoates as tissue engineering materials. Key Eng. Mater. 2005;288–289:437–440. doi: 10.4028/www.scientific.net/KEM.288-289.437. DOI

Koller M. Biodegradable and biocompatible polyhydroxyalkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018;23:362. doi: 10.3390/molecules23020362. PubMed DOI PMC

Patel S.K.S., Kumar P., Singh M., Lee J.-K., Kalia V.C. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour. Technol. 2015;176:136–141. doi: 10.1016/j.biortech.2014.11.029. PubMed DOI

Yadav B., Pandey A., Kumar L.R., Tyagi R.D. Bioconversion of Waste (Water)/Residues to Bioplastics—A Circular Bioeconomy Approach. Bioresour. Technol. 2019;298:122584. doi: 10.1016/j.biortech.2019.122584. PubMed DOI

Keshavarz T., Roy I. Polyhydroxyalkanoates: Bioplastics with a Green Agenda. Curr. Opin. Microbiol. 2010;13:321–326. doi: 10.1016/j.mib.2010.02.006. PubMed DOI

Zhang R., Ma P.X. Biomimetic Polymer/Apatite Composite Scaffolds for Mineralized Tissue Engineering. Macromol. Biosci. 2004;4:100–111. doi: 10.1002/mabi.200300017. PubMed DOI

Bendix D. Chemical Synthesis of Polylactide and Its Copolymers for Medical Applications. Polym. Degrad. Stabil. 1998;59:129–135. doi: 10.1016/S0141-3910(97)00149-3. DOI

Amass W., Amass A., Tighe B. A Review of Biodegradable Polymers: Uses, Current Developments in the Synthesis and Characterization of Biodegradable Polyesters, Blends of Biodegradable Polymers and Recent Advances in Biodegradation Studies. Polym. Int. 1998;47:89–144. doi: 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F. DOI

Kallela I., Iizuka T., Salo A., Lindqvist C. Lag-Screw Fixation of Anterior Mandibular Fractures Using Biodegradable Polylactide Screws: A Preliminary Report. J. Oral Maxillofac. Surg. 1999;57:113–118. doi: 10.1016/S0278-2391(99)90220-3. PubMed DOI

Kesenci K., Fambri L., Migliaresi C., Piskin E. Preparation and Properties of Poly(L-lactide)/Hydroxyapatite Composites. J. Biomater. Sci. Polym. Ed. 2000;11:617–632. doi: 10.1163/156856200743904. PubMed DOI

Ignjatovic N., Uskokovic D. Synthesis and Application of Hydroxyapatite/Polylactide Composite Biomaterial. Appl. Surf. Sci. 2004;238:314–319. doi: 10.1016/j.apsusc.2004.05.227. DOI

Baimark Y., Molloy R., Molloy N., Siripitayananon J., Punyodom W., Sriyai M. Synthesis, Characterization and Melt Spinning of a Block Copolymer of L-lactide and ε-Caprolactone for Potential Use as an Absorbable Monofilament Surgical Suture. J. Mater. Sci. Mater. Med. 2005;16:699–707. doi: 10.1007/s10856-005-2605-6. PubMed DOI

Viinikainen A., Goransson H., Huovinen K., Kellomaki M., Tormala P., Rokkanen P. Material and Knot Properties of Braided Polyester (Ticron®) and Bioabsorbable Poly-L/D-lactide (PLDLA) 96/4 Sutures. J. Mater. Sci. Mater. Med. 2006;17:169–177. doi: 10.1007/s10856-006-6821-5. PubMed DOI

Roether J.A., Boccaccini A.R., Hench L.L., Maquet V., Gautier S., Jerome R. Development and In Vitro Characterisation of Novel Bioresorbable and Bioactive Composite Materials Based on Polylactide Foams and Bioglass for Tissue Engineering Applications. Biomaterials. 2002;23:3871–3878. doi: 10.1016/S0142-9612(02)00131-X. PubMed DOI

Boccaccini A.R., Blaker J.J., Maquet V., Day R.M., Jerome R. Preparation and Characterisation of Poly(Lactide-co-Glycolide) (PLGA) and PLGA/Bioglass Composite Tubular Foam Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng. C. 2005;25:23–31. doi: 10.1016/j.msec.2004.03.002. DOI

Blaker J.J., Gough J.E., Maquet V., Notingher I., Boccaccini A.R. In Vitro Evaluation of Novel Bioactive Composites Based on Bioglass-Filled Polylactide Foams for Bone Tissue Engineering Scaffolds. J. Biomed. Mater. Res. Part A. 2003;67A:1401–1411. doi: 10.1002/jbm.a.20055. PubMed DOI

Van Bochove B., Grijpma D.W. Photo-Crosslinked Synthetic Biodegradable Polymer Networks for Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2018;30:77–106. doi: 10.1080/09205063.2018.1553105. PubMed DOI

Luchese C.L., Sperotto N., Spada J.C., Tessaro I.C. Effect of Blueberry Agro-Industrial Waste Addition to Corn Starch-Based Films for the Production of a pH-Indicator Film. Int. J. Biol. Macromol. 2017;104:11–18. doi: 10.1016/j.ijbiomac.2017.05.149. PubMed DOI

Shogren R.L., Fanta G.F., Doane W.M. Development of Starch-Based Plastics—A Reexamination of Selected Polymer Systems in Historical Perspective. Staerke. 1993;45:276–280. doi: 10.1002/star.19930450806. DOI

Song J.H., Murphy R.J., Narayan R., Davies G.B.H. Biodegradable and Compostable Alternatives to Conventional Plastics. Phil. Trans. R. Soc. B. 2009;364:2127–2139. doi: 10.1098/rstb.2008.0289. PubMed DOI PMC

Engler L., Farias N.C., Crespo J.S., Gately N.M., Major I., Pezzoli R., Devine D.M. Designing sustainable polymer blends: Tailoring mechanical properties and degradation behaviour in PHB/PLA/PCL blends in a seawater environment. Polymers. 2023;15:2874. doi: 10.3390/polym15132874. PubMed DOI PMC

Maraveas C. Environmental Sustainability of Greenhouse Covering Materials. Sustainability. 2019;11:6129. doi: 10.3390/su11216129. DOI

Yuen C.B., Chong H.L., Kwok M.H., Ngai T. Natural Polymer-Based Food Packaging: Paving the Way to a Greener Future—A Review. Sustain. Food Technol. 2025;3:908–929. doi: 10.1039/D5FB00021A. DOI

Chiumarelli M., Hubinger D. Stability, Solubility, Mechanical and Barrier Properties of Cassava Starch–Carnauba Wax Edible Coatings to Preserve Fresh-Cut Apples. Food Hydrocoll. 2012;28:59–67. doi: 10.1016/j.foodhyd.2011.12.006. DOI

Ayhllon-Meixueiro F., Vaca-Garcia C., Silvestre F.J. Biodegradable Films from Isolate of Sunflower (Helianthus annuus) Proteins. Agric. Food Chem. 2000;48:3032–3036. doi: 10.1021/jf9907485. PubMed DOI

Benito-González I., López-Rubio A., Martínez-Sanz M. High-Performance Starch Biocomposites with Celullose from Waste Biomass: Film Properties and Retrogradation Behaviour. Carbohydr. Polym. 2019;216:180–188. doi: 10.1016/j.carbpol.2019.04.030. PubMed DOI

Krupp L.R., Jewel W.J. Biodegradability of Modified Plastic Films in Controlled Biological Environment. Environ. Technol. 1992;26:193–198. doi: 10.1021/es00025a024. DOI

Ragaert K., Delva L., Van Geem K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044. PubMed DOI

Sanchez A.C., Popineau Y., Mangavel C., Larre C., Gueguen J. Effect of Different Plasticizers on the Mechanical and Surface Properties of Wheat Gliadin Films. J. Agric. Food Chem. 1998;46:4539–4544. doi: 10.1021/jf980375s. DOI

Gennadios A., Brandenburg A.H., Weller C.L., Testin R.F. Effect of pH on Properties of Wheat Gluten and Soy Protein Isolate Films. J. Agric. Food Chem. 1993;41:1835–1839. doi: 10.1021/jf00035a006. DOI

Shaikh S., Yaqoob M., Aggarwal P. An Overview of Biodegradable Packaging in Food Industry. Curr. Res. Food Sci. 2021;4:503–520. doi: 10.1016/j.crfs.2021.07.005. PubMed DOI PMC

Bauer A.S., Leppik K., Galić K., Anestopoulos I., Panayiotidis M.I., Agriopoulou S., Milousi M., Uysal-Unalan I., Varzakas T., Krauter V. Cereal and Confectionary Packaging: Background, Application and Shelf-Life Extension. Foods. 2022;11:697. doi: 10.3390/foods11050697. PubMed DOI PMC

Salgado P.R., Di Giorgio L., Musso Y.S., Mauri A.N. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. Front. Sustain. Food Syst. 2021;5:630393. doi: 10.3389/fsufs.2021.630393. DOI

Brandenburg A.H., Weller C.L., Testin R.F. Edible Films and Coatings from Soy Proteins. J. Food Sci. 1993;58:1086–1089. doi: 10.1111/j.1365-2621.1993.tb06120.x. DOI

Pablo R., Salgado V.C., Schmidt S.E., Molina O., Mauri A.N., Joao B.L. Biodegradable Foams Based on Cassava Starch, Sunflower Proteins, and Cellulose Fibers Obtained by a Baking Process. J. Food Eng. 2007;85:435–443.

Di Liberto E.A., Dintcheva N.T. Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Polymers. 2024;16:568. doi: 10.3390/polym16050568. PubMed DOI PMC

Chaudhary V., Punia Bangar S., Thakur N., Trif M. Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers. 2022;14:829. doi: 10.3390/polym14040829. PubMed DOI PMC

Piergiovanni L., Limbo S. Food Packaging Materials. Springer; Cham, Switzerland: 2020. Plastic Packaging Materials. Springer Briefs in Molecular Science. DOI

Barikani M., Oliaei E., Seddiqi H., Honarkar H. Preparation and Application of Chitin and Its Derivatives: A Review. Iran Polym J. 2014;23:307–326. doi: 10.1007/s13726-014-0225-z. DOI

Shamshina J.L., Kelly A., Oldham T., Rogers R.D. Agricultural Uses of Chitin Polymers. Environ. Chem. Lett. 2020;18:53–60. doi: 10.1007/s10311-019-00934-5. DOI

Plackett D., Andersen T.L., Pedersen W.B., Nielsen L. Biodegradable Composites Based on Polylactide and Jute Fibres. Compos. Sci. Technol. 2003;63:1287–1296. doi: 10.1016/S0266-3538(03)00100-3. DOI

Ray S.S., Yamada K., Okamoto M., Fujimoto Y., Ogami A., Ueda K. New Polylactide/Layered Silicate Nanocomposites. 5. Designing of Materials with Desired Properties. Polymer. 2003;44:6633–6646. doi: 10.1016/j.polymer.2003.08.021. DOI

Okamoto M. Biodegradable Polymer/Layered Silicate Nanocomposites: A Review. In: Mallapragada S.K., Narasimhan B., editors. Handbook of Biodegradable Polymeric Materials and Their Applications. Volume 1. American Scientific Publishers; Stevenson Ranch, CA, USA: 2005. pp. 1–45.

Paul M.A., Delcourt C., Alexandre M., Degege P., Monteverde F., Dubois P. Polylactide/Montmorillonite Nanocomposites: Study of the Hydrolytic Degradation. Polym. Degrad. Stab. 2005;87:535–542. doi: 10.1016/j.polymdegradstab.2004.10.011. DOI

Pluta M. Morphology and Properties of Polylactide Modified by Thermal Treatment, Filling with Layered Silicates and Plasticization. Polymer. 2004;45:8239–8251. doi: 10.1016/j.polymer.2004.09.057. DOI

Nakajima-Kambe T., Shigeno-Akutsu Y., Nomura N., Onuma F., Nakahara T. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol. 1999;51:134–140. doi: 10.1007/s002530051373. PubMed DOI

Elsabee M.Z., Abdou E.S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. C. 2013;33:1819–1841. doi: 10.1016/j.msec.2013.01.010. PubMed DOI

Tharanathan R.N. Biodegradable Films and Composite Coatings: Past, Present and Future. Trends Food Sci. Technol. 2003;14:71–78. doi: 10.1016/S0924-2244(02)00280-7. DOI

Felton L.A. Mechanisms of Polymeric Film Formation. Int. J. Pharm. 2013;456:423–427. doi: 10.1016/j.ijpharm.2012.12.027. PubMed DOI

Devi L.S., Jaiswal A.K., Jaiswal S. Lipid Incorporated Biopolymer Based Edible Films and Coatings in Food Packaging: A Review. Curr. Res. Food Sci. 2024;8:100720. doi: 10.1016/j.crfs.2024.100720. PubMed DOI PMC

Syamaladevi R.M., Tang J., Villa-Rojas R., Sablani S.S., Carter B., Campbell G. Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2016;15:353–370. doi: 10.1111/1541-4337.12190. PubMed DOI

Teixeira S.C., de Oliveira T.V., de Fátima Ferreira Soares N., Raymundo-Pereira P.A. Sustainable and Biodegradable Polymer Packaging: Perspectives, Challenges, and Opportunities. Food Chem. 2025;470:142652. doi: 10.1016/j.foodchem.2024.142652. PubMed DOI

Tabassum N., Rafique U., Qayyum M., Mohammed A.A.A., Asif S., Bokhari A. Kaolin–Polyvinyl Alcohol–Potato Starch Composite Films for Environmentally Friendly Packaging: Optimization and Characterization. J. Compos. Sci. 2024;8:29. doi: 10.3390/jcs8010029. DOI

Shukla R., Cheryan M. Zein: The industrial protein from corn. Ind. Crops Prod. 2001;13:171–192. doi: 10.1016/S0926-6690(00)00064-9. DOI

Luís Â., Domingues F., Ramos A. Production of Hydrophobic Zein-Based Films Bioinspired by The Lotus Leaf Surface: Characterization and Bioactive Properties. Microorganisms. 2019;7:267. doi: 10.3390/microorganisms7080267. PubMed DOI PMC

Ribeiro I.S., Maciel G.M., Bortolini D.G., Fernandes I.D.A.A., Maroldi W.V., Pedro A.C., Rubio F.T.V., Haminiuk C.W.I. Sustainable Innovations in Edible Films and Coatings: An Overview. Trends Food Sci. Technol. 2024;143:104272. doi: 10.1016/j.tifs.2023.104272. DOI

Ukhartseva I.Y. Modern Trends in the Use of High-Molecular Compounds in the Creation of Packaging Materials for Food Products (Review) International Polymer Science and Technology. 2014;42:57–64. doi: 10.1177/0307174X1504201111. DOI

Savitskaya T.A. Edible Polymer Films and Coatings: History and Current State (Review) Polym. Mater. Technol. 2016;2:6–36.

Goldade V.A. Modern Trends in the Development of Polymer Film Packaging. Polym. Mater. Technol. 2015;1:65–70.

Bai J., Alleyne V., Hagenmaier R.D., Mattheis J.P., A Baldwin E. Formulation of Zein Coatings for Apples (Malus domestica Borkh) Postharvest Biol. Technol. 2003;28:259–268. doi: 10.1016/S0925-5214(02)00182-5. DOI

Ribeiro C., Vicente A.A., Teixeira J.A., Miranda C. Optimization of Edible Coating Composition to Retard Strawberry Fruit Senescence. Postharvest Biol. Technol. 2007;44:63–70. doi: 10.1016/j.postharvbio.2006.11.015. DOI

Rojas-Grau M.A., Raybaudi-Massilia R.M., Soliva-Fortuny R.C., Avena Bustillos R.D., Mc Hugh T.H., Martin-Belloso O. Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples. Postharvest Biol. Technol. 2007;45:254–264. doi: 10.1016/j.postharvbio.2007.01.017. DOI

Talens P., Pérez-Masía R., Fabra M.J., Vargas M., Chiralt A. Application of Edible Coatings to Partially Dehydrated Pineapple for Use in Fruit–Cereal Products. J. Food Eng. 2012;112:86–93. doi: 10.1016/j.jfoodeng.2012.03.022. DOI

de Aquino A.B., Blank A.F., de Aquino Santana L.C.L. Impact of Edible Chitosan–Cassava Starch Coatings Enriched with Lippia gracilis Schauer Genotype Mixtures on the Shelf Life of Guavas (Psidium guajava L.) During Storage at Room Temperature. Food Chem. 2015;171:108–116. doi: 10.1016/j.foodchem.2014.08.077. PubMed DOI

Tapia M.S., Rojas-Graü M.A., Carmona A., Rodríguez F.J., Soliva-Fortuny R., Martin-Belloso O. Use of alginate-and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocoll. 2008;22:1493–1503. doi: 10.1016/j.foodhyd.2007.10.004. DOI

Salmieri S., Lacroix M. Physicochemical Properties of Alginate/Polycaprolactone-Based Films Containing Essential Oils. J. Agric. Food Chem. 2006;54:10205–10214. doi: 10.1021/jf062127z. PubMed DOI

Ukhartseva I., Kadolich Z., Tsvetkova E. Modern Packaging for Food Products. Packag. Contain. 2016;2:18–23.

Shulga O.S., Petrusha O.A. Effect of Gelatin on the Properties of Edible Films and Coatings from Potato Starch. Polym. Mater. Technol. 2017;3:64–70.

Ukhartseva I., Goldade V., Tsvetkova E. Food Packaging: Trends and Prospects. LAP Lambert Academic Publishing; Saarbrücken, Germany: Omni Scriptum GmbH & Co. KG; Dusseldorf, Germany: 2019. 251p

Bartolucci L., Cordiner S., De Maina E., Kumar G., Mele P., Mulone V., Igliński B., Piechota G. Sustainable Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers. Int. J. Mol. Sci. 2023;24:7696. doi: 10.3390/ijms24097696. PubMed DOI PMC

Dietrich T., Del Carmen Villaran Velasco M., Echeverría P.J., Pop B., Rusu A. Alternatives for Valorization of Green Wastes. Elsevier; San Diego, CA, USA: 2016. Biotransformation of Agricultural Waste and By-Products: The Food, Feed, Fibre, Fuel (4F) Economy. Crop and Plant Biomass as Valuable Material for BBB.

Maraveas C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers. 2020;12:1127. doi: 10.3390/polym12051127. PubMed DOI PMC

Shabarin A.A., Kuzmin A.M., Vodyakov V.N., Shabarin I.A. Development of Biodegradable Composite Materials Based on Polyolefins and Sunflower Seed Husk. Izvestiya Vysshikh Uchebnykh Zavedenii. Chem. Chem. Technol. 2021;4:73–76. doi: 10.6060/ivkkt.20216404.6283. DOI

Nunes L.A., Silva M.L.S., Gerber J.Z., Kalid R.D.A. Waste Green Coconut Shells: Diagnosis of the Disposal and Applications for Use in Other Products. J. Clean. Prod. 2020;255:120169. doi: 10.1016/j.jclepro.2020.120169. DOI

Mose B.R., Maranga S.M. A Review on Starch Based Nanocomposites for Bioplastic Materials. J. Mat. Sci. Eng. B. 2011;1:239–245.

Mathiot C., Ponge P., Gallard B., Sassi J., Delrue F., Le N., Niu B., Shao P., Chen H., Sun P. Microalgae Starch-Based Bioplastics: Screening of Ten Strains and Plasticization of Unfractionated Microalgae by Extrusion. Carbohydr. Polym. 2019;208:142–151. doi: 10.1016/j.carbpol.2018.12.057. PubMed DOI

Utoiu E., Manoiu V.S., Oprita E.I., Craciunescu O. Bacterial Cellulose: A Sustainable Source for Hydrogels and 3D-Printed Scaffolds for Tissue Engineering. Gels. 2024;10:387. doi: 10.3390/gels10060387. PubMed DOI PMC

Magar S.P., Ingle A.B., Ganorkar R.N. Production of Bioplastic (PHA) from Emulsified Cotton Seed Oil Medium by Ralstonia spp. Int. J. Eng. Res. Gen. Sci. 2015;3:436–441.

Park D.H., Kim B.S. Production of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from Soybean Oil. New Biotechnol. 2011;28:719–724. doi: 10.1016/j.nbt.2011.01.007. PubMed DOI

Wong Y.-M., Brigham C.J., Rha C.K., Sinskey A.J., Sudesh K. Biosynthesis and Characterization of Polyhydroxyalkanoate Containing High 3-Hydroxyhexanoate Monomer Fraction from Crude Palm Kernel Oil by Recombinant Cupriavidus necator. Bioresour. Technol. 2012;121:320–327. doi: 10.1016/j.biortech.2012.07.015. PubMed DOI

Govil T., Wang J., Samanta D., David A., Tripathi A., Rauniyar S., Salem D.R., Sani R.K. Lignocellulosic Feedstock: A Review of a Sustainable Platform for Cleaner Production of Nature’s Plastics. J. Clean. Prod. 2020;270:122521. doi: 10.1016/j.jclepro.2020.122521. DOI

Brodin M., Vallejos M., Opedal M.T., Area M.C., Chinga-Carrasco G. Lignocellulosics as Sustainable Resources for Production of Bioplastics—A Review. J. Clean. Prod. 2017;162:646–664. doi: 10.1016/j.jclepro.2017.05.209. DOI

Lopez J.P., Girones J., Mendez J.A., Puig J., Pelach M.A. Recycling Ability of Biodegradable Matrices and Their Cellulose-Reinforced Composites in a Plastic Recycling Stream. J. Polym. Environ. 2012;20:96–103. doi: 10.1007/s10924-011-0333-1. DOI

de Brito E.B., Tienne L.G.P., Cordeiro S.B., Marques M.F.V. Development of Polypropylene Composites with Green Coffee Cake Fibres Subjected to Water Vapor Explosion. Waste Biomass Valor. 2020;13:6855–6867. doi: 10.1007/s12649-019-00929-x. DOI

Yu L. Biodegradable Polymer Blends and Composites from Renewable Resources. John Wiley & Sons; Hoboken, NJ, USA: 2009. 487p

Rogovina S.Z. Biodegradable Polymer Compositions Based on Synthetic and Natural Polymers of Various Classes. Vysokomol. Soedin. 2016;1:68–80. doi: 10.7868/S2308114716010106. DOI

Vroman I., Tighzert L. Biodegradable Polymers. Materials. 2009;2:317–320. doi: 10.3390/ma2020307. DOI

Satyanarayana K.G., Arizaga G.G.C., Wypych F. Biodegradable Composites Based on Lignocellulosic Fibers—An Overview. Prog. Polym. Sci. 2009;34:982–1021. doi: 10.1016/j.progpolymsci.2008.12.002. DOI

Visco A., Scolaro C., Facchin M., Brahimi S., Belhamdi H., Gatto V., Beghetto V. Agri-Food Wastes for Bioplastics: European Prospective on Possible Applications in Their Second Life for a Circular Economy. Polymers. 2022;14:2752. doi: 10.3390/polym14132752. PubMed DOI PMC

Di Donato P., Taurisano V., Poli A. Vegetable Wastes Derived Polysaccharides as Natural Eco-Friendly Plasticizers of Sodium Alginate. Carbohydr. Polym. 2020;229:115427. doi: 10.1016/j.carbpol.2019.115427. PubMed DOI

Santana R.F., Bonomo R.C.F., Gandolfi O.R.R., Rodrigues L.B., Santos L.S., Dos Santos Pires A.C., de Oliveira C.P., da Costa Ilhéu Fontan R., Veloso C.M. Characterization of Starch-Based Bioplastics from Jackfruit Seed Plasticized with Glycerol. J. Food Sci. Technol. 2018;55:278–286. doi: 10.1007/s13197-017-2936-6. PubMed DOI PMC

Suffo M., De Mata M., Molina S.I. A Sugar-Beet Waste Based Thermoplastic Agro-Composite as Substitute for Raw Materials. J. Clean. Prod. 2020;257:120382. doi: 10.1016/j.jclepro.2020.120382. DOI

Szacherska K., Oleskowicz-Popiel P., Ciesielski S., Mozejko-Ciesielska J. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers. 2021;13:321. doi: 10.3390/polym13030321. PubMed DOI PMC

Navas C.S., Reboredo M.M., Granados D.L. Comparative Study of Agroindustrial Wastes for Their Use in Polymer Matrix Composites. Procedia Mater. Sci. 2015;8:778–785. doi: 10.1016/j.mspro.2015.04.135. DOI

Patil A.Y., Hrishikesh U., Basavaraj N. Influence of Biodegradable Natural Fiber Embedded in Polymer Matrix. Mater. Today Proc. 2018;5:7532–7540. doi: 10.1016/j.matpr.2017.11.425. DOI

Zielińska M., Bułkowska K. Agricultural Wastes and Their By-Products for the Energy Market. Energies. 2024;17:2099. doi: 10.3390/en17092099. DOI

Xie Y., Niu X., Yang J., Fan R., Shi J., Ullah N., Feng X., Chen L. Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int. J. Biol. Macromol. 2020;150:480–491. doi: 10.1016/j.ijbiomac.2020.01.291. PubMed DOI

Bashir A., Jabeen S., Gull N., Islam A., Sultan M. Co-Concentration Effect of Silane with Natural Extract on Biodegradable Polymeric Films for Food Packaging. Int. J. Biol. Macromol. 2018;106:351–359. doi: 10.1016/j.ijbiomac.2017.08.025. PubMed DOI

Karimi Sani I., Masoudpour-Behabadi M., Alizadeh Sani M., Motalebinejad H., Juma A.S.M., Asdagh A., Eghbaljoo H., Khodaei S.M., Rhim J.W., Mohammadi F. Value-Added Utilization of Fruit and Vegetable Processing By-Products for the Manufacture of Biodegradable Food Packaging Films. Food Chem. 2023;405:134964. doi: 10.1016/j.foodchem.2022.134964. PubMed DOI

Palmeri R., Pappalardo F., Fragala M., Tomasello M., Damigella A., Catara A.F. Polyhydroxyalkanoates (PHAs) Production through Conversion of Glycerol by Selected Strains of Pseudomonas mediterranea and Pseudomonas corrugata. Chem. Eng. Trans. 2012;27:121–126. doi: 10.3303/CET1227021. DOI

Du C., Sabirova J., Soetaert W., Lin S.K.C. Polyhydroxyalkanoates Production from Low-Cost Sustainable Raw Materials. Curr. Chem. Biol. 2012;6:14–25.

Pratheep Kumar A., Pandey J.K., Kumar B., Singh R.P. Photo-/Bio-Degradability of Agro Waste and Ethylene-Propylene Copolymer Composites under Abiotic and Biotic Environments. J. Polym. Environ. 2006;14:203–221. doi: 10.1007/s10924-006-0012-9. DOI

Barlaz M.A., Staley B.F., De Los Reyes F.L. III. Anaerobic Biodegradation of Solid Waste. In: Mitchell R., Gu J.D., editors. Environmental Microbiology. 2nd ed. Wiley; Hoboken, NJ, USA: 2010. pp. 281–299.

Anjum A., Zuber M., Zia K.M., Noreen A., Anjum M.N., Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016;89:161–174. doi: 10.1016/j.ijbiomac.2016.04.069. PubMed DOI

Tsang Y.F., Kumar V., Samadar P. Production of bioplastic through food waste valorization. Environ. Int. 2019;127:625–644. doi: 10.1016/j.envint.2019.03.076. PubMed DOI

Farzadnia N., Hessam S., Asadi A., Hosseini S. Mechanical and Microstructural Properties of Cement Pastes with Rice Husk Ash Coated with Carbon Nanofibers Using a Natural Polymer Binder. Constr. Build. Mater. 2018;175:691–704. doi: 10.1016/j.conbuildmat.2018.04.205. DOI

Nagarajan K.J., Balaji A.N., Basha K.S., Ramanujam N.R., Kumar R.A. Effect of Agro Waste α-Cellulosic Micro Filler on Mechanical and Thermal Behavior of Epoxy Composites. Int. J. Biol. Macromol. 2020;152:327–339. doi: 10.1016/j.ijbiomac.2020.02.255. PubMed DOI

Ivanov V., Stabnikov V., Ahmed Z., Dobrenko S., Saliuk A. Production and Applications of Crude Polyhydroxyalkanoate-Containing Bioplastic from the Organic Fraction of Municipal Solid Waste. Int. J. Environ. Sci. Technol. 2015;12:725–738. doi: 10.1007/s13762-014-0505-3. DOI

Plank J. Application of Biopolymers and Other Biotechnological Products in Building Materials. Appl. Microbiol. Biotechnol. 2004;66:1–9. doi: 10.1007/s00253-004-1714-3. PubMed DOI

Zain A.H.M., Ab Wahab M.K., Ismail H. Biodegradation behaviour of thermoplastic starch: The roles of carboxylic acids on cassava starch. J. Polym. Environ. 2017;26:691–700. doi: 10.1007/s10924-017-0978-5. DOI

Dorigato A., Fredi G., Negri M., Pegoretti A. Thermo-mechanical behaviour of novel wood laminae-thermoplastic starch biodegradable composites with thermal energy storage/release capability. Front. Mater. 2019;6:76. doi: 10.3389/fmats.2019.00076. DOI

Ahsan W.A., Hussain A., Lin C., Nguyen M.K. Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling. Catalysts. 2023;13:294. doi: 10.3390/catal13020294. DOI

García-Guzmán L., Cabrera-Barjas G., Soria-Hernández C.G., Castaño J., Guadarrama-Lezama A.Y., Rodríguez Llamazares S. Progress in Starch-Based Materials for Food Packaging Applications. Polysaccharides. 2022;3:136–177. doi: 10.3390/polysaccharides3010007. DOI

Kalambur S., Rizvi S.H.J. An overview of starch-based plastic blends from reactive extrusion. Plast. Film. Sheeting. 2006;22:39–58. doi: 10.1177/8756087906062729. DOI

Reis R.L., Cunha A.M., Allan P.S., Bevis M.J. Structure development and control of injection-molded hydroxylapatite-reinforced starch/EVOH composites. Adv. Polym. Technol. 1997;16:263–277. doi: 10.1002/(SICI)1098-2329(199711)16:4<263::AID-ADV2>3.0.CO;2-T. DOI

Peressini D., Bravin B., Lapasin R., Rizzotti C., Sensidoni A. Starch–methylcellulose based edible films: Rheological properties of film-forming dispersions. Food Eng. 2003;59:25–32. doi: 10.1016/S0260-8774(02)00426-0. DOI

Rachmawati N., Triwibowo R., Widianto R. Mechanical properties and biodegradability of acid-soluble chitosan-starch based film. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2015;10:1. doi: 10.15578/squalen.v10i1.132. DOI

Sen C., Das M. Biodegradability of Starch Based Self-Supporting Antimicrobial Film and Its Effect on Soil Quality. J. Polym. Environ. 2018;26:4331–4337. doi: 10.1007/s10924-018-1304-6. DOI

Sobeih M.O., Sawalha S., Hamed R., Ali F., Kim M.P. Starch-Derived Bioplastics: Pioneering Sustainable Solutions for Industrial Use. Materials. 2025;18:1762. doi: 10.3390/ma18081762. PubMed DOI PMC

Rivadeneira-Velasco K.E., Utreras-Silva C.A., Díaz-Barrios A., Sommer-Márquez A.E., Tafur J.P., Michell R.M. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers. 2021;13:3227. doi: 10.3390/polym13193227. PubMed DOI PMC

Asyakina L.K., Dolganyuk V.F., Belova D.D., Peral M.M., Dyshlyuk L.S. The study of rheological behavior and safety metrics of natural biopolymers. Foods Raw Mater. 2016;4:70–78. doi: 10.21179/2308-4057-2016-1-70-78. DOI

Muller J., Gonzalez-Martinez C., Chiralt A. Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials. 2017;10:952. doi: 10.3390/ma10080952. PubMed DOI PMC

Ojogbo E., Ogunsona E.O., Mekonnen T.H. Chemical and physical modifications of starch for renewable polymeric materials. Mater. Today Sustain. 2020;7–8:100028. doi: 10.1016/j.mtsust.2019.100028. DOI

Liu H., Xie F., Yu L., Chen L., Li L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009;34:1348–1368. doi: 10.1016/j.progpolymsci.2009.07.001. DOI

Agama-Acevedo E., Flores-Silva P.C., Bello-Perez L.A. Cereal Starch Production for Food Applications. Academic Press; Cambridge, MA, USA: 2019. Starches for Food Application; pp. 71–102.

Flores S., Fama L., Rojas A.M., Goyanes S., Gerschenson L. Physical properties of tapioca-starch edible films: Influence of film-making and potassium sorbate. Food Res. Int. 2007;40:257–265. doi: 10.1016/j.foodres.2006.02.004. DOI

Nagy E.M., Todica M., Cota C., Pop V.C., Cioica N., Cozar O. Aktualni Zadaci Mehanizacije Poljoprivrede: Actual Tasks on Agricultural Engineering, Proceedings of the 43rd International Symposium on Agricultural Engineering, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 24–27 February 2015. Volume 43. University of Zagreb; Zagreb, Croatia: 2015. Water degradation effect on some starch-based plastics; pp. 755–762.

Meriem H., Messaoud C., Badra H., Anissa B. Biodegradation of plastic film based on starch. Biointerface Res. Appl. Chem. 2016;6:1517–1519.

Khan B., Niazi M.B.K., Samin G., Jahan Z. Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review. J. Food Process Eng. 2017;40:e12447. doi: 10.1111/jfpe.12447. DOI

Doane W.M. USDA research on starch-based biodegradable plastics. Staerke. 1992;44:293–295. doi: 10.1002/star.19920440805. DOI

Ataeian P., Trinh B.M., Mekonnen T.H. Effect of pro-oxidants on the aerobic biodegradation, disintegration, and physio-mechanical properties of compostable polymers. J. Appl. Polym. Sci. 2023;141:e54970. doi: 10.1002/app.54970. DOI

Shamsabadi O.D., Soltanolkottabi F. Green nanocomposite of (starch/polylactic acid/cellulose nanofiber) thermoplastic. Polym. Polym. Composites. 2024;32:09673911241294213. doi: 10.1177/09673911241294213. DOI

Gamage A., Thiviya P., Mani S., Ponnusamy P.G., Manamperi A., Evon P., Merah O., Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers. 2022;14:4578. doi: 10.3390/polym14214578. PubMed DOI PMC

Jayarathna S., Andersson M., Andersson R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers. 2022;14:4557. doi: 10.3390/polym14214557. PubMed DOI PMC

Razavi S.M.A., Cui S.W., Ding H. Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed. Int. J. Biol. Macromol. 2016;83:142–151. doi: 10.1016/j.ijbiomac.2015.11.076. PubMed DOI

Domene-López D., García-Quesada J.C., Martin-Gullon I., Montalbán M.G. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers. 2019;11:1084. doi: 10.3390/polym11071084. PubMed DOI PMC

Touchaleaume F., Angellier-Coussy H., César G., Raffard G., Gontard N., Gastaldi E. How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageing. J. Polym. Environ. 2018;26:2588–2600. doi: 10.1007/s10924-017-1154-7. DOI

Chen G. Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chem. Rev. 2012;112:2082–2099. doi: 10.1021/cr200162d. PubMed DOI

Luchese C.L., Garrido T., Spada J.C., Tessaro I.C., de la Caba K. Development and characterization of cassava starch films incorporated with blueberry pomace. Int. J. Biol. Macromol. 2018;106:834–839. doi: 10.1016/j.ijbiomac.2017.08.083. PubMed DOI

Nogueira G.F., Fakhouri F.M., de Oliveira R.A. Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydr. Polym. 2018;186:64–72. doi: 10.1016/j.carbpol.2018.01.024. PubMed DOI

Hornung P.S., Ávila S., Masisi K., Malunga L.N., Lazzarotto M., Schnitzler E., Ribani R.H., Beta T. Green development of biodegradable films based on native yam (Dioscoreaceae) starch mixtures. Starch-Stärke. 2018;70:1700234. doi: 10.1002/star.201700234. DOI

Domene-López D., Guillén M., Martin-Gullon I., García-Quesada J., Montalbán M. Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydr. Polym. 2018;202:299–305. doi: 10.1016/j.carbpol.2018.08.137. PubMed DOI

Sanyang M., Sapuan S., Jawaid M., Ishak M., Sahari J. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydr. Polym. 2016;146:36–45. doi: 10.1016/j.carbpol.2016.03.051. PubMed DOI

Ewing T.A., Nouse N., van Lint M., van Haveren J., Hugenholtz J., van Es D.S. Fermentation for the Production of Biobased Chemicals in a Circular Economy: A Perspective for the Period 2022–2050. Green Chem. 2022;24:6373–6405. doi: 10.1039/D1GC04758B. DOI

Tang X., Alavi S., Herald T.J. Barrier and Mechanical Properties of Starch–Clay Nanocomposite Films. Cereal Chem. 2008;85:433–439. doi: 10.1094/CCHEM-85-3-0433. DOI

Frangopoulos T., Marinopoulou A., Goulas A., Likotrafiti E., Rhoades J., Petridis D., Kannidou E., Stamelos A., Theodoridou M., Arampatzidou A., et al. Optimizing the Functional Properties of Starch-Based Biodegradable Films. Foods. 2023;12:2812. doi: 10.3390/foods12142812. PubMed DOI PMC

Singh G.P., Bangar S.P., Yang T., Trif M., Kumar V., Kumar D. Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers. 2022;14:1987. doi: 10.3390/polym14101987. PubMed DOI PMC

Jiménez A., Fabra M.J., Talens P., Chiralt A. Edible and Biodegradable Starch Films: A Review. Food Bioprocess Technol. 2012;5:2058–2076. doi: 10.1007/s11947-012-0835-4. DOI

Pesterev M.A., Rudenko O.S., Kondrat’ev N.B., Bazhenova A.E., Usachev I.S. Effect of Biodegradable and Polypropylene Film Packaging on the Safety Profile of Jelly Marmalade. Food Process. Tech. Technol. 2020;50:536–548. doi: 10.21603/2074-9414-2020-3-536-548. DOI

Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atikah M.S.N., Mohd Nurazzi N., Atiqah A., Ansari M.N.M., et al. Effect of Sugar Palm Nanofibrillated Cellulose Concentrations on Morphological, Mechanical and Physical Properties of Biodegradable Films Based on Agro-Waste Sugar Palm (Arenga Pinnata (Wurmb.) Merr) Starch. J. Mater. Res. Technol. 2019;8:4819–4830. doi: 10.1016/j.jmrt.2019.08.028. DOI

Mojibayo I., Samson A.O., Johnson O.Y., Joshusa I.O.A.S.A. A Preliminary Investigation of Cassava Starch Potentials as Natural Polymer in Bioplastic Production. Am. J. Interdiscip. Innov. Res. 2020;2:31–39. doi: 10.37547/tajiir/Volume02Issue09-05. DOI

Asrofi M., Sapuan S.M., Ilyas R.A., Ramesh M. Characteristic of Composite Bioplastics from Tapioca Starch and Sugarcane Bagasse Fiber: Effect of Time Duration of Ultrasonication (Bath-Type) Mater. Today Proc. 2021;46:1626–1630. doi: 10.1016/j.matpr.2020.07.254. DOI

Pinto T., Pinto A., Vilela A. Edible Coatings and Films for Preparation of Grapevine By-Product Infusions and in Freshly Processed Products. Coatings. 2023;13:1350. doi: 10.3390/coatings13081350. DOI

Matloob A., Ayub H., Mohsin M., Ambreen S., Khan F.A., Oranab S., Rahim M.A., Khalid W., Nayik G.A., Ramniwas S., et al. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS Omega. 2023;8:28932–28944. doi: 10.1021/acsomega.3c03459. PubMed DOI PMC

Chettri S., Sharma N., Mohite A.M. Formulation of Extracted Soyabean Starch Based Edible Coatings by Different Methods and Their Impact on Shelf Life of Sapota Fruit. J. Saudi Soc. Agric. Sci. 2024;23:205–211. doi: 10.1016/j.jssas.2023.11.003. DOI

Weng S., Marcet I., Rendueles M., Díaz M. Edible Films from the Laboratory to Industry: A Review of the Different Production Methods. Food Bioprocess Technol. 2024;18:3245–3271. doi: 10.1007/s11947-024-03641-4. DOI

Pillai A.R.S., Eapen A.S., Zhang W., Roy S. Polysaccharide-Based Edible Biopolymer-Based Coatings for Fruit Preservation: A Review. Foods. 2024;13:1529. doi: 10.3390/foods13101529. PubMed DOI PMC

Miranda M., Bai J., Pilon L., Torres R., Casals C., Solsona C., Teixidó N. Fundamentals of Edible Coatings and Combination with Biocontrol Agents: A Strategy to Improve Postharvest Fruit Preservation. Foods. 2024;13:2980. doi: 10.3390/foods13182980. PubMed DOI PMC

Zhang Y., Rempel C., Liu Q. Thermoplastic Starch Processing and Characteristics-A Review. Crit. Rev. Food Sci. Nutr. 2014;54:1353–1370. doi: 10.1080/10408398.2011.636156. PubMed DOI

Surendren A., Mohanty A.K., Liu Q., Misra M. A Review of Biodegradable Thermoplastic Starches, Their Blends and Composites: Recent Developments and Opportunities for Single-Use Plastic Packaging Alternatives. Green Chem. 2022;19:8606–8636. doi: 10.1039/D2GC02169B. DOI

Zhu W., Zhang D., Liu X., Ma T., He J., Dong Q., Din Z.-U., Zhou J., Chen L., Hu Z., et al. Improving the Hydrophobicity and Mechanical Properties of Starch Nanofibrous Films by Electrospinning and Cross-Linking for Food Packaging Applications. LWT. 2022;169:114005. doi: 10.1016/j.lwt.2022.114005. DOI

Yu L., Chen Y., Lin H., Du W., Chen H., Shi J. Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials. 2018;161:292–305. doi: 10.1016/j.biomaterials.2018.01.046. PubMed DOI

Dorigato A. Recycling of Polymer Blends. Adv. Ind. Eng. Polym. Res. 2021;4:53–69. doi: 10.1016/j.aiepr.2021.02.005. DOI

Van Roijen E.C., Miller S.A. A Review of Bioplastics at End-of-Life: Linking Experimental Biodegradation Studies and Life Cycle Impact Assessments. Resour. Conserv. Recycl. 2022;181:106236. doi: 10.1016/j.resconrec.2022.106236. DOI

Chandra R., Rustgi R. Biodegradable Polymers. Prog. Polym. Sci. 1998;23:1273–1335. doi: 10.1016/S0079-6700(97)00039-7. DOI

Barrows T.H. Degradable implant materials: A review of synthetic absorbable polymers and their applications. Clin. Mater. 1986;1:233–257. doi: 10.1016/S0267-6605(86)80015-4. DOI

Hou L., Majumder E.L.-W. Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms. Materials. 2021;14:503. doi: 10.3390/ma14030503. PubMed DOI PMC

Fontanella S., Bonhomme S., Koutny M., Husarova L., Brussson J.M., Courdavault J.P., Delort A.M. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym. Degrad. Stab. 2010;95:1011–1021. doi: 10.1016/j.polymdegradstab.2010.03.009. DOI

Vorobyeva E.V., Popov A.A. Biodegradable composites based on fossil raw materials. Part I: Strategies of synthesis, key properties, and market trends. Polym. Mater. Technol. 2022;4:6–24.

Heris Y.S. Bacterial biodegradation of synthetic plastics: A review. Bull. Natl. Res. Cent. 2024;48:41. doi: 10.1186/s42269-024-01241-y. DOI

Grabitz E., Olsson O., Kümmerer K. Towards the Design of Organosilicon Compounds for Environmental Degradation by Using Structure Biodegradability Relationships. Chemosphere. 2021;279:130442. doi: 10.1016/j.chemosphere.2021.130442. PubMed DOI

Ermolovich O.A. Influence of compatibilizer additives on technological and operational characteristics of biodegradable materials based on starch-filled polyethylene. Zh. Prikl. Khim. 2006;79:1542–1547.

De Donno Novelli L., Moreno Sayavedra S., Rene E.R. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. Bioresour. Technol. 2021;331:124985. doi: 10.1016/j.biortech.2021.124985. PubMed DOI

Kraus S.V., Lukin N.D., Ivanova T.V., Sdobnikova O.A. Physicochemical Properties of Polymer Compositions Using Starch. Khranenie I Pererab. Sel’khozsyr’ya. 2011;1:8–11.

Awasthi S.K., Kumar M., Kumar V., Sarsaiya S., Anerao P., Ghosh P., Singh L., Liu H., Zhang Z., Awasthi M.K. A Comprehensive Review on Recent Advancements in Biodegradation and Sustainable Management of Biopolymers. Environ. Pollut. 2022;307:119600. doi: 10.1016/j.envpol.2022.119600. PubMed DOI

Lukin N.D., Usachev I.S. Technology of Thermoplastic Starches. Vestn. Voronezh. Gos. Univ. Inzh. Tekhnol. 2015;66:156–159.

Scaffaro R., Maio A., Sutera F., Gulino E.F., Morreale M. Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers. 2019;11:651. doi: 10.3390/polym11040651. PubMed DOI PMC

Gioia C., Giacobazzi G., Vannini M., Totaro G., Sisti L., Colonna M., Marchese P., Celli A. End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. ChemSusChem. 2021;14:4167–4175. doi: 10.1002/cssc.202101226. PubMed DOI PMC

Wu J., Wang J., Zeng Y., Sun X., Yuan Q., Liu L., Shen X. Biodegradation: The best solution to the world problem of discarded polymers. Bioresour. Bioprocess. 2024;11:79. doi: 10.1186/s40643-024-00793-1. PubMed DOI PMC

Hemwey R. Environmental Impacts of Coronavirus Crisis, Challenges Ahead: Report. [(accessed on 4 June 2025)]. Available online: https://unctad.org/news/environmental-impacts-coronavirus-crisis-challenges-ahead.

Chow C.-F., So W.-M.W., Cheung T.-Y., Yeung S.-K.D. Emerging Practices in Scholarship of Learning and Teaching in a Digital Era. Springer; Berlin/Heidelberg, Germany: 2017. Plastic Waste Problem and Education for Plastic Waste Management; pp. 125–140.

Popov A.A., Zykova A.K., Mastalygina E.E. Biodegradable Composite Materials (Review) Chem. Phys. 2020;39:71–80. doi: 10.1134/S1990793120030239. DOI

Kasyanov G.I. Biodegradable Packaging for Food Products. Sci. Technol. Technol. (Polytech. Bull.) 2015;3:165–184.

Garifullina L.I., Li N.I., Garipov R.M., Minnakhmetova A.K. Biodegradation of Polymeric Film Materials (Review) Bull. Technol. Univ. 2019;22:47–53.

Aumnate C., Kiesel R., Rudolph N. Understanding Plastics Recycling: Economic, Ecological and Technical Aspects of Plastic Waste. Hanser Publishers; Munich, Germany: 2017.

Tsuchimoto I., Kajikawa Y. Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis. Sustainability. 2022;14:16340. doi: 10.3390/su142416340. DOI

Rameshkumar S., Shaiju P., O’Connor K.E. Bio-Based and Biodegradable Polymers—State-of-the-Art, Challenges and Emerging Trends. Curr. Opin. Green Sustain. Chem. 2020;21:75–81. doi: 10.1016/j.cogsc.2019.12.005. DOI

Sousa A.F., Vilela C., Fonseca A.C., Matos M., Freire C.S.R., Gruter G.-J.M., Coelho J.F.J., Silvestre A.J.D. Biobased Polyesters and Other Polymers from 2,5-Furandicarboxylic Acid: A Tribute to Furan Excellency. Polym. Chem. 2015;6:5961–5983. doi: 10.1039/C5PY00686D. DOI

Lamtai A., Elkoun S., Robert M., Mighri F., Diez C. Mechanical Recycling of Thermoplastics: A Review of Key Issues. Waste. 2023;1:860–883. doi: 10.3390/waste1040050. DOI

Kumar R., Sadeghi K., Jang J., Seo J. Mechanical, Chemical, and Bio-Recycling of Biodegradable Plastics: A Review. Sci. Total Environ. 2023;882:163446. doi: 10.1016/j.scitotenv.2023.163446. PubMed DOI

Hirschberg C., Rodrigue D. Recycling of Polyamides: Processes and Conditions. J. Polym. Sci. 2023;61:1669–1682. doi: 10.1002/pol.20230154. DOI

Piemonte V., Sabatini S., Gironi F. Chemical Recycling of PLA: A Great Opportunity Towards Sustainable Development. J. Polym. Environ. 2013;21:640–647. doi: 10.1007/s10924-013-0608-9. DOI

Vu D.H., Akesson D., Taherzadeh M.J., Ferreira J.A. Recycling Strategies for Polyhydroxyalkanoate-Based Waste Materials: An Overview. Bioresour. Technol. 2020;298:122393. doi: 10.1016/j.biortech.2019.122393. PubMed DOI

International Standards Organization. Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 2: Gravimetric Measurement of Carbon Dioxide Evolved in a Laboratory. ISO; Geneva, Switzerland: 2018. [(accessed on 3 June 2025)]. Available online: https://www.iso.org/standard/72046.html.

EU Commission Directive (EU) 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste. Off. J. Eur. Union L. 2008;312:3–30.

Ruj B., Pandey V., Jash P., Srivastava V.K. Sorting of Plastic Waste for Effective Recycling. Int. J. Appl. Sci. Eng. Res. 2015;4:564–571.

Pacheco-Torgal F., Khatib J., Colangelo F., Tuladhar R. Use of Recycled Plastics in Eco-Efficient Concrete. Woodhead Publishing; Duxford, UK: 2019.

EU Commission Council Directive (EU) 1999/31/EC of 26 April 1999 on the Landfill of Waste. Off. J. Eur. Union L. 1999;182:1–19.

You Y.S., Oh Y.S., Kim U.S., Choi S.W. National Certification Marks and Standardization Trends for Biodegradable, Oxo-Biodegradable and Bio-Based Plastics. Clean Technol. 2015;21:1–11. doi: 10.7464/ksct.2015.21.1.001. DOI

Vasnev V.A. Biodegradable Polymers. Vysokomol. Soedin. Ser. B. 1997;39:2073–2086.

Emadian S.M., Onay T.T., Demirel B. Biodegradation of Bioplastics in Natural Environments. Waste Manag. 2017;59:526–536. doi: 10.1016/j.wasman.2016.10.006. PubMed DOI

Briassoulis D., Dejean C. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part I: Biodegradation in Soil. J. Polym. Environ. 2010;18:384–400. doi: 10.1007/s10924-010-0168-1. DOI

Gastaldi E., Buendia F., Greuet P., Benbrahim Bouchou Z., Benihya A., Cesar G., Domenek S. Degradation and Environmental Assessment of Compostable Packaging Mixed with Biowaste in Full-Scale Industrial Composting Conditions. Bioresour. Technol. 2024;400:130670. doi: 10.1016/j.biortech.2024.130670. PubMed DOI

Gnanavel G., Thirumarimurugan M., Valli M.J. Biodegradation of Oxo Polyethylene: An Approach Using Soil Compost Degraders. Int. J. Adv. Eng. Technol. 2016;2:140–144.

Mhaddolkar N., Tischberger-Aldrian A., Astrup T.F., Vollprecht D. Consumers Confused ‘Where to Dispose Biodegradable Plastics?’: A Study of Three Waste Streams. Waste Manag. Res. 2024;42 doi: 10.1177/0734242X241231408. PubMed DOI PMC

Briassoulis D., Dejean C., Picuno P. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part II: Composting. J. Polym. Environ. 2010;18:364–383. doi: 10.1007/s10924-010-0222-z. DOI

Folino A., Pangallo D., Calabrò P.S. Assessing Bioplastics Biodegradability by Standard and Research Methods: Current Trends and Open Issues. J. Environ. Chem. Eng. 2023;11:109424. doi: 10.1016/j.jece.2023.109424. DOI

Gadaleta G., Andrade-Chapal J.C., López-Ibáñez S., Mozo-Toledo M., Navarro-Calderón Á. Biodegradability of Bioplastics in Managed and Unmanaged Environments: A Comprehensive Review. Materials. 2025;18:2382. doi: 10.3390/ma18102382. PubMed DOI PMC

Fernández-Dacosta C. Alternative Sources to Fossil Carbon: Ex-Ante Assessment of Novel Technologies Using Waste as a Source. Utrecht University; Utrecht, The Netherlands: 2018.

Tschan M.J.-L., Brule E., Haquette P., Thomas C.M. Synthesis of Biodegradable Polymers from Renewable Resources. Polym. Chem. 2012;3:836–845. doi: 10.1039/C2PY00452F. DOI

Ryberg M.W., Hauschild M.Z., Wang F., Averous-Monnery S., Laurent A. Global Environmental Losses of Plastics across Their Value Chains. Resour. Conserv. Recycl. 2019;151:104459. doi: 10.1016/j.resconrec.2019.104459. DOI

Bondarenko A.V., Islamov S.R., Ignatyev K.V., Mardashov D.V. Laboratory Studies of Polymer Compositions for Well-Kill under Increased Fracturing. Perm J. Pet. Min. Eng. 2020;20:37–48. doi: 10.15593/2224-9923/2020.1.4. DOI

Belousov A., Lushpeev V., Sokolov A., Sultanbekov R., Tyan Y., Ovchinnikov E., Shvets A., Bushuev V., Islamov S. Experimental Research of the Possibility of Applying the Hartmann–Sprenger Effect to Regulate the Pressure of Natural Gas in Non-Stationary Conditions. Processes. 2025;13:1189. doi: 10.3390/pr13041189. DOI

Oliver-Cuenca V., Salaris V., Muñoz-Gimena P.F., Agüero Á., Peltzer M.A., Montero V.A., Arrieta M.P., Sempere-Torregrosa J., Pavon C., Samper M.D., et al. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers. 2024;16:3015. doi: 10.3390/polym16213015. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...