Biodegradable Polymers: Properties, Applications, and Environmental Impact
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
40732859
PubMed Central
PMC12298952
DOI
10.3390/polym17141981
PII: polym17141981
Knihovny.cz E-resources
- Keywords
- biodegradable polymers, bioplastics, environmental biodegradability, microbial fermentation, polyhydroxyalkanoates (PHAs), polylactic acid (PLA), renewable feedstocks, starch-based plastics, sustainable packaging,
- Publication type
- Journal Article MeSH
- Review MeSH
The accelerating global demand for sustainable materials has brought biodegradable polymers to the forefront of scientific and industrial innovation. These polymers, capable of decomposing through biological processes into environmentally benign byproducts, are increasingly seen as viable alternatives to conventional plastics in sectors such as packaging, agriculture, and biomedicine. However, despite significant advancements, the field remains fragmented due to the diversity of raw materials, synthesis methods, degradation mechanisms, and application requirements. This review aims to provide a comprehensive synthesis of the current state of biodegradable polymer development, including their classifications, sources (natural, synthetic, and microbially derived), degradation pathways, material properties, and commercial applications. It highlights critical scientific and technological challenges-such as optimizing degradation rates, ensuring mechanical performance, and scaling up production from renewable feedstocks. By consolidating recent research findings and regulatory considerations, this review serves as a crucial reference point for researchers, material scientists, and policymakers. It strives to bridge knowledge gaps in order to accelerate the deployment of biodegradable polymers as integral components of a circular and low-impact material economy.
Central European Institute of Technology Purkyňova 656 123 61200 Brno Czech Republic
Institute of Scientific Instruments of Czech Academy of Sciences 61200 Brno Czech Republic
See more in PubMed
Huang C., Liao Y., Zou Z., Chen Y., Jin M., Zhu J., Hussain Abdalkarim S.Y., Zhou Y., Yu H.Y. Novel Strategy to Interpret the Degradation Behaviors and Mechanisms of Bio- and Non-Degradable Plastics. J. Clean. Prod. 2022;355:131757. doi: 10.1016/j.jclepro.2022.131757. DOI
Ciuffi B., Fratini E., Rosi L. Plastic Pretreatment: The Key for Efficient Enzymatic and Biodegradation Processes. Polym. Degrad. Stab. 2024;222:110698. doi: 10.1016/j.polymdegradstab.2024.110698. DOI
Sasimowski E., Majewski Ł., Grochowicz M. Study on the Biodegradation of Poly(Butylene Succinate)/Wheat Bran Biocomposites. Materials. 2023;16:6843. doi: 10.3390/ma16216843. PubMed DOI PMC
La Fuente C.I.A., Maniglia B.C., Tadini C.C. Biodegradable Polymers: A Review about Biodegradation and Its Implications and Applications. Packag. Technol. Sci. 2023;36:81–95. doi: 10.1002/pts.2699. DOI
Li X., Liu Z., Xue R., Dai Y., Yue T., Zhao J. Biodegradation of Typical Plastics and Its Mechanisms. Kexue Tongbao/Chinese Sci. Bull. 2021;66:2573–2589. doi: 10.1360/TB-2020-1347. DOI
Shi C., Quinn E.C., Diment W.T., Chen E.Y.X. Recyclable and (Bio)Degradable Polyesters in a Circular Plastics Economy. Chem. Rev. 2024;124:4393–4478. doi: 10.1021/acs.chemrev.3c00848. PubMed DOI
Gupta V., Biswas D., Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. Materials. 2022;15:5899. doi: 10.3390/ma15175899. PubMed DOI PMC
Mukherjee C., Varghese D., Krishna J.S., Boominathan T., Rakeshkumar R., Dineshkumar S., Brahmananda Rao C.V.S., Sivaramakrishna A. Recent Advances in Biodegradable Polymers–Properties, Applications and Future Prospects. Eur. Polym. J. 2023;192:112068. doi: 10.1016/j.eurpolymj.2023.112068. DOI
Iwata T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 2015;54:3210–3215. doi: 10.1002/anie.201410770. PubMed DOI
Beltrán-Sanahuja A., Benito-Kaesbach A., Sánchez-García N., Sanz-Lázaro C. Degradation of Conventional and Biobased Plastics in Soil under Contrasting Environmental Conditions. Sci. Total Environ. 2021;787:147678. doi: 10.1016/j.scitotenv.2021.147678. DOI
Panou A., Karabagias I.K. Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings. 2023;13:1176. doi: 10.3390/coatings13071176. DOI
Pareta R., Edirisinghe M.J. A Novel Method for the Preparation of Starch Films and Coatings. Carbohydr. Polym. 2006;63:425–431. doi: 10.1016/j.carbpol.2005.09.018. DOI
Mazhar H., Shehzad F., Hong S.-G., Al-Harthi M.A. Thermal Degradation Kinetics Analysis of Ethylene-Propylene Copolymer and EP-1-Hexene Terpolymer. Polymers. 2022;14:634. doi: 10.3390/polym14030634. PubMed DOI PMC
Fredi G., Dorigato A. Recycling of bioplastic waste: A review. Adv. Ind. Eng. Polym. Res. 2021;4:159–177. doi: 10.1016/j.aiepr.2021.06.006. DOI
Niaounakis M. Biopolymers: Processing and Products. William Andrew; Norwich, NY, USA: 2015. pp. 1–77. DOI
Niaounakis M. Biopolymers Reuse, Recycling, and Disposal. William Andrew; Norwich, NY, USA: 2013. p. 432. (Plastics Design Library (PDL)). Chapter 10.
Li Z., Shen Y., Li Z. Ring-Opening Polymerization of Lactones to Prepare Closed-Loop Recyclable Polyesters. Macromolecules. 2024;57:1919–1940. doi: 10.1021/acs.macromol.3c01912. DOI
Kim S., Chung H. Biodegradable polymers: From synthesis methods to applications of lignin-graft-polyester. Green Chem. 2024;26:10774–10803. doi: 10.1039/D4GC03558E. DOI
Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick W.J., Jr., Hallett J.P., Leak D.J., Liotta C.L., et al. The Path Forward for Biofuels and Biomaterials. Science. 2006;311:484–489. doi: 10.1126/science.1114736. PubMed DOI
Poliakoff M., Licence P. Sustainable Technology: Green Chemistry. Nature. 2007;450:810–812. doi: 10.1038/450810a. PubMed DOI
Biermann U., Friedt W., Lang S., Lühs W., Machmüller G., Metzger J.O., Klaas M.R., Schäfer H.J., Schneider M.P. New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry. Angew. Chem. Int. Ed. 2000;39:2206–2224. doi: 10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P. PubMed DOI
Jenck J.F., Agterberg F., Droescher M.J. Products and Processes for a Sustainable Chemical Industry: A Review of Achievements and Prospects. Green Chem. 2004;6:544–556. doi: 10.1039/b406854h. DOI
Li J., Stayshich R.M., Meyer T.Y. Exploiting Sequence to Control the Hydrolysis Behavior of Biodegradable PLGA Copolymers. J. Am. Chem. Soc. 2011;133:6910–6913. doi: 10.1021/ja200895s. PubMed DOI
Cooke T.F. Biodegradability of Polymers and Fibres—A Review of the Literature. J. Polym. Eng. 1990;9:171–211. doi: 10.1515/POLYENG.1990.9.3.171. DOI
Corden T.J., Jones I.A., Rudd C.D., Christian P., Downes S., McDougall K.E. Physical and Biocompatibility Properties of Poly-ε-Caprolactone Produced Using In Situ Polymerisation: A Novel Manufacturing Technique for Long-Fibre Composite Materials. Biomaterials. 2000;21:713–724. doi: 10.1016/S0142-9612(99)00236-7. PubMed DOI
Agrawal C.M., Haas K.F., Leopold D.A., Clark H.G. Evaluation of Poly(L-lactic Acid) as a Material for Intravascular Polymeric Stents. Biomaterials. 1992;13:176–182. doi: 10.1016/0142-9612(92)90068-Y. PubMed DOI
Bu Y., Ma J., Bei J., Wang S. Surface Modification of Aliphatic Polyester to Enhance Biocompatibility. Front. Bioeng. Biotechnol. 2019;7:98. doi: 10.3389/fbioe.2019.00098. PubMed DOI PMC
Kirsh I., Bannikova O., Beznaeva O., Tveritnikova I., Romanova V., Zagrebina D., Frolova Y., Myalenko D. Research of the Influence of Ultrasonic Treatment on the Melts of Polymeric Compositions for the Creation of Packaging Materials with Antimicrobial Properties and Biodegradability. Polymers. 2020;2:275. doi: 10.3390/polym12020275. PubMed DOI PMC
Haider T.P., Völker C., Kramm J., Landfester K., Wurm F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chemie Int. Ed. 2019;58:50–62. doi: 10.1002/anie.201805766. PubMed DOI
Mamin E.A., Pantyukhov P.V., Olkhov A.A. Oxo-Additives for Polyolefin Degradation: Kinetics and Mechanism. Macromol. 2023;3:477–506. doi: 10.3390/macromol3030029. DOI
Papež N., Pisarenko T., Ščasnovič E., Sobola D., Ţălu Ş., Dallaev R., Částková K., Sedlák P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. Coatings. 2022;12:1429. doi: 10.3390/coatings12101429. DOI
Delacuvellerie A., Benali S., Cyriaque V., Moins S., Raquez J.M., Gobert S., Wattiez R. Microbial Biofilm Composition and Polymer Degradation of Compostable and Non-Compostable Plastics Immersed in the Marine Environment. J. Hazard. Mater. 2021;419:126526. doi: 10.1016/j.jhazmat.2021.126526. PubMed DOI
Donlan R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002;8:881–890. doi: 10.3201/eid0809.020063. PubMed DOI PMC
Mohan K., Srivastava T. Microbial Deterioration and Degradation of Polymeric Materials. J. Biochem. Technol. 2010;2:210–215. doi: 10.51847/cydohbk. DOI
Klinkov A.S., Belyaev P.S., Sokolov M.V. Recycling and Secondary Processing of Polymer Materials. Tambov State Technical University; Tambov Oblast, Russia: 2005. 80p
Balykhyn M.G., Kirsh I.A., Gubanova M.I., Bannikova O.A., Bezneva O.V., Chalykh A.E., Shcherbina A.A., Iordansky A.L., Olkhov A.A., Schetinin M.P., et al. Recycling of Packaging and Biodegradable Polymeric Materials: Monograph. Prospekt; Petersburg, Russia: 2021. pp. 120–190.
Mazhitova A.K., Aminova G.K., Zaripov I.I., Vikhareva I.N. Biodegradable Polymeric Materials and Modifying Additives: State of the art. Part II. Nanotechnol. Constr. 2021;13:32–38. doi: 10.15828/2075-8545-2021-13-1-32-38. DOI
Litvyak V.V. Prospects for the Production of Modern Packaging Materials Using Biodegradable Polymer Compositions. J. Belarusian State Univ. Ecol. 2019;2:84–94.
Choi D., Chipman D., Bents S., Brown R. A techno-economic analysis of polyhydroxyalkanoates and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 2010;160:1032–1046. doi: 10.1007/s12010-009-8560-9. PubMed DOI
Maness P.C., Weaver P.F. Production of poly-3-hydroxyalkanoates from CO and H2 by a novel photosynthetic bacterium. Appl. Biochem. Biotechnol. 1994;45:395–406. doi: 10.1007/BF02941814. DOI
Braun R., Drosg B., Bochmann G., Weiss S., Kirchmayr R. Recent developments in bio-energy recovery through fermentation. In: Insam H., Franke-Whittle I., Goberna M., editors. Microbes at Work, from Waste to Resources. Springer; Berlin/Heidelberg, Germany: 2010. pp. 35–58.
Gumel A.M., Annuar M.S.M., Heidelberg T. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida BET001 isolated from palm oil mill effluent. PLoS ONE. 2012;7:e45214. doi: 10.1371/journal.pone.0045214. PubMed DOI PMC
Md Din M.F., Ponraj M., van Loosdrecht M.C.M., Ujang Z., Chelliapan S., Zambare V. The utilization of palm oil mill effluent for polyhydroxyalkanoate production and nutrient removal using statistical design. Int. J. Environ. Sci. Technol. 2013;11:671–684. doi: 10.1007/s13762-013-0253-9. DOI
Adetunji A.I., Erasmus M. Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review. Polymers. 2024;16:1322. doi: 10.3390/polym16101322. PubMed DOI PMC
Kabasci S. Bio-Based Plastics: Materials and Applications. John Wiley & Sons Inc.; Chichester, UK: 2014.
Marset D., Dolza C., Boronat T., Montanes N., Balart R., Sanchez-Nacher L., Quiles-Carrillo L. Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes. Polymers. 2020;12:1503. doi: 10.3390/polym12071503. PubMed DOI PMC
Harlan G., Kmiec C. Degradable Polymers. Springer; Dordrecht, The Netherlands: 1995. Ethylene-carbon monoxide copolymers; pp. 153–168. DOI
Getino L., Martín J.L., Chamizo-Ampudia A. A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste. Microorganisms. 2024;12:2028. doi: 10.3390/microorganisms12102028. PubMed DOI PMC
Castilho L.R., Mitchell D.A., Freire D.M.G. Production of Polyhydroxyalkanoates (PHAs) from Waste Materials and Byproducts by Submerged and Solid-State Fermentation. Bioresour. Technol. 2009;100:5996–6009. doi: 10.1016/j.biortech.2009.03.088. PubMed DOI
Sudesh K., Abe H. Practical Guide to Microbial Polyhydroxyalkanoates. Smithers Rapra Technology; Shrewsbury, UK: 2010. p. 160.
Main P., Petersmann S., Wild N., Feuchter M., Duretek I., Edeleva M., Ragaert P., Cardon L., Lucyshyn T. Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylene. Polymers. 2023;15:4126. doi: 10.3390/polym15204126. PubMed DOI PMC
Dintcheva N.T., Infurna G., Baiamonte M., D’Anna F. Natural Compounds as Sustainable Additives for Biopolymers. Polymers. 2020;12:732. doi: 10.3390/polym12040732. PubMed DOI PMC
Verbeek C.J.R., van den Berg L.E. Extrusion Processing and Properties of Protein-Based Thermoplastics. Macromol. Mater. Eng. 2009;295:10–21. doi: 10.1002/mame.200900167. DOI
Cinelli P., Seggiani M., Mallegni N., Gigante V., Lazzeri A. Processability and Degradability of PHA-Based Composites in Terrestrial Environments. Int. J. Mol. Sci. 2019;20:284. doi: 10.3390/ijms20020284. PubMed DOI PMC
Ramesh B.N.G., Anitha N., Rani H.K.R. Recent Trends in Biodegradable Products from Biopolymers. Adv. Biotechnol. 2010;9:30–34.
Babu R.P., O’Connor K., Seeram R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013;2:8. doi: 10.1186/2194-0517-2-8. PubMed DOI PMC
Shen L., Haufe J., Patel M.K. Report for the European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics. Utrecht University; Utrecht, The Netherlands: 2009. Product overview and market projection of emerging bio-based plastics PRO-BIP 2009.
Niaounakis M. Recycling of Biopolymers–The Patent Perspective. Eur. Polym. J. 2019;114:464–475. doi: 10.1016/j.eurpolymj.2019.02.027. DOI
Jha S., Akula B., Enyioma H., Novak M., Amin V., Liang H. Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Polymers. 2024;16:2262. doi: 10.3390/polym16162262. PubMed DOI PMC
Righetti G.I.C., Faedi F., Famulari A. Embracing Sustainability: The World of Bio-Based Polymers in a Mini Review. Polymers. 2024;16:950. doi: 10.3390/polym16070950. PubMed DOI PMC
Latour-Paczka K., Luciński R. Artificial Biopolymers Derived from Transgenic Plants: Applications and Properties—A Review. Int. J. Mol. Sci. 2024;25:13628. doi: 10.3390/ijms252413628. PubMed DOI PMC
Gunatillake T., Adhikari R. Biodegradable Synthetic Polymers for Tissue Engineering. Eur. Cells Mater. 2003;5:1–16. doi: 10.22203/eCM.v005a01. PubMed DOI
Mecking S. Nature or Petrochemistry?–Biologically Degradable Polymers. Angew. Chem. Int. Ed. 2004;43:1078–1085. doi: 10.1002/anie.200301655. PubMed DOI
Weerasinghe M.A.S.N., McBeth P.A., Mancini M.C., Raji I.O., Needham P.M., Yehl K., Oestreicher Z., Konkolewicz D. Controlling Photodegradation in Vinyl Ketone Polymers. Chem. Eng. J. 2024;483:149307. doi: 10.1016/j.cej.2024.149307. DOI
Morgen T.O., Baur M., Göttker-Schnetmann I., Mecking S. Photodegradable branched polyethylenes from carbon monoxide copolymerization under benign conditions. Nat. Commun. 2020;11:17542. doi: 10.1038/s41467-020-17542-5. PubMed DOI PMC
Laycock B., Nikolić M., Colwell J.M., Gauthier E., Halley P., Bottle S., George G. Lifetime prediction of biodegradable polymers. Prog. Polym. Sci. 2017;71:144–189. doi: 10.1016/j.progpolymsci.2017.02.004. DOI
Norrish R.G.W., Bamford C.H. Photo-decomposition of aldehydes and ketones. Nature. 1937;140:195–196. doi: 10.1038/140195b0. DOI
Loong-Tak L. Biodegradable Packaging for Food Products. Milk Process. 2011;6:61–63.
Rahman M.H., Bhoi P.R. An Overview of Non-Biodegradable Bioplastics. J. Clean. Prod. 2021;294:126218. doi: 10.1016/j.jclepro.2021.126218. DOI
Ojeda T.F., Dalmolin E., Forte M.M., Jacques R.J., Bento F.M., Camargo F.A. Abiotic and biotic degradation of oxo-biodegradable polyethylene’s. Polym. Degrad. Stab. 2009;94:965–970. doi: 10.1016/j.polymdegradstab.2009.03.011. DOI
Al-Salem S.M., Al-Hazza’a A., Karam H.J., Al-Wadi M.H., Al-Dhafeeri A.T., Al-Rowaih A.A. Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene thin films. J. Environ. Manag. 2019;250:109475. doi: 10.1016/j.jenvman.2019.109475. PubMed DOI
Zhang Y.H., Wang X.L., Wang Y.Z., Yang K.K., Li J. A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene succinate) Polym. Degrad. Stab. 2005;88:294–299. doi: 10.1016/j.polymdegradstab.2004.11.003. DOI
Ali S., Isha, Chang Y.-C. Ecotoxicological Impact of Bioplastics Biodegradation: A Comprehensive Review. Processes. 2023;11:3445. doi: 10.3390/pr11123445. DOI
Zhang X., Yin Z., Xiang S., Yan H., Tian H. Degradation of Polymer Materials in the Environment and Its Impact on the Health of Experimental Animals: A Review. Polymers. 2024;16:2807. doi: 10.3390/polym16192807. PubMed DOI PMC
Cai Z., Li M., Zhu Z., Wang X., Huang Y., Li T., Gong H., Yan M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms. 2023;11:1661. doi: 10.3390/microorganisms11071661. PubMed DOI PMC
Rabek J.F. Photosensitized Degradation of Polymers. Volume 18. American Chemical Society (ACS); Washington, DC, USA: 1976. pp. 255–271. DOI
Samir A., Ashour F.H., Hakim A.A.A., Bassyouni M. Recent Advances in Biodegradable Polymers for Sustainable Applications. Npj Mater. Degrad. 2022;6:68. doi: 10.1038/s41529-022-00277-7. DOI
Legonkova O. Once Again About the Biodegradation of Polymeric Materials. Packag. Contain. 2006;2:57–58.
Karpunin I.I., Kuzmich V.V., Balabanova T.F. Classification of biodegradable polymers. Sci. Tech. 2015;5:53–59.
Zeng S., Duan P., Shen M., Xue Y. Preparation and degradation mechanisms of biodegradable polymer: A review. IOP Conf. Ser. Mater. Sci. Eng. 2016;137:012003. doi: 10.1088/1757-899X/137/1/012003. DOI
Bangar S.P., Purewal S.S., Trif M., Maqsood S., Kumar M., Manjunatha V., Rusu A.V. Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods. 2021;10:2181. doi: 10.3390/foods10092181. PubMed DOI PMC
Bian Y., Hu T., Lv Z., Xu Y., Wang Y., Wang H., Zhu W., Feng B., Liang R., Tan C., et al. Bone Tissue Engineering for Treating Osteonecrosis of the Femoral Head. Exploration. 2023;3:20210105. doi: 10.1002/EXP.20210105. PubMed DOI PMC
Rasheed F. Production of Sustainable Bioplastic Materials from Wheat Gluten Proteins. The Swedish University of Agricultural Sciences; Uppsala, Sweden: 2011. No. 4.
Jiménez-Rosado M., Zarate-Ramírez L.S., Romero A., Bengoechea C., Partal P., Guerrero A. Bioplastics Based on Wheat Gluten Processed by Extrusion. J. Clean Prod. 2019;239:117994. doi: 10.1016/j.jclepro.2019.117994. DOI
Andonegi M., Irastorza A., Izeta A., Cabezudo S., de la Caba K., Guerrero P. A Green Approach towards Native Collagen Scaffolds: Environmental and Physicochemical Assessment. Polymers. 2020;12:1597. doi: 10.3390/polym12071597. PubMed DOI PMC
Rinaudo M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006;31:603–632. doi: 10.1016/j.progpolymsci.2006.06.001. DOI
Shahidi F., Arachchi J.K.V., Jeon Y.J. Food Applications of Chitin and Chitosans. Trends Food Sci. Technol. 1999;10:37–51. doi: 10.1016/S0924-2244(99)00017-5. DOI
Pillai C.K.S., Paul W., Sharma C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009;34:641–678. doi: 10.1016/j.progpolymsci.2009.04.001. DOI
Tasekeev M.S., Eremeeva L.M. Production of Biopolymers as a Solution to Ecological and Agricultural Problems: Analytical Review. NC NTI; Almaty, Kazakhstan: 2009. p. 7.
Alharbi R.A., Alminderej F.M., Al-Harby N.F., Elmehbad N.Y., Mohamed N.A. Preparation and Characterization of a New Bis-Uracil Chitosan-Based Hydrogel as Efficient Adsorbent for Removal of Anionic Congo Red Dye. Polymers. 2023;15:1529. doi: 10.3390/polym15061529. PubMed DOI PMC
Castro J.I., Valencia-Llano C.H., Zapata M.E.V., Restrepo Y.J., Hernandez J.H.M., Navia-Porras D.P., Valencia Y., Valencia C., Grande-Tovar C.D. Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers. 2021;13:3753. doi: 10.3390/polym13213753. PubMed DOI PMC
Yan D., Li Y., Liu Y., Li N., Zhang X., Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules. 2021;26:7136. doi: 10.3390/molecules26237136. PubMed DOI PMC
Kryuk T.V., Mikhaltchuk V.M., Petrenko L.V. Prospective Oxidation Inhibitors for Polyethylene Glycol in Aqueous Solutions. Khim.-Farm. Zh. 2002;36:31–34.
Pribil M.M. Ph.D. Thesis. Moscow State University; Moscow, Russia: 2015. Highly Efficient Lactate Biosensors Based on Immobilized Lactate Oxidase Engineering.163p
Pan Y., Zhang Y., Zhang Y., Wang K., Zhao Y., Li J. Preparation and Properties of Microcrystalline Cellulose/Fish Gelatin Composite Film. Materials. 2020;13:4370. doi: 10.3390/ma13194370. PubMed DOI PMC
Aung H.T. Ph.D. Thesis. Moscow State University; Moscow, Russia: 2020. Production of Composite Materials Based on Rice Husk Derivatives.
Kirsh I.A. Development of Biodegradable Polymer Compositions Based on Agro-Industrial Waste. Int. J. Adv. Biotechnol. Res. 2019;2:15–23.
Maharana T., Mohanty B., Negi Y.S. Melt-solid polycondensation of lactic acid and its biodegradability. Progr. Polym. Sci. 2009;34:99–124.42. doi: 10.1016/j.progpolymsci.2008.10.001. DOI
Garlotta D. A Literature Review of Poly(Lactic Acid) J. Polym. Environ. 2001;9:63–84. doi: 10.1023/A:1020200822435. DOI
Kamluk A.N., Likhamanau A.O. Experimental Determination of the Rational Geometrical Parameters of the Sprinkler Frame Arms and Deflector on the Expansion Rate and Stability of Foam. Proc. Natl. Acad. Sci. USA Belarus Phys. Tech. Ser. 2019;64:60–68. doi: 10.29235/1561-8358-2019-64-1-60-68. DOI
Ayyoob M., Lee S., Kim Y.J. Well-Defined High Molecular Weight Polyglycolide-b-Poly(L-lactide)-b-Polyglycolide Triblock Copolymers: Synthesis, Characterization and Microstructural Analysis. J. Polym. Res. 2020;27:109. doi: 10.1007/s10965-019-2001-4. DOI
Hu Y., Jiang X., Ding Y., Zhang L., Yang C., Zhang J., Chen J., Yang Y. Preparation and Drug Release Behaviors of Nimodipine-Loaded Poly(caprolactone)-Poly(ethylene oxide)-Polylactide Amphiphilic Copolymer Nanoparticles. Biomaterials. 2003;24:2395–2404. doi: 10.1016/S0142-9612(03)00021-8. PubMed DOI
Bourges J.L., Gautier S.E., Delie F., Bejjani R.A., Jeanny J.C., Gurny R., BenEzra D., Behar-Cohen F.F. Ocular Drug Delivery Targeting the Retina and Retinal Pigment Epithelium Using Polylactide Nanoparticles. Investig. Ophthalmol. Vis. Sci. 2003;44:3562–3569. doi: 10.1167/iovs.02-1068. PubMed DOI
Singh M., Shirley B., Bajwa K., Samara E., Hora M., O’Hagan D. Controlled Release of Recombinant Insulin-like Growth Factor from a Novel Formulation of Polylactide-Co-Glycolide Microparticles. J. Control. Release. 2001;70:21–28. doi: 10.1016/S0168-3659(00)00313-8. PubMed DOI
Romero-Cano M.S., Vincent B. Controlled Release of 4-Nitroanisole from Poly(lactic acid) Nanoparticles. J. Control. Release. 2002;82:127–135. doi: 10.1016/S0168-3659(02)00130-X. PubMed DOI
Ouchi T., Saito T., Kontani T., Ohya Y. Encapsulation and/or Release Behavior of Bovine Serum Albumin within and from Polylactide-Grafted Dextran Microspheres. Macromol. Biosci. 2004;4:458–463. doi: 10.1002/mabi.200300106. PubMed DOI
Olivier J.C. Drug Transport to the Brain with Targeted Nanoparticles. NeuroRx. 2005;2:108–119. doi: 10.1602/neurorx.2.1.108. PubMed DOI PMC
Gross R.A., Kalra B. Biodegradable Polymers for the Environment. Science. 2002;297:803–807. doi: 10.1126/science.297.5582.803. PubMed DOI
Danner H., Braun R. Biotechnology for the Production of Commodity Chemicals from Biomass. Chem. Soc. Rev. 1999;28:395–405. doi: 10.1039/a806968i. DOI
Thomas C.M. Stereocontrolled Ring-Opening Polymerization of Lactide: Synthesis of Stereoregular Polyesters Using Chiral Catalysts. Chem. Soc. Rev. 2010;39:165–173. doi: 10.1039/B810065A. PubMed DOI
Letcher T.M. Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions. Academic Press; Cambridge, MA, USA: 2020.
Narayanan N., Roychoudhury P.K., Srivastava A. L(+) Lactic Acid Fermentation and Its Product Polymerization. Electron. J. Biotechnol. 2004;7:167–179. doi: 10.2225/vol7-issue2-fulltext-7. DOI
Avérous L. Monomers, Polymers and Composites from Renewable Resources. Elsevier; Amsterdam, The Netherlands: 2008. Chapter 21—Polylactic Acid: Synthesis, Properties and Applications; pp. 433–450. DOI
Tsuji H., Ikada Y. Properties and morphologies of poly(L-lactide): 1. Annealing condition effects on properties and morphologies of poly(L-lactide) Biomaterials. 2000;21:343–350. doi: 10.1016/0032-3861(95)93647-5. DOI
Lucas N., Bienaime C., Belloy C., Queneudec M., Silvestre F., Nava-Saucedo J.E. Polymer Biodegradation: Mechanisms and Estimation Techniques—A Review. Chemosphere. 2008;73:429–442. doi: 10.1016/j.chemosphere.2008.06.064. PubMed DOI
Savenkova L., Gercberga Z., Nikolaeva V., Dzene A., Bibers I., Kalmin M. Mechanical properties and biodegradation characteristics of poly-(hydroxy butyrate)-based films. Process Biochem. 2000;35:573–579. doi: 10.1016/S0032-9592(99)00107-7. DOI
Bagde P., Nadanathangam V. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydr. Polym. 2019;222:115021. doi: 10.1016/j.carbpol.2019.115021. PubMed DOI
Lamberti F.M., Román-Ramírez L.A., Wood J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020;28:2551–2571. doi: 10.1007/s10924-020-01795-8. DOI
Singhvi M.S., Zinjarde S.S., Gokhale D.V. Polylactic Acid: Synthesis and Biomedical Applications. J. Appl. Microbiol. 2019;127:1612–1626. doi: 10.1111/jam.14290. PubMed DOI
McLain S., Drysdale N. Process for Preparing Polylactide. 5,028,667. U.S. Patent. 1991 July 2;
McLain S., Ford T., Drysdale N. Synthesis of Polylactide Using Yttrium Alkoxide Catalysts. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 1992;33:463–464.
Momeni S., Craplewe K., Safder M., Luz S., Sauvageau D., Elias A. Accelerating the Biodegradation of Poly(lactic acid) through the Inclusion of Plant Fibers: A Review of Recent Advances. ACS Sustain. Chem. Eng. 2023;11:12345–12356. doi: 10.1021/acssuschemeng.3c04240. PubMed DOI PMC
Jamshidi K., Hyon S.H., Ikada Y. Thermal Characterization of Polylactides. Polymer. 1988;29:2229–2234. doi: 10.1016/0032-3861(88)90116-4. DOI
Zhang Y., Qi H., Park C. Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials. 2022;15:4312. doi: 10.3390/ma15124312. PubMed DOI PMC
Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Int. J. Biol. Macromol. 2016;83:374–386. doi: 10.1016/j.addr.2016.06.012. PubMed DOI
Yang Y., Zhang M., Ju Z., Tam P.Y., Hua T., Younas M.W., Kamrul H., Hu H. Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Text. Res. J. 2021;91:1641–1669. doi: 10.1177/0040517520984101. DOI
Balla E., Daniilidis V., Karlioti G., Kalamas T., Stefanidou M., Bikiaris N.D., Vlachopoulos A., Koumentakou I., Bikiaris D.N. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers. 2021;13:1822. doi: 10.3390/polym13111822. PubMed DOI PMC
Castro-Aguirre E., Iñiguez-Franco F., Samsudin H., Fang X., Auras R. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016;107:333–366. doi: 10.1016/j.addr.2016.03.010. PubMed DOI
Ranakoti L., Gangil B., Bhandari P., Singh T., Sharma S., Singh J., Singh S. Promising Role of Polylactic Acid as an Ingenious Biomaterial in Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants: Research Developments, and Prospective Applications. Molecules. 2023;28:485. doi: 10.3390/molecules28020485. PubMed DOI PMC
Lasprilla A.J.R., Martinez G.A.R., Lunelli B.H., Jardini A.L., Filho R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012;30:321–328. doi: 10.1016/j.biotechadv.2011.06.019. PubMed DOI
Fuoco T., Mathisen T., Finne-Wistrand A. Poly(L-Lactide) and Poly(L-Lactide-Co-Trimethylene Carbonate) Melt-Spun Fibers: Structure-Processing-Properties Relationship. Biomacromolecules. 2019;20:1346–1361. doi: 10.1021/acs.biomac.8b01739. PubMed DOI
Ali A., El-Dessouky H. An insight on the process–property relationships of melt spun polylactic acid fibers. Text. Res. J. 2019;89:4959–4966. doi: 10.1177/0040517519845684. DOI
Capuana E., Lopresti F., Ceraulo M., La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers. 2022;14:1153. doi: 10.3390/polym14061153. PubMed DOI PMC
Penning J.P., Dijkstra H., Pennings A.J. Preparation and Properties of Absorbable Fibres from L-Lactide Copolymers. Polymer. 1993;34:942–951. doi: 10.1016/0032-3861(93)90212-S. DOI
Dorigato A., Sebastiani M., Pegoretti A., Fambri L. Effect of silica nanoparticles on the mechanical performances of poly(lactic acid) J. Polym. Environ. 2012;20:713–725. doi: 10.1007/s10924-012-0425-6. DOI
Tait M., Pegoretti A., Dorigato A., Kalaitzidou K. The effect of filler type and content and the manufacturing process on the performance of multifunctional carbon/poly-lactide composites. Carbon. 2011;49:4280–4290. doi: 10.1016/j.carbon.2011.06.009. DOI
Fambri L., Dorigato A., Pegoretti A. Role of surface-treated silica nanoparticles on the thermo-mechanical behavior of poly(lactide) Appl. Sci. 2020;10:6731. doi: 10.3390/app10196731. DOI
Bhatia S.K., Otari S.V., Jeon J.M., Gurav R., Choi Y.K., Bhatia R.K., Pugazhendhi A., Kumar V., Banu J.R., Yoon J.J., et al. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresour. Technol. 2021;326:124733. doi: 10.1016/j.biortech.2021.124733. PubMed DOI
Colombo B., Sciarria T.P., Reis M., Scaglia B., Adani F. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresour. Technol. 2016;218:692–699. doi: 10.1016/j.biortech.2016.07.024. PubMed DOI
Pulingam T., Appaturi J.N., Parumasivam T., Ahmad A., Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers. 2022;14:2141. doi: 10.3390/polym14112141. PubMed DOI PMC
Zhang X., You S., Tian Y., Li J. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Sci. Hortic. 2019;249:38–48. doi: 10.1016/j.scienta.2019.01.037. DOI
Mukherjee A., Knoch S., Tavares J.R. Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosyst. Eng. 2019;180:121–145. doi: 10.1016/j.biosystemseng.2019.01.017. DOI
Briassoulis D., Giannoulis A. Evaluation of the functionality of bio-based plastic mulching films. Polym. Test. 2018;67:99–109. doi: 10.1016/j.polymertesting.2018.02.019. DOI
Bucci D.Z., Tavares L.B.B. PHB packaging for the storage of food products. Polym. Test. 2005;24:564–571. doi: 10.1016/j.polymertesting.2005.02.008. DOI
Verlinden R.A.J., Hill D.J., Kenward M.A., Williams C.D., Radecka I. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 2007;102:1437–1449. doi: 10.1111/j.1365-2672.2007.03335.x. PubMed DOI
Zhou W., Bergsma S., Colpa D.I., Euverink G.J.W., Krooneman J. Polyhydroxyalkanoates (PHAs) Synthesis and Degradation by Microbes and Applications towards a Circular Economy. J. Environ. Manage. 2023;341:118033. doi: 10.1016/j.jenvman.2023.118033. PubMed DOI
Girotto F., Alibardi L., Cossu R. Food waste generation and industrial uses: A review. Waste Manag. 2015;45:32–41. doi: 10.1016/j.wasman.2015.06.008. PubMed DOI
Dietrich K., Dumont M.-J., Del Rio L.F., Orsat V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. 2017;9:58–70. doi: 10.1016/j.spc.2016.09.001. DOI
Jiang Y., Marang L., Tamis J., van Loosdrecht M.C., Dijkman H., Kleerebezem R. Waste to resource: Converting paper mill wastewater to bioplastic. Water Res. 2012;46:5517–5530. doi: 10.1016/j.watres.2012.07.028. PubMed DOI
Javaid H., Nawaz A., Riaz N., Mukhtar H., Ul-Haq I., Shah K.A., Khan H., Naqvi S.M., Shakoor S., Rasool A., et al. Biosynthesis of polyhydroxyalkanoates (PHAs) by the valorization of biomass and synthetic waste. Molecules. 2020;25:5539. doi: 10.3390/molecules25235539. PubMed DOI PMC
Kenny S.T., Runic J.N., Kaminsky W., Woods T., Babu R.P., Keely C.M., Blau W., O’Connor K.E. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate) Environ. Sci. Technol. 2008;42:7696–7701. doi: 10.1021/es801010e. PubMed DOI
Devi E.S., Vijayendra S.V.N., Shamala T.R. Exploration of rice bran, an agro-industry residue, for the production of intra- and extra-cellular polymers by Sinorhizobium meliloti MTCC 100. Biocatal. Agric. Biotechnol. 2012;1:80–84. doi: 10.1016/j.bcab.2011.08.014. DOI
Pérez-Rivero C., López-Gómez J.P., Roy I. A Sustainable Approach for the Downstream Processing of Bacterial Polyhydroxyalkanoates: State-of-the-art and latest developments. Biochem. Eng. J. 2019;150:107283. doi: 10.1016/j.bej.2019.107283. DOI
Mirpoor S.F., Patanè G.T., Corrado I., Giosafatto C.V.L., Ginestra G., Nostro A., Foti A., Gucciardi P.G., Mandalari G., Barreca D., et al. Functionalization of Polyhydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities. Int. J. Mol. Sci. 2023;24:11628. doi: 10.3390/ijms241411628. PubMed DOI PMC
Zinn M., Hany R. Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv. Eng. Mater. 2005;7:408–411. doi: 10.1002/adem.200500053. DOI
Kunze C., Bernd H.E., Androsch R., Nischan C., Freier T., Kramer S., Kramp B., Schmitz K.P. In vitro and in vivo studies on blends of isotactic and atactic poly(3-hydroxybutyrate) for development of a dura substitute material. Biomaterials. 2006;27:192–201. doi: 10.1016/j.biomaterials.2005.05.095. PubMed DOI
Lee M.S., Park W.H. Compatibility and thermal properties of poly(3-hydroxybutyrate)/poly(glycidyl methacrylate) blends. J. Polym. Sci. A Polym. Chem. 2002;40:351–358. doi: 10.1002/pola.10128. DOI
Gao Y., Kong L., Zhang L., Gong Y.D., Chen G.Q., Zhao N.M., Zhang X.F. Improvement of mechanical properties of poly(DL-lactide) films by blending with poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Eur. Polym. J. 2006;42:764–775. doi: 10.1016/j.eurpolymj.2005.09.028. DOI
Wang Y.W., Wu Q., Chen G.Q. Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application. Biomacromolecules. 2005;6:566–571. doi: 10.1021/bm049342d. PubMed DOI
Reichert C.L., Bugnicourt E., Coltelli M.-B., Cinelli P., Lazzeri A., Canesi I., Braca F., Martínez B.M., Alonso R., Agostinis L., et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers. 2020;12:1558. doi: 10.3390/polym12071558. PubMed DOI PMC
Tatai L., Moore T.G., Adhikari R., Malherbe F., Jayasekara R., Griffiths I., Gunatillake A. Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials. 2007;28:5407–5417. doi: 10.1016/j.biomaterials.2007.08.035. PubMed DOI
Zhang J.Y., Beckman E.J., Piesco N.P., Agrawal S. A new peptide-based urethane polymer: Synthesis, biodegradation and potential to support cell growth in-vitro. Biomaterials. 2000;21:1247–1258. doi: 10.1016/S0142-9612(00)00005-3. PubMed DOI PMC
Chen G.-Q. A microbial polyhydroxyalkanoates (PHA)-based bio-and materials industry. Chem. Soc. Rev. 2009;38:2434–2446. doi: 10.1039/b812677c. PubMed DOI
Lule Z.C., Shiferaw E.W., Kim J. Thermomechanical Properties of SiC-Filled Polybutylene Succinate Composite Fabricated via Melt Extrusion. Polymers. 2020;12:418. doi: 10.3390/polym12020418. PubMed DOI PMC
Lule Z.C., Kim J. Thermally Conductive Polybutylene Succinate Composite Filled with Si-O-N-C Functionalized Silicon Carbide Fabricated via Low-Speed Melt Extrusion. Eur. Polym. J. 2020;134:109849. doi: 10.1016/j.eurpolymj.2020.109849. DOI
Lule Z.C., Kim J. Compatibilization Effect of Silanized SiC Particles on Polybutylene Adipate Terephthalate/Polycarbonate Blends. Mater. Chem. Phys. 2021;258:123879. doi: 10.1016/j.matchemphys.2020.123879. DOI
Gontard N., Sonesson U., Birkved M. A Research Challenge Vision Regarding Management of Agricultural Waste in a Circular Bio-Based Economy. Crit. Rev. Environ. Sci. Technol. 2018;48:614–654. doi: 10.1080/10643389.2018.1471957. DOI
Chen T.T., Cai T.J., Jin Q., Ji J. Design and Fabrication of Functional Polycaprolactone. E-Polymers. 2015;15:3–13. doi: 10.1515/epoly-2014-0158. DOI
Hajiali F., Tajbakhsh S., Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polym. Rev. 2018;58:164–207. doi: 10.1080/15583724.2017.1332640. DOI
Chan D.S., Fnais N., Ibrahim I., Daniel S., Manoukian J. Exploring Polycaprolactone in Tracheal Surgery: A Scoping Review of In-Vivo Studies. Int. J. Pediatr. Otorhinolaryngol. 2019;123:38–42. doi: 10.1016/j.ijporl.2019.04.039. PubMed DOI
Ghavimi A.A.A., Ebrahimzadeh M.H., Solati-Hashjin M., Osman N.A.A. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications. J. Biomed. Mater. Res. A. 2015;103:2482–2498. doi: 10.1002/jbm.a.35371. PubMed DOI
Sadeghi A., Mousavi S.M., Saljoughi E., Kiani S. Biodegradable Membrane Based on Polycaprolactone/Polybutylene Succinate: Characterization and Performance Evaluation in Wastewater Treatment. J. Appl. Polym. Sci. 2021;138:50332. doi: 10.1002/app.50332. DOI
Follain N., Joly C., Dole P., Bliard C. Properties of Starch-Based Blends. Part 2: Influence of Polyvinyl Alcohol Addition and Photocrosslinking on Mechanical Properties. Carbohydr. Polym. 2005;60:185–192. doi: 10.1016/j.carbpol.2004.12.003. DOI
Zhai M.L., Yoshii F., Kume T., Hashim K. Synthesis of PVA/Starch Grafted Hydrogels by Irradiation. Carbohydr. Polym. 2002;50:295–303. doi: 10.1016/S0144-8617(02)00031-0. DOI
Xiao C.M., Yang M.L. Controlled Preparation of Physical Cross-Linked Starch-g-PVA Hydrogel. Carbohydr. Polym. 2006;64:37–40. doi: 10.1016/j.carbpol.2005.10.020. DOI
Aslam M., Kalyar M.A., Raza Z.A. Polyvinyl Alcohol: A Review of Research Status and Use of Polyvinyl Alcohol-Based Nanocomposites. Polym. Eng. Sci. 2018;58:2119–2132. doi: 10.1002/pen.24855. DOI
Baker M.I., Walsh S.P., Schwartz Z., Boyan B.D. A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. J. Biomed. Mater. Res. B Appl. Biomater. 2012;100B:1451–1457. doi: 10.1002/jbm.b.32694. PubMed DOI
Sapalidis A.A. Porous Polyvinyl Alcohol Membranes: Preparation Methods and Applications. Symmetry. 2020;12:960. doi: 10.3390/sym12060960. DOI
Pavlenok A.V., Davydova O.V., Drobychevskaya N.E., Poddenezhny E.N., Boyko A.A., Shapovalov V.M. Development and Properties of Biodegradable Composite Materials Based on Polyvinyl Alcohol and Starch. Vestn. GGTU im. P.O. Sukhoi. 2018;1:1–9.
Watanabe Y., Hameda N., Morita M., Tsujisaka Y. Purification and Properties of a Polyvinyl Alcohol-Degrading Enzyme Produced by a Strain of Pseudomonas. Arch. Biochem. Biophys. 1976;174:575–581. doi: 10.1016/0003-9861(76)90386-6. PubMed DOI
Haugwitz M., Pudman P., Müller S. Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade. Angew. Chem. Int. Ed. 2023;62:e202216962. doi: 10.1002/anie.202216962. PubMed DOI
Sanaei Ataabadi H., Mirzaei E., Sedaghatdoost A. Effect of Polypropylene and Polyvinyl Alcohol Fibers on Characteristics and Microstructure of Polymer Composite. Polym. Compos. 2021;42:1782–1794. doi: 10.1002/pc.25933. DOI
Shen Y., Li Q., Xu S., Liu X. Electromagnetic Wave Absorption of Multifunctional Cementitious Composites Incorporating Polyvinyl Alcohol (PVA) Fibers and Fly Ash: Effects of Microstructure and Hydration. Cement Concr. Res. 2021;143:106389. doi: 10.1016/j.cemconres.2021.106389. DOI
Lule Z.C., Kim J. Properties of Economical and Eco-Friendly Polybutylene Adipate Terephthalate Composites Loaded with Surface-Treated Coffee Husk. Compos. Part A Appl. Sci. Manuf. 2021;140:106154. doi: 10.1016/j.compositesa.2020.106154. DOI
Kim K.S., Yoo J., Shim J.S., Ryu Y.I., Choi S., Lee J.Y., Lee H.M., Koo J., Kang S.K. Biodegradable Molybdenum/Polybutylene Adipate Terephthalate Conductive Paste for Flexible and Stretchable Transient Electronics. Adv. Mater. Technol. 2021;6:2001297. doi: 10.1002/admt.202001297. DOI
Terzopoulou Z., Papadopoulos L., Zamboulis A., Papageorgiou D.G., Papageorgiou G.Z., Bikiaris D.N. Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review. Polymers. 2020;12:1209. doi: 10.3390/polym12061209. PubMed DOI PMC
Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI
Pina S., Ferreira J.M.F. Bioresorbable plates and screws for clinical applications: A review. J. Healthc. Eng. 2012;3:243–260. doi: 10.1260/2040-2295.3.2.243. DOI
Middleton J.C., Tipton A.J. Synthetic Biodegradable Polymers as Orthopedic Devices. Biomaterials. 2000;21:2335–2346. doi: 10.1016/S0142-9612(00)00101-0. PubMed DOI
Shi X., Jing Z., Zhang G. Crystallization and Properties of Poly(Lactide)/Poly(δ-Valerolactone) Alternating Supramolecular Copolymers Adjusted by Stereocomplexation. ACS Omega. 2019;4:11145–11151. doi: 10.1021/acsomega.9b00380. PubMed DOI PMC
Srithep Y., Pholharn D., Akkaprasa T. Effect of Molecular Weight of Poly(L-Lactic Acid) on the Stereocomplex Formation between Enantiomeric Poly(Lactic Acid)s Blendings. IOP Conf. Ser. Mater. Sci. Eng. 2019;526:012024. doi: 10.1088/1757-899X/526/1/012024. DOI
Oyama H.T., Tanishima D., Ogawa R. Biologically Safe Poly(l-Lactic Acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties. Biomacromolecules. 2017;18:1281–1292. doi: 10.1021/acs.biomac.7b00016. PubMed DOI
Chakoli A.N. Poly(L-Lactide) Bionanocomposites. In: Varkey J.T., editor. Peptide Synthesis. IntechOpen; London, UK: 2019.
Puricelli C., Gigliotti C.L., Stoppa I., Sacchetti S., Pantham D., Scomparin A., Rolla R., Pizzimenti S., Dianzani U., Boggio E., et al. Use of Poly Lactic-Co-Glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation. Pharmaceutics. 2023;15:1772. doi: 10.3390/pharmaceutics15061772. PubMed DOI PMC
Taşkor Önel G. Synthesis of L-Ornithine- and L-Glutamine-Linked PLGAs as Biodegradable Polymers. Polymers. 2023;15:3998. doi: 10.3390/polym15193998. PubMed DOI PMC
Li S., Tian M., Wang J., Du F., Li L., Xue Z. Poly (Ethylene Oxide)-Based Block Copolymer Electrolytes Formed via Ligand-Free Iron-Mediated Atom Transfer Radical Polymerization. Polymers. 2020;12:763. doi: 10.3390/polym12040763. PubMed DOI PMC
Zhu K.J., Hendren R.W., Jensen K., Pitt C.G. Synthesis, Properties and Biodegradation of Poly(1,3-Trimethylene Carbonate) Macromolecules. 1991;24:1736–1740. doi: 10.1021/ma00008a008. DOI
Kim B.K., Seo J.W., Jeong H.M. Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. 2003;39:85–91. doi: 10.1016/S0014-3057(02)00173-8. DOI
Olivito F., Jagdale P., Oza G. Synthesis and Biodegradation Test of a New Polyether Polyurethane Foam Produced from PEG 400, L-Lysine Ethyl Ester Diisocyanate (L-LDI) and Bis-hydroxymethyl Furan (BHMF) Toxics. 2023;11:698. doi: 10.3390/toxics11080698. PubMed DOI PMC
Wu G., Song X., Yang Z., Li Y., Zhang H. Synthesis and Characterization of Biodegradable Polyester/Polyether WPU as the Environmental Protection Coating. J. Polym. Environ. 2022;30:528–540. doi: 10.1007/s10924-021-02221-3. DOI
Han J., Chen B., Ye L., Zhang A.-Y., Zhang J., Feng Z.-G. Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on L-lysine diisocyanate and L-lysine chain extender. J. Biomed. Mater. Res. Part A. 2011;96A:705–714. doi: 10.1002/jbm.a.33023. PubMed DOI
Storey R.F., Wiggins J.S., Puckett A.D. Hydrolysable poly(ester urethane) networks from L-lysine diisocyanate and D,L-lactide/ε-caprolactone homo- and copolyester triols. J. Polym. Sci. A Polym. Chem. 1994;32:2342–2345. doi: 10.1002/pola.1994.080321216. DOI
Lu Y., Tighzert L., Dole P., Erre D. Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer. 2005;46:9863–9870. doi: 10.1016/j.polymer.2005.08.026. DOI
Lu Y., Tighzert L., Berzin F., Rondot S. Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydr. Polym. 2005;61:174–182. doi: 10.1016/j.carbpol.2005.04.013. DOI
Siracusa V., Blanco I. Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in biobased polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers. 2020;12:1641. doi: 10.3390/polym12081641. PubMed DOI PMC
European Bioplastics Association . Bioplastics: Facts and Figures. European Bioplastics e.V.; Berlin, Germany: 2019.
Pinaeva L.G., Noskov A.S. Biodegradable Biopolymers: Real Impact to Environment Pollution. Sci. Total Environ. 2024;947:174445. doi: 10.1016/j.scitotenv.2024.174445. PubMed DOI
Tao J., Song C., Cao M., Hu D., Liu L., Liu N., Wang S. Thermal Properties and Degradability of Poly(Propylene Carbonate)/Poly(β-Hydroxybutyrate-Co-β-Hydroxyvalerate) (PPC/PHBV) Blends. Polym. Degrad. Stab. 2009;94:575–583. doi: 10.1016/j.polymdegradstab.2009.01.017. DOI
Arvanitoyannis I., Nakayama A., Aiba S. Edible Films Made from Hydroxypropyl Starch and Gelatin and Plasticized by Polyols and Water. Carbohydr. Polym. 1998;36:105–119. doi: 10.1016/S0144-8617(98)00017-4. DOI
Wei R., Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 2017;10:1302–1307. doi: 10.1111/1751-7915.12714. PubMed DOI PMC
Kurowiak J., Mackiewicz A., Klekiel T., Będziński R. Material Characteristic of an Innovative Stent for the treatment of Urethral Stenosis. Acta Mech. Autom. 2023;17:477–484. doi: 10.2478/ama-2023-0055. DOI
Zhang W., Kanwal F., Rehman M.F.U., Wan X. Efficacy of Biodegradable Polydioxanone and Polylactic Acid Braided Biodegrad able Biliary Stents for the Management of Benign Biliary Strictures. Turk. J. Gastroenterol. 2021;32:651–660. doi: 10.5152/tjg.2021.201174. PubMed DOI PMC
Loskot J., Jezbera D., Zmrhalová Z.O., Nalezinková M., Alferi D., Lelkes K., Voda P., Andrýs R., Fučíková A.M., Hosszú T., et al. A Complex In Vitro Degradation Study on Polydioxanone Biliary Stents during a Clinically Relevant Period with the Focus on RamanSpectroscopy Validation. Polymers. 2022;14:938. doi: 10.3390/polym14050938. PubMed DOI PMC
Miah M.R., Dong Y., Wang J., Zhu J. Recent Progress on Sustainable 2,5-Furandicarboxylate-Based Polyesters: Properties and Applications. ACS Sustain. Chem. Eng. 2024;12:2927–2961. doi: 10.1021/acssuschemeng.3c06878. DOI
Avérous L. Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. J. Macromol. Sci. Polym. Rev. 2004;C4:231–274. doi: 10.1081/MC-200029326. DOI
Takahashi M. Biodegradable, Dust-Capturing Hair Caps. 2002345541. JP Patent. 2001 May 29;
Tsai F.-J.D., Balogh B.A. Breathable, Biodegradable/Compostable Laminate for Disposable Personal Care Product. 2002053376. WO Patent. 2000 July 25;
Kawanaka S., Ueda A., Miyake M. Biodegradable Sanitary Products Containing Galactomannan-Based Water Absorbents. 2002035037. JP Patent. 2000 July 25;
Mueller D.H. Biodegradable nonwovens–natural and polymer fibers, technology, properties; Proceedings of the International Nonwovens Technical Conference; Baltimore, MD, USA. 15–18 September 2003.
Parikh D.V., Calamari T.A. Performance of Nonwoven Cellulosic Composites for Automotive Interiors. Int. Nonwovens J. 2000;9:83–85. doi: 10.1177/1558925000OS-900218. DOI
Yachmenev V.G., Parikh D.V., Calamari T.A., Jr. Thermal Insulation Properties of Biodegradable, Cellulosic-based Nonwoven Composites for Automotive Application. J. Ind. Text. 2002;31:283–296. doi: 10.1106/152808302029087. DOI
Takano N., Ryoichi Hane R., Nakano Y. Biodegradable Nonwoven Fabric Filtering Material for Sink Drain. 2005113278A. JP Patent. 2003 October 3;
Omori T. Biodegradable Pleated Filter Material and Filter Unit for Air Purification and Liquid Filtration. A-2003-299924. JP Patent. 2002 April 5;
Okada M. Chemical Syntheses of Biodegradable Polymers. Prog. Polym. Sci. 2002;27:87–133. doi: 10.1016/S0079-6700(01)00039-9. DOI
Rass-Hansen J., Falsig H., Jorgensen B., Christensen C.H.J. Bioethanol: Fuel or feedstock? Chem. Technol. Biotechnol. 2007;82:329–333. doi: 10.1002/jctb.1665. DOI
Rogovina S.Z., Aleksanyan K.V., Prut E.V. Biodegradable chitin and chitosan blends with synthetic polymers. Encycl. Chem. Eng. 2011;6:32–38.
Drumright R.E., Gruber P.R., Henton E.H. Polylactic Acid Technology. Adv. Mater. 2000;12:1841–1846. doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E. DOI
Hiljanen-Vainio M., Varpomaa P., Seppälä J., Törmälä P. Modification of Poly(L-Lactides) by Blending: Mechanical and Hydrolytic Behavior. Macromol. Chem. Phys. 1996;197:1503–1523. doi: 10.1002/macp.1996.021970427. DOI
Sarasua J.-R., Prud’homme R.E., Wisniewski M., Le Borgne A., Spassky N. Crystallization and Melting Behavior of Polylactides. Macromolecules. 1998;31:3895–3905. doi: 10.1021/ma971545p. DOI
Tsuji H., Ikada Y. Crystallization from the Melt of Poly(Lactide)s with Different Optical Purities and Their Blends. Macromol. Chem. Phys. 1996;197:3483–3499. doi: 10.1002/macp.1996.021971033. DOI
Nakamura C.E., Whited G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 2003;14:454–459. doi: 10.1016/j.copbio.2003.08.005. PubMed DOI
Kluge M., Perocheau Arnaud S., Robert T. 1,3-Propanediol and its application in bio-based polyesters for resin applications. Chem. Afr. 2018;2:215–221. doi: 10.1007/s42250-018-0026-4. DOI
Ma G.-Q., Sun Z.-B., Ren J.-Y., Zeng Y., Jia D.-Z., Li Y., Guan B., Zhong G.-J., Li Z.-M. Reorganization of Hydrogen Bonding in Biobased Polyamide 5,13 under the Thermo-Mechanical Field: Hierarchical Microstructure Evolution and Achieving Excellent Mechanical Performance. Biomacromolecules. 2022;23:3990–4003. doi: 10.1021/acs.biomac.2c00826. PubMed DOI
Iglesias J., Martínez-Salazar I., Maireles-Torres P., Martin Alonso D., Mariscal R., López Granados M. Advances in Catalytic Routes for the Production of Carboxylic Acids from Biomass: A Step Forward for Sustainable Polymers. Chem. Soc. Rev. 2020;49:5704–5771. doi: 10.1039/D0CS00177E. PubMed DOI
Maurya A., Bhattacharya A., Khare S.K. Enzymatic remediation of polyethylene terephthalate (PET)-based polymers for effective management of plastic wastes: An overview. Front. Bioeng. Biotechnol. 2020;8:602325. doi: 10.3389/fbioe.2020.602325. PubMed DOI PMC
Pillai C.K.S., Sharma C.P. Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. J. Biomater. Appl. 2010;25:291–366. doi: 10.1177/0885328210384890. PubMed DOI
Ikada Y., Tsuji H. Biodegradable Polyesters for Medical and Ecological Applications. Macromol. Rapid Commun. 2000;21:117–132. doi: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X. DOI
Sinisaari I. Ph.D. Thesis. Helsingin Yliopisto; Helsinki, Finland: 2004. Infections and Bioabsorbable Implants in Orthopedic and Trauma Surgery—With Special Reference to the Treatment of Ankle Fractures.
Holland S.J., Tighe B.J., Gould P.L. Polymers for Biodegradable Medical Devices. I. The Potential of Polyesters as Controlled Macromolecular Release Systems. J. Control. Release. 1986;4:155–180. doi: 10.1016/0168-3659(86)90001-5. DOI
Blasi P. Poly(Lactic Acid)/Poly(Lactic-Co-Glycolic Acid)-Based Microparticles: An Overview. J. Pharm. Investig. 2019;49:337–346. doi: 10.1007/s40005-019-00453-z. DOI
Langer R. New Methods of Drug Delivery. Science. 1990;249:1527–1533. doi: 10.1126/science.2218494. PubMed DOI
Wang H.T., Palmer H., Linhardt R.J., Flanagan D.R., Schmitt E. Degradation of Poly(ester) Microspheres. Biomaterials. 1990;11:679–685. doi: 10.1016/0142-9612(90)90026-M. PubMed DOI
Liu Y.-Y., Fernández Blázquez J.P., Yin G.-Z., Wang D.-Y., Llorca J., Echeverry-Rendón M. A Strategy to Tailor the Mechanical and Degradation Properties of PCL-PEG-PCL Based Copolymers for Biomedical Application. Polymers. 2023;15:1234. doi: 10.1016/j.eurpolymj.2023.112388. DOI
Dobrzyńska-Mizera M., Dodda J.M., Liu X., Knitter M., Oosterbeek R.N., Salinas P., Pozo E., Ferreira A.M., Sadiku E.R. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv. Healthc. Mater. 2024;13:2301674. doi: 10.1002/adhm.202401674. PubMed DOI PMC
Xu Y., Saiding Q., Zhou X., Wang J., Cui W., Chen X. Electrospun Fiber-Based Immune Engineering in Regenerative Medicine. Smart Med. 2024;3:100034. doi: 10.1002/SMMD.20230034. PubMed DOI PMC
Zhang M., Xu S., Wang R., Che Y., Han C., Feng W., Wang C., Zhao W. Electrospun Nanofiber/Hydrogel Composite Materials and Their Tissue Engineering Applications. J. Mater. Sci. Technol. 2023;162:157–178. doi: 10.1016/j.jmst.2023.04.015. DOI
Kurowiak J., Klekiel T., Będziński R. Biodegradable Polymers in Biomedical Applications: A Review—Developments, Perspectives and Future Challenges. Int. J. Mol. Sci. 2023;24:16952. doi: 10.3390/ijms242316952. PubMed DOI PMC
Gomzyak V.I., Demina V.A., Razuvaeva E.V., Sedush N.G., Chvalun S.N. Biodegradable Polymer Materials for Medical Applications: From Implants to Organs. Fine Chem. Technol. 2017;12:5–20. doi: 10.32362/2410-6593-2017-12-5-5-20. DOI
Martins J.A., Lach A.A., Morris H.L., Carr A.J., Mouthuy P.A. Polydioxanone implants: A systematic review on safety and performance in patients. J Biomater Appl. 2020;34:902–916. doi: 10.1177/0885328219888841. PubMed DOI PMC
Reed A.M., Gilding D.K. Biodegradable Polymers for Use in Surgery—Poly(glycolic)/Poly(lactic acid) Homo- and Copolymers: 2. In Vitro Degradation. Polymer. 1981;22:342–352.
Boden S.D. Bioactive Factors for Bone Tissue Engineering. Clin. Orthop. Relat. Res. 1999;367S:S84–S94. doi: 10.1097/00003086-199910001-00009. PubMed DOI
Khardenavis A.A., Kumar M.S., Mudliar S.N., Chakrabarti T. Biotechnological Conversion of Agro-Industrial Wastewaters into Biodegradable Plastic, Poly β-Hydroxybutyrate. Bioresour. Technol. 2007;98:3579–3584. doi: 10.1016/j.biortech.2006.11.024. PubMed DOI
Sinha Ray S., Okamoto M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003;28:1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002. DOI
Sinha Ray S., Okamoto M. New Polylactide/Layered Silicate Nanocomposites. Part 6. Macromol. Mater. Eng. 2003;288:936–944. doi: 10.1002/mame.200300156. DOI
Krikorian V., Pochan D.J. Poly(L-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties. Chem. Mater. 2003;15:4317–4324. doi: 10.1021/cm034369+. DOI
Maiti P., Yamada K., Okamoto M., Ueda K., Okamoto K. New Polylactide/Layered Silicate Nanocomposites: Role of Organoclays. Chem. Mater. 2002;14:4654–4661. doi: 10.1021/cm020391b. DOI
Fujimoto Y., Sinha Ray S., Okamoto M., Ogami A., Yamada K., Ueda K. Well-Controlled Biodegradable Nanocomposite Foams: From Microcellular to Nanocellular. Macromol. Rapid Commun. 2003;24:457–461. doi: 10.1002/marc.200390068. DOI
Sarazin P., Roy X., Favis B.D. Controlled Preparation and Properties of Porous Poly(L-Lactide) Obtained from a Co-Continuous Blend of Two Biodegradable Polymers. Biomaterials. 2004;25:5965–5978. doi: 10.1016/j.biomaterials.2004.01.065. PubMed DOI
Vert M., Schwarch G., Coudane J. Present and Future of PLA Polymers. J. Macromol. Sci. A. 1995;32:787–796. doi: 10.1080/10601329508010289. DOI
Hoogsteen W., Postema A.R., Pennings A.J., Ten Brinke G., Zugenmaier P. Crystal Structure, Conformation, and Morphology of Solution-Spun Poly(L-Lactide) Fibers. Macromolecules. 1990;23:634–642. doi: 10.1021/ma00204a041. DOI
Mainil-Varlet P., Rahm R., Gogolewski S. Long-Term In Vivo Degradation and Bone Reaction to Various Polylactides. Biomaterials. 1997;18:257–266. doi: 10.1016/S0142-9612(96)00126-3. PubMed DOI
Vert M., Li S.M., Spenlehauer G., Guerin P. Bioresorbability and Biocompatibility of Aliphatic Polyesters. J. Mater. Sci. Mater. Med. 1992;3:432–446. doi: 10.1007/BF00701240. DOI
Duncan R., Kopeček J. Soluble Synthetic Polymers as Potential Drug Carriers. Adv. Polym. Sci. 1984;57:51–101.
Kopitar D., Marasovic P., Jugov N., Schwarz I. Biodegradable Nonwoven Agrotextile and Films—A Review. Polymers. 2022;14:2272. doi: 10.3390/polym14112272. PubMed DOI PMC
Kiselevsky M.V., Sitdikova S.M., Tenchurin T.K., Khomchenko A.Y. Contemporary Approaches and Perspectives to Creation of Tracheal Bioimplants. Russ. Biother. J. 2014;13:127–131.
Rodina A.V., Tenchurin T.K., Saprykin V.P., Shepelev A.D., Mamagulashvili V.G., Grigor’ev T.E., Lukanina K.I., Orekhov A.S., Moskaleva E.Y., Chvalun S.N. Migration and Proliferative Activity of Mesenchymal Stem Cells in 3D Polylactide Scaffolds Depends on Cell Seeding Technique and Collagen Modification. Bull. Exp. Biol. Med. 2016;162:120–126. doi: 10.1007/s10517-016-3560-6. PubMed DOI
Xu F., Wang H., Zhang J., Jiang L., Zhang W., Hu Y. A Facile Design of EGF Conjugated PLA/Gelatin Electrospun Nanofibers for Nursing Care of In Vivo Wound Healing Applications. J. Ind. Text. 2020;51:152808372097634. doi: 10.1177/1528083720976348. DOI
Zheng J., Northrup S.R., Hornsby P.J. Modification of materials formed from poly(L-lactic acid) to enable covalent binding of biopolymers: Application to high-density three-dimensional cell culture in foams with attached collagen. Vitr. Cell Dev. Biol.—Anim. 1998;34:679–684. doi: 10.1007/s11626-998-0063-4. PubMed DOI
Mikos A.G., Thorsen A.J., Czerwonka L.A., Bao Y., Langer R., Winslow D.N., Vacanti J.P. Preparation and characterization of poly(L-lactic acid) foams. Polymer. 1994;35:1068–1077. doi: 10.1016/0032-3861(94)90953-9. DOI
Whang K., Thomas C.H., Healy K.E., Nuber G.A. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36:837–842. doi: 10.1016/0032-3861(95)93115-3. DOI
Nam Y.S., Yoon J.J., Park T.G. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J. Biomed. Mater. Res. Part A. 2000;53:1–7. doi: 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R. PubMed DOI
Mooney D.J., Baldwin D.F., Suh N.P., Vacanti J.P., Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996;17:1417–1422. doi: 10.1016/0142-9612(96)87284-X. PubMed DOI
van de Witte P., Esselbrugge H., Dijkstra P.J., van den Berg J.W.A., Feijen J. A morphological study of membranes obtained from the systems polylactide-dioxane-methanol, polylactide-dioxane-water, and polylactide-N-methyl-2-pyrrolidone-water. J. Polym. Sci. Part B: Polym. Phys. 1996;34:2569–2577. doi: 10.1002/(SICI)1099-0488(19961115)34:15<2569::AID-POLB4>3.0.CO;2-O. DOI
Aslan S., Calandrelli L., Laurenzio P., Malinconico M., Migliaresi C. Poly(D,L-lactic acid)/poly(ε-caprolactone) blends membranes: Preparation and morphological characterisation. J. Mater. Sci. 2000;35:1615–1622. doi: 10.1023/A:1004787326273. DOI
Zoppi R.A., Contant S., Duek E.A.R., Marques F.R., Wada M.L.F., Nunes S.P. Porous poly(L-lactide) films obtained by immersion precipitation process: Morphology, phase separation and culture of VERO cells. Polymer. 1999;40:3275–3289. doi: 10.1016/S0032-3861(98)00562-X. DOI
Hua F.J., Kim G.E., Lee J.D., Son Y.K., Lee D.S. Macroporous Poly(L-Lactide) Scaffold 1. Preparation of a Macroporous Scaffold by Liquid-Liquid Phase Separation of a PLLA-Dioxane-Water System. J. Biomed. Mater. Res. 2002;63:161–167. doi: 10.1002/jbm.10121. PubMed DOI
Tsuji H., Smith R., Bonfield W., Ikada Y. Porous biodegradable polyesters. I. Preparation of porous poly(L-lactide) films by extraction of poly(ethylene oxide) from their blends. J. Appl. Polym. Sci. 2000;75:629–637. doi: 10.1002/(SICI)1097-4628(20000131)75:5<629::AID-APP5>3.0.CO;2-A. DOI
Shastri V.P., Martin I., Langer R. Macroporous polymer foams by hydrocarbon templating. Proc. Natl. Acad. Sci. USA. 2000;97:1970–1975. doi: 10.1073/pnas.97.5.1970. PubMed DOI PMC
Lukanina K.I., Shepelev A.D., Budyka A.K. Synthesis of ultrafine fibers from L- and D,L-isomers of polylactide by electrospinning. Fibre Chem. 2012;43:332–338. doi: 10.1007/s10692-012-9357-0. DOI
Sytina E.V., Tenchurin T.K., Rudyak S.G., Saprykin V.P., Romanova O.A., Orehov A.S., Vasiliev A.L., Alekseev A.A., Chvalun S.N., Paltsev M.A., et al. Comparative biocompatibility of nonwoven polymer scaffolds obtained by electrospinning and their use for development of 3D dermal equivalents. Mol. Meditsina (Mol. Med.) 2014;6:38–47.
Whang K., Healy K.E., Elenz D.R., Nam E.K., Tsai D.C., Thomas C.H., Nuber G.W., Glorieux F.H., Travers R., Sprague S.M. Engineered bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng. 1999;5:35–51. doi: 10.1089/ten.1999.5.35. PubMed DOI
Boyan B.D., Lohmann C.H., Romero J., Schwartz Z. Bone and cartilage tissue engineering. Tissue Eng. 1999;94:627–645. doi: 10.1016/S0094-1298(20)32662-6. PubMed DOI
Cornell C.N. Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop. Clin. N. Am. 1999;30:591–598. doi: 10.1016/S0030-5898(05)70112-7. PubMed DOI
Nilawar S., Uddin M., Chatterjee K. Surface engineering of biodegradable implants: Emerging trends in bioactive ceramic coatings and mechanical treatments. Mater. Adv. 2021;2:7820–7841. doi: 10.1039/D1MA00733E. DOI
Amini A.R., Wallace J.S., Nukavarapu S.P. Short-Term and Long-Term Effects of Orthopedic Biodegradable Implants. J. Long Term Eff. Med. Implant. 2012;21:93–122. doi: 10.1615/JLongTermEffMedImplants.v21.i2.10. PubMed DOI PMC
Godavitarne C., Robertson A., Peters J., Rogers B. Biodegradable materials. Orthop. Trauma. 2017;31:316–320. doi: 10.1016/j.mporth.2017.07.011. DOI
Athanasiou K.A., Agrawal C.E., Barber F.A., Burkhart S.S. Orthopaedic applications for PLA/PGA biodegradable polymers. Arthrosc. J. Arthrosc. Relat. Surg. 1998;14:726–737. doi: 10.1016/S0749-8063(98)70099-4. PubMed DOI
Wang E.A., Rosen V., D’Alessandro J.S., Bauduy M., Cordes P., Harada T., Isreal D.I., Hewick R.M., Kerns K.M., LaPan P., et al. Recombinant human bone morphogenic protein induces bone formation. Proc. Natl. Acad. Sci. USA. 1990;87:2220–2224. doi: 10.1073/pnas.87.6.2220. PubMed DOI PMC
Ramchandani M., Robinson D. In vitro release of ciprofloxacin from PLGA 50:50 implants. J. Control. Release. 1998;54:167–175. doi: 10.1016/S0168-3659(97)00113-2. PubMed DOI
Yoshie N., Nakasato K., Fujiwara M., Kasuya K., Abe H., Doi Y., Inoue Y. Effect of low molecular weight additives on enzymatic degradation of poly(3-hydroxybutyrate) Polymer. 2000;41:3227–3234. doi: 10.1016/S0032-3861(99)00547-9. DOI
Chen G.Q., Wu Q., Wang Y., Zheng Z. Application of microbial polyesters-polyhydroxyalkanoates as tissue engineering materials. Key Eng. Mater. 2005;288–289:437–440. doi: 10.4028/www.scientific.net/KEM.288-289.437. DOI
Koller M. Biodegradable and biocompatible polyhydroxyalkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018;23:362. doi: 10.3390/molecules23020362. PubMed DOI PMC
Patel S.K.S., Kumar P., Singh M., Lee J.-K., Kalia V.C. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour. Technol. 2015;176:136–141. doi: 10.1016/j.biortech.2014.11.029. PubMed DOI
Yadav B., Pandey A., Kumar L.R., Tyagi R.D. Bioconversion of Waste (Water)/Residues to Bioplastics—A Circular Bioeconomy Approach. Bioresour. Technol. 2019;298:122584. doi: 10.1016/j.biortech.2019.122584. PubMed DOI
Keshavarz T., Roy I. Polyhydroxyalkanoates: Bioplastics with a Green Agenda. Curr. Opin. Microbiol. 2010;13:321–326. doi: 10.1016/j.mib.2010.02.006. PubMed DOI
Zhang R., Ma P.X. Biomimetic Polymer/Apatite Composite Scaffolds for Mineralized Tissue Engineering. Macromol. Biosci. 2004;4:100–111. doi: 10.1002/mabi.200300017. PubMed DOI
Bendix D. Chemical Synthesis of Polylactide and Its Copolymers for Medical Applications. Polym. Degrad. Stabil. 1998;59:129–135. doi: 10.1016/S0141-3910(97)00149-3. DOI
Amass W., Amass A., Tighe B. A Review of Biodegradable Polymers: Uses, Current Developments in the Synthesis and Characterization of Biodegradable Polyesters, Blends of Biodegradable Polymers and Recent Advances in Biodegradation Studies. Polym. Int. 1998;47:89–144. doi: 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F. DOI
Kallela I., Iizuka T., Salo A., Lindqvist C. Lag-Screw Fixation of Anterior Mandibular Fractures Using Biodegradable Polylactide Screws: A Preliminary Report. J. Oral Maxillofac. Surg. 1999;57:113–118. doi: 10.1016/S0278-2391(99)90220-3. PubMed DOI
Kesenci K., Fambri L., Migliaresi C., Piskin E. Preparation and Properties of Poly(L-lactide)/Hydroxyapatite Composites. J. Biomater. Sci. Polym. Ed. 2000;11:617–632. doi: 10.1163/156856200743904. PubMed DOI
Ignjatovic N., Uskokovic D. Synthesis and Application of Hydroxyapatite/Polylactide Composite Biomaterial. Appl. Surf. Sci. 2004;238:314–319. doi: 10.1016/j.apsusc.2004.05.227. DOI
Baimark Y., Molloy R., Molloy N., Siripitayananon J., Punyodom W., Sriyai M. Synthesis, Characterization and Melt Spinning of a Block Copolymer of L-lactide and ε-Caprolactone for Potential Use as an Absorbable Monofilament Surgical Suture. J. Mater. Sci. Mater. Med. 2005;16:699–707. doi: 10.1007/s10856-005-2605-6. PubMed DOI
Viinikainen A., Goransson H., Huovinen K., Kellomaki M., Tormala P., Rokkanen P. Material and Knot Properties of Braided Polyester (Ticron®) and Bioabsorbable Poly-L/D-lactide (PLDLA) 96/4 Sutures. J. Mater. Sci. Mater. Med. 2006;17:169–177. doi: 10.1007/s10856-006-6821-5. PubMed DOI
Roether J.A., Boccaccini A.R., Hench L.L., Maquet V., Gautier S., Jerome R. Development and In Vitro Characterisation of Novel Bioresorbable and Bioactive Composite Materials Based on Polylactide Foams and Bioglass for Tissue Engineering Applications. Biomaterials. 2002;23:3871–3878. doi: 10.1016/S0142-9612(02)00131-X. PubMed DOI
Boccaccini A.R., Blaker J.J., Maquet V., Day R.M., Jerome R. Preparation and Characterisation of Poly(Lactide-co-Glycolide) (PLGA) and PLGA/Bioglass Composite Tubular Foam Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng. C. 2005;25:23–31. doi: 10.1016/j.msec.2004.03.002. DOI
Blaker J.J., Gough J.E., Maquet V., Notingher I., Boccaccini A.R. In Vitro Evaluation of Novel Bioactive Composites Based on Bioglass-Filled Polylactide Foams for Bone Tissue Engineering Scaffolds. J. Biomed. Mater. Res. Part A. 2003;67A:1401–1411. doi: 10.1002/jbm.a.20055. PubMed DOI
Van Bochove B., Grijpma D.W. Photo-Crosslinked Synthetic Biodegradable Polymer Networks for Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2018;30:77–106. doi: 10.1080/09205063.2018.1553105. PubMed DOI
Luchese C.L., Sperotto N., Spada J.C., Tessaro I.C. Effect of Blueberry Agro-Industrial Waste Addition to Corn Starch-Based Films for the Production of a pH-Indicator Film. Int. J. Biol. Macromol. 2017;104:11–18. doi: 10.1016/j.ijbiomac.2017.05.149. PubMed DOI
Shogren R.L., Fanta G.F., Doane W.M. Development of Starch-Based Plastics—A Reexamination of Selected Polymer Systems in Historical Perspective. Staerke. 1993;45:276–280. doi: 10.1002/star.19930450806. DOI
Song J.H., Murphy R.J., Narayan R., Davies G.B.H. Biodegradable and Compostable Alternatives to Conventional Plastics. Phil. Trans. R. Soc. B. 2009;364:2127–2139. doi: 10.1098/rstb.2008.0289. PubMed DOI PMC
Engler L., Farias N.C., Crespo J.S., Gately N.M., Major I., Pezzoli R., Devine D.M. Designing sustainable polymer blends: Tailoring mechanical properties and degradation behaviour in PHB/PLA/PCL blends in a seawater environment. Polymers. 2023;15:2874. doi: 10.3390/polym15132874. PubMed DOI PMC
Maraveas C. Environmental Sustainability of Greenhouse Covering Materials. Sustainability. 2019;11:6129. doi: 10.3390/su11216129. DOI
Yuen C.B., Chong H.L., Kwok M.H., Ngai T. Natural Polymer-Based Food Packaging: Paving the Way to a Greener Future—A Review. Sustain. Food Technol. 2025;3:908–929. doi: 10.1039/D5FB00021A. DOI
Chiumarelli M., Hubinger D. Stability, Solubility, Mechanical and Barrier Properties of Cassava Starch–Carnauba Wax Edible Coatings to Preserve Fresh-Cut Apples. Food Hydrocoll. 2012;28:59–67. doi: 10.1016/j.foodhyd.2011.12.006. DOI
Ayhllon-Meixueiro F., Vaca-Garcia C., Silvestre F.J. Biodegradable Films from Isolate of Sunflower (Helianthus annuus) Proteins. Agric. Food Chem. 2000;48:3032–3036. doi: 10.1021/jf9907485. PubMed DOI
Benito-González I., López-Rubio A., Martínez-Sanz M. High-Performance Starch Biocomposites with Celullose from Waste Biomass: Film Properties and Retrogradation Behaviour. Carbohydr. Polym. 2019;216:180–188. doi: 10.1016/j.carbpol.2019.04.030. PubMed DOI
Krupp L.R., Jewel W.J. Biodegradability of Modified Plastic Films in Controlled Biological Environment. Environ. Technol. 1992;26:193–198. doi: 10.1021/es00025a024. DOI
Ragaert K., Delva L., Van Geem K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044. PubMed DOI
Sanchez A.C., Popineau Y., Mangavel C., Larre C., Gueguen J. Effect of Different Plasticizers on the Mechanical and Surface Properties of Wheat Gliadin Films. J. Agric. Food Chem. 1998;46:4539–4544. doi: 10.1021/jf980375s. DOI
Gennadios A., Brandenburg A.H., Weller C.L., Testin R.F. Effect of pH on Properties of Wheat Gluten and Soy Protein Isolate Films. J. Agric. Food Chem. 1993;41:1835–1839. doi: 10.1021/jf00035a006. DOI
Shaikh S., Yaqoob M., Aggarwal P. An Overview of Biodegradable Packaging in Food Industry. Curr. Res. Food Sci. 2021;4:503–520. doi: 10.1016/j.crfs.2021.07.005. PubMed DOI PMC
Bauer A.S., Leppik K., Galić K., Anestopoulos I., Panayiotidis M.I., Agriopoulou S., Milousi M., Uysal-Unalan I., Varzakas T., Krauter V. Cereal and Confectionary Packaging: Background, Application and Shelf-Life Extension. Foods. 2022;11:697. doi: 10.3390/foods11050697. PubMed DOI PMC
Salgado P.R., Di Giorgio L., Musso Y.S., Mauri A.N. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. Front. Sustain. Food Syst. 2021;5:630393. doi: 10.3389/fsufs.2021.630393. DOI
Brandenburg A.H., Weller C.L., Testin R.F. Edible Films and Coatings from Soy Proteins. J. Food Sci. 1993;58:1086–1089. doi: 10.1111/j.1365-2621.1993.tb06120.x. DOI
Pablo R., Salgado V.C., Schmidt S.E., Molina O., Mauri A.N., Joao B.L. Biodegradable Foams Based on Cassava Starch, Sunflower Proteins, and Cellulose Fibers Obtained by a Baking Process. J. Food Eng. 2007;85:435–443.
Di Liberto E.A., Dintcheva N.T. Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Polymers. 2024;16:568. doi: 10.3390/polym16050568. PubMed DOI PMC
Chaudhary V., Punia Bangar S., Thakur N., Trif M. Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers. 2022;14:829. doi: 10.3390/polym14040829. PubMed DOI PMC
Piergiovanni L., Limbo S. Food Packaging Materials. Springer; Cham, Switzerland: 2020. Plastic Packaging Materials. Springer Briefs in Molecular Science. DOI
Barikani M., Oliaei E., Seddiqi H., Honarkar H. Preparation and Application of Chitin and Its Derivatives: A Review. Iran Polym J. 2014;23:307–326. doi: 10.1007/s13726-014-0225-z. DOI
Shamshina J.L., Kelly A., Oldham T., Rogers R.D. Agricultural Uses of Chitin Polymers. Environ. Chem. Lett. 2020;18:53–60. doi: 10.1007/s10311-019-00934-5. DOI
Plackett D., Andersen T.L., Pedersen W.B., Nielsen L. Biodegradable Composites Based on Polylactide and Jute Fibres. Compos. Sci. Technol. 2003;63:1287–1296. doi: 10.1016/S0266-3538(03)00100-3. DOI
Ray S.S., Yamada K., Okamoto M., Fujimoto Y., Ogami A., Ueda K. New Polylactide/Layered Silicate Nanocomposites. 5. Designing of Materials with Desired Properties. Polymer. 2003;44:6633–6646. doi: 10.1016/j.polymer.2003.08.021. DOI
Okamoto M. Biodegradable Polymer/Layered Silicate Nanocomposites: A Review. In: Mallapragada S.K., Narasimhan B., editors. Handbook of Biodegradable Polymeric Materials and Their Applications. Volume 1. American Scientific Publishers; Stevenson Ranch, CA, USA: 2005. pp. 1–45.
Paul M.A., Delcourt C., Alexandre M., Degege P., Monteverde F., Dubois P. Polylactide/Montmorillonite Nanocomposites: Study of the Hydrolytic Degradation. Polym. Degrad. Stab. 2005;87:535–542. doi: 10.1016/j.polymdegradstab.2004.10.011. DOI
Pluta M. Morphology and Properties of Polylactide Modified by Thermal Treatment, Filling with Layered Silicates and Plasticization. Polymer. 2004;45:8239–8251. doi: 10.1016/j.polymer.2004.09.057. DOI
Nakajima-Kambe T., Shigeno-Akutsu Y., Nomura N., Onuma F., Nakahara T. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol. 1999;51:134–140. doi: 10.1007/s002530051373. PubMed DOI
Elsabee M.Z., Abdou E.S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. C. 2013;33:1819–1841. doi: 10.1016/j.msec.2013.01.010. PubMed DOI
Tharanathan R.N. Biodegradable Films and Composite Coatings: Past, Present and Future. Trends Food Sci. Technol. 2003;14:71–78. doi: 10.1016/S0924-2244(02)00280-7. DOI
Felton L.A. Mechanisms of Polymeric Film Formation. Int. J. Pharm. 2013;456:423–427. doi: 10.1016/j.ijpharm.2012.12.027. PubMed DOI
Devi L.S., Jaiswal A.K., Jaiswal S. Lipid Incorporated Biopolymer Based Edible Films and Coatings in Food Packaging: A Review. Curr. Res. Food Sci. 2024;8:100720. doi: 10.1016/j.crfs.2024.100720. PubMed DOI PMC
Syamaladevi R.M., Tang J., Villa-Rojas R., Sablani S.S., Carter B., Campbell G. Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2016;15:353–370. doi: 10.1111/1541-4337.12190. PubMed DOI
Teixeira S.C., de Oliveira T.V., de Fátima Ferreira Soares N., Raymundo-Pereira P.A. Sustainable and Biodegradable Polymer Packaging: Perspectives, Challenges, and Opportunities. Food Chem. 2025;470:142652. doi: 10.1016/j.foodchem.2024.142652. PubMed DOI
Tabassum N., Rafique U., Qayyum M., Mohammed A.A.A., Asif S., Bokhari A. Kaolin–Polyvinyl Alcohol–Potato Starch Composite Films for Environmentally Friendly Packaging: Optimization and Characterization. J. Compos. Sci. 2024;8:29. doi: 10.3390/jcs8010029. DOI
Shukla R., Cheryan M. Zein: The industrial protein from corn. Ind. Crops Prod. 2001;13:171–192. doi: 10.1016/S0926-6690(00)00064-9. DOI
Luís Â., Domingues F., Ramos A. Production of Hydrophobic Zein-Based Films Bioinspired by The Lotus Leaf Surface: Characterization and Bioactive Properties. Microorganisms. 2019;7:267. doi: 10.3390/microorganisms7080267. PubMed DOI PMC
Ribeiro I.S., Maciel G.M., Bortolini D.G., Fernandes I.D.A.A., Maroldi W.V., Pedro A.C., Rubio F.T.V., Haminiuk C.W.I. Sustainable Innovations in Edible Films and Coatings: An Overview. Trends Food Sci. Technol. 2024;143:104272. doi: 10.1016/j.tifs.2023.104272. DOI
Ukhartseva I.Y. Modern Trends in the Use of High-Molecular Compounds in the Creation of Packaging Materials for Food Products (Review) International Polymer Science and Technology. 2014;42:57–64. doi: 10.1177/0307174X1504201111. DOI
Savitskaya T.A. Edible Polymer Films and Coatings: History and Current State (Review) Polym. Mater. Technol. 2016;2:6–36.
Goldade V.A. Modern Trends in the Development of Polymer Film Packaging. Polym. Mater. Technol. 2015;1:65–70.
Bai J., Alleyne V., Hagenmaier R.D., Mattheis J.P., A Baldwin E. Formulation of Zein Coatings for Apples (Malus domestica Borkh) Postharvest Biol. Technol. 2003;28:259–268. doi: 10.1016/S0925-5214(02)00182-5. DOI
Ribeiro C., Vicente A.A., Teixeira J.A., Miranda C. Optimization of Edible Coating Composition to Retard Strawberry Fruit Senescence. Postharvest Biol. Technol. 2007;44:63–70. doi: 10.1016/j.postharvbio.2006.11.015. DOI
Rojas-Grau M.A., Raybaudi-Massilia R.M., Soliva-Fortuny R.C., Avena Bustillos R.D., Mc Hugh T.H., Martin-Belloso O. Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples. Postharvest Biol. Technol. 2007;45:254–264. doi: 10.1016/j.postharvbio.2007.01.017. DOI
Talens P., Pérez-Masía R., Fabra M.J., Vargas M., Chiralt A. Application of Edible Coatings to Partially Dehydrated Pineapple for Use in Fruit–Cereal Products. J. Food Eng. 2012;112:86–93. doi: 10.1016/j.jfoodeng.2012.03.022. DOI
de Aquino A.B., Blank A.F., de Aquino Santana L.C.L. Impact of Edible Chitosan–Cassava Starch Coatings Enriched with Lippia gracilis Schauer Genotype Mixtures on the Shelf Life of Guavas (Psidium guajava L.) During Storage at Room Temperature. Food Chem. 2015;171:108–116. doi: 10.1016/j.foodchem.2014.08.077. PubMed DOI
Tapia M.S., Rojas-Graü M.A., Carmona A., Rodríguez F.J., Soliva-Fortuny R., Martin-Belloso O. Use of alginate-and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocoll. 2008;22:1493–1503. doi: 10.1016/j.foodhyd.2007.10.004. DOI
Salmieri S., Lacroix M. Physicochemical Properties of Alginate/Polycaprolactone-Based Films Containing Essential Oils. J. Agric. Food Chem. 2006;54:10205–10214. doi: 10.1021/jf062127z. PubMed DOI
Ukhartseva I., Kadolich Z., Tsvetkova E. Modern Packaging for Food Products. Packag. Contain. 2016;2:18–23.
Shulga O.S., Petrusha O.A. Effect of Gelatin on the Properties of Edible Films and Coatings from Potato Starch. Polym. Mater. Technol. 2017;3:64–70.
Ukhartseva I., Goldade V., Tsvetkova E. Food Packaging: Trends and Prospects. LAP Lambert Academic Publishing; Saarbrücken, Germany: Omni Scriptum GmbH & Co. KG; Dusseldorf, Germany: 2019. 251p
Bartolucci L., Cordiner S., De Maina E., Kumar G., Mele P., Mulone V., Igliński B., Piechota G. Sustainable Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers. Int. J. Mol. Sci. 2023;24:7696. doi: 10.3390/ijms24097696. PubMed DOI PMC
Dietrich T., Del Carmen Villaran Velasco M., Echeverría P.J., Pop B., Rusu A. Alternatives for Valorization of Green Wastes. Elsevier; San Diego, CA, USA: 2016. Biotransformation of Agricultural Waste and By-Products: The Food, Feed, Fibre, Fuel (4F) Economy. Crop and Plant Biomass as Valuable Material for BBB.
Maraveas C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers. 2020;12:1127. doi: 10.3390/polym12051127. PubMed DOI PMC
Shabarin A.A., Kuzmin A.M., Vodyakov V.N., Shabarin I.A. Development of Biodegradable Composite Materials Based on Polyolefins and Sunflower Seed Husk. Izvestiya Vysshikh Uchebnykh Zavedenii. Chem. Chem. Technol. 2021;4:73–76. doi: 10.6060/ivkkt.20216404.6283. DOI
Nunes L.A., Silva M.L.S., Gerber J.Z., Kalid R.D.A. Waste Green Coconut Shells: Diagnosis of the Disposal and Applications for Use in Other Products. J. Clean. Prod. 2020;255:120169. doi: 10.1016/j.jclepro.2020.120169. DOI
Mose B.R., Maranga S.M. A Review on Starch Based Nanocomposites for Bioplastic Materials. J. Mat. Sci. Eng. B. 2011;1:239–245.
Mathiot C., Ponge P., Gallard B., Sassi J., Delrue F., Le N., Niu B., Shao P., Chen H., Sun P. Microalgae Starch-Based Bioplastics: Screening of Ten Strains and Plasticization of Unfractionated Microalgae by Extrusion. Carbohydr. Polym. 2019;208:142–151. doi: 10.1016/j.carbpol.2018.12.057. PubMed DOI
Utoiu E., Manoiu V.S., Oprita E.I., Craciunescu O. Bacterial Cellulose: A Sustainable Source for Hydrogels and 3D-Printed Scaffolds for Tissue Engineering. Gels. 2024;10:387. doi: 10.3390/gels10060387. PubMed DOI PMC
Magar S.P., Ingle A.B., Ganorkar R.N. Production of Bioplastic (PHA) from Emulsified Cotton Seed Oil Medium by Ralstonia spp. Int. J. Eng. Res. Gen. Sci. 2015;3:436–441.
Park D.H., Kim B.S. Production of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from Soybean Oil. New Biotechnol. 2011;28:719–724. doi: 10.1016/j.nbt.2011.01.007. PubMed DOI
Wong Y.-M., Brigham C.J., Rha C.K., Sinskey A.J., Sudesh K. Biosynthesis and Characterization of Polyhydroxyalkanoate Containing High 3-Hydroxyhexanoate Monomer Fraction from Crude Palm Kernel Oil by Recombinant Cupriavidus necator. Bioresour. Technol. 2012;121:320–327. doi: 10.1016/j.biortech.2012.07.015. PubMed DOI
Govil T., Wang J., Samanta D., David A., Tripathi A., Rauniyar S., Salem D.R., Sani R.K. Lignocellulosic Feedstock: A Review of a Sustainable Platform for Cleaner Production of Nature’s Plastics. J. Clean. Prod. 2020;270:122521. doi: 10.1016/j.jclepro.2020.122521. DOI
Brodin M., Vallejos M., Opedal M.T., Area M.C., Chinga-Carrasco G. Lignocellulosics as Sustainable Resources for Production of Bioplastics—A Review. J. Clean. Prod. 2017;162:646–664. doi: 10.1016/j.jclepro.2017.05.209. DOI
Lopez J.P., Girones J., Mendez J.A., Puig J., Pelach M.A. Recycling Ability of Biodegradable Matrices and Their Cellulose-Reinforced Composites in a Plastic Recycling Stream. J. Polym. Environ. 2012;20:96–103. doi: 10.1007/s10924-011-0333-1. DOI
de Brito E.B., Tienne L.G.P., Cordeiro S.B., Marques M.F.V. Development of Polypropylene Composites with Green Coffee Cake Fibres Subjected to Water Vapor Explosion. Waste Biomass Valor. 2020;13:6855–6867. doi: 10.1007/s12649-019-00929-x. DOI
Yu L. Biodegradable Polymer Blends and Composites from Renewable Resources. John Wiley & Sons; Hoboken, NJ, USA: 2009. 487p
Rogovina S.Z. Biodegradable Polymer Compositions Based on Synthetic and Natural Polymers of Various Classes. Vysokomol. Soedin. 2016;1:68–80. doi: 10.7868/S2308114716010106. DOI
Vroman I., Tighzert L. Biodegradable Polymers. Materials. 2009;2:317–320. doi: 10.3390/ma2020307. DOI
Satyanarayana K.G., Arizaga G.G.C., Wypych F. Biodegradable Composites Based on Lignocellulosic Fibers—An Overview. Prog. Polym. Sci. 2009;34:982–1021. doi: 10.1016/j.progpolymsci.2008.12.002. DOI
Visco A., Scolaro C., Facchin M., Brahimi S., Belhamdi H., Gatto V., Beghetto V. Agri-Food Wastes for Bioplastics: European Prospective on Possible Applications in Their Second Life for a Circular Economy. Polymers. 2022;14:2752. doi: 10.3390/polym14132752. PubMed DOI PMC
Di Donato P., Taurisano V., Poli A. Vegetable Wastes Derived Polysaccharides as Natural Eco-Friendly Plasticizers of Sodium Alginate. Carbohydr. Polym. 2020;229:115427. doi: 10.1016/j.carbpol.2019.115427. PubMed DOI
Santana R.F., Bonomo R.C.F., Gandolfi O.R.R., Rodrigues L.B., Santos L.S., Dos Santos Pires A.C., de Oliveira C.P., da Costa Ilhéu Fontan R., Veloso C.M. Characterization of Starch-Based Bioplastics from Jackfruit Seed Plasticized with Glycerol. J. Food Sci. Technol. 2018;55:278–286. doi: 10.1007/s13197-017-2936-6. PubMed DOI PMC
Suffo M., De Mata M., Molina S.I. A Sugar-Beet Waste Based Thermoplastic Agro-Composite as Substitute for Raw Materials. J. Clean. Prod. 2020;257:120382. doi: 10.1016/j.jclepro.2020.120382. DOI
Szacherska K., Oleskowicz-Popiel P., Ciesielski S., Mozejko-Ciesielska J. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers. 2021;13:321. doi: 10.3390/polym13030321. PubMed DOI PMC
Navas C.S., Reboredo M.M., Granados D.L. Comparative Study of Agroindustrial Wastes for Their Use in Polymer Matrix Composites. Procedia Mater. Sci. 2015;8:778–785. doi: 10.1016/j.mspro.2015.04.135. DOI
Patil A.Y., Hrishikesh U., Basavaraj N. Influence of Biodegradable Natural Fiber Embedded in Polymer Matrix. Mater. Today Proc. 2018;5:7532–7540. doi: 10.1016/j.matpr.2017.11.425. DOI
Zielińska M., Bułkowska K. Agricultural Wastes and Their By-Products for the Energy Market. Energies. 2024;17:2099. doi: 10.3390/en17092099. DOI
Xie Y., Niu X., Yang J., Fan R., Shi J., Ullah N., Feng X., Chen L. Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int. J. Biol. Macromol. 2020;150:480–491. doi: 10.1016/j.ijbiomac.2020.01.291. PubMed DOI
Bashir A., Jabeen S., Gull N., Islam A., Sultan M. Co-Concentration Effect of Silane with Natural Extract on Biodegradable Polymeric Films for Food Packaging. Int. J. Biol. Macromol. 2018;106:351–359. doi: 10.1016/j.ijbiomac.2017.08.025. PubMed DOI
Karimi Sani I., Masoudpour-Behabadi M., Alizadeh Sani M., Motalebinejad H., Juma A.S.M., Asdagh A., Eghbaljoo H., Khodaei S.M., Rhim J.W., Mohammadi F. Value-Added Utilization of Fruit and Vegetable Processing By-Products for the Manufacture of Biodegradable Food Packaging Films. Food Chem. 2023;405:134964. doi: 10.1016/j.foodchem.2022.134964. PubMed DOI
Palmeri R., Pappalardo F., Fragala M., Tomasello M., Damigella A., Catara A.F. Polyhydroxyalkanoates (PHAs) Production through Conversion of Glycerol by Selected Strains of Pseudomonas mediterranea and Pseudomonas corrugata. Chem. Eng. Trans. 2012;27:121–126. doi: 10.3303/CET1227021. DOI
Du C., Sabirova J., Soetaert W., Lin S.K.C. Polyhydroxyalkanoates Production from Low-Cost Sustainable Raw Materials. Curr. Chem. Biol. 2012;6:14–25.
Pratheep Kumar A., Pandey J.K., Kumar B., Singh R.P. Photo-/Bio-Degradability of Agro Waste and Ethylene-Propylene Copolymer Composites under Abiotic and Biotic Environments. J. Polym. Environ. 2006;14:203–221. doi: 10.1007/s10924-006-0012-9. DOI
Barlaz M.A., Staley B.F., De Los Reyes F.L. III. Anaerobic Biodegradation of Solid Waste. In: Mitchell R., Gu J.D., editors. Environmental Microbiology. 2nd ed. Wiley; Hoboken, NJ, USA: 2010. pp. 281–299.
Anjum A., Zuber M., Zia K.M., Noreen A., Anjum M.N., Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016;89:161–174. doi: 10.1016/j.ijbiomac.2016.04.069. PubMed DOI
Tsang Y.F., Kumar V., Samadar P. Production of bioplastic through food waste valorization. Environ. Int. 2019;127:625–644. doi: 10.1016/j.envint.2019.03.076. PubMed DOI
Farzadnia N., Hessam S., Asadi A., Hosseini S. Mechanical and Microstructural Properties of Cement Pastes with Rice Husk Ash Coated with Carbon Nanofibers Using a Natural Polymer Binder. Constr. Build. Mater. 2018;175:691–704. doi: 10.1016/j.conbuildmat.2018.04.205. DOI
Nagarajan K.J., Balaji A.N., Basha K.S., Ramanujam N.R., Kumar R.A. Effect of Agro Waste α-Cellulosic Micro Filler on Mechanical and Thermal Behavior of Epoxy Composites. Int. J. Biol. Macromol. 2020;152:327–339. doi: 10.1016/j.ijbiomac.2020.02.255. PubMed DOI
Ivanov V., Stabnikov V., Ahmed Z., Dobrenko S., Saliuk A. Production and Applications of Crude Polyhydroxyalkanoate-Containing Bioplastic from the Organic Fraction of Municipal Solid Waste. Int. J. Environ. Sci. Technol. 2015;12:725–738. doi: 10.1007/s13762-014-0505-3. DOI
Plank J. Application of Biopolymers and Other Biotechnological Products in Building Materials. Appl. Microbiol. Biotechnol. 2004;66:1–9. doi: 10.1007/s00253-004-1714-3. PubMed DOI
Zain A.H.M., Ab Wahab M.K., Ismail H. Biodegradation behaviour of thermoplastic starch: The roles of carboxylic acids on cassava starch. J. Polym. Environ. 2017;26:691–700. doi: 10.1007/s10924-017-0978-5. DOI
Dorigato A., Fredi G., Negri M., Pegoretti A. Thermo-mechanical behaviour of novel wood laminae-thermoplastic starch biodegradable composites with thermal energy storage/release capability. Front. Mater. 2019;6:76. doi: 10.3389/fmats.2019.00076. DOI
Ahsan W.A., Hussain A., Lin C., Nguyen M.K. Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling. Catalysts. 2023;13:294. doi: 10.3390/catal13020294. DOI
García-Guzmán L., Cabrera-Barjas G., Soria-Hernández C.G., Castaño J., Guadarrama-Lezama A.Y., Rodríguez Llamazares S. Progress in Starch-Based Materials for Food Packaging Applications. Polysaccharides. 2022;3:136–177. doi: 10.3390/polysaccharides3010007. DOI
Kalambur S., Rizvi S.H.J. An overview of starch-based plastic blends from reactive extrusion. Plast. Film. Sheeting. 2006;22:39–58. doi: 10.1177/8756087906062729. DOI
Reis R.L., Cunha A.M., Allan P.S., Bevis M.J. Structure development and control of injection-molded hydroxylapatite-reinforced starch/EVOH composites. Adv. Polym. Technol. 1997;16:263–277. doi: 10.1002/(SICI)1098-2329(199711)16:4<263::AID-ADV2>3.0.CO;2-T. DOI
Peressini D., Bravin B., Lapasin R., Rizzotti C., Sensidoni A. Starch–methylcellulose based edible films: Rheological properties of film-forming dispersions. Food Eng. 2003;59:25–32. doi: 10.1016/S0260-8774(02)00426-0. DOI
Rachmawati N., Triwibowo R., Widianto R. Mechanical properties and biodegradability of acid-soluble chitosan-starch based film. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2015;10:1. doi: 10.15578/squalen.v10i1.132. DOI
Sen C., Das M. Biodegradability of Starch Based Self-Supporting Antimicrobial Film and Its Effect on Soil Quality. J. Polym. Environ. 2018;26:4331–4337. doi: 10.1007/s10924-018-1304-6. DOI
Sobeih M.O., Sawalha S., Hamed R., Ali F., Kim M.P. Starch-Derived Bioplastics: Pioneering Sustainable Solutions for Industrial Use. Materials. 2025;18:1762. doi: 10.3390/ma18081762. PubMed DOI PMC
Rivadeneira-Velasco K.E., Utreras-Silva C.A., Díaz-Barrios A., Sommer-Márquez A.E., Tafur J.P., Michell R.M. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers. 2021;13:3227. doi: 10.3390/polym13193227. PubMed DOI PMC
Asyakina L.K., Dolganyuk V.F., Belova D.D., Peral M.M., Dyshlyuk L.S. The study of rheological behavior and safety metrics of natural biopolymers. Foods Raw Mater. 2016;4:70–78. doi: 10.21179/2308-4057-2016-1-70-78. DOI
Muller J., Gonzalez-Martinez C., Chiralt A. Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials. 2017;10:952. doi: 10.3390/ma10080952. PubMed DOI PMC
Ojogbo E., Ogunsona E.O., Mekonnen T.H. Chemical and physical modifications of starch for renewable polymeric materials. Mater. Today Sustain. 2020;7–8:100028. doi: 10.1016/j.mtsust.2019.100028. DOI
Liu H., Xie F., Yu L., Chen L., Li L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009;34:1348–1368. doi: 10.1016/j.progpolymsci.2009.07.001. DOI
Agama-Acevedo E., Flores-Silva P.C., Bello-Perez L.A. Cereal Starch Production for Food Applications. Academic Press; Cambridge, MA, USA: 2019. Starches for Food Application; pp. 71–102.
Flores S., Fama L., Rojas A.M., Goyanes S., Gerschenson L. Physical properties of tapioca-starch edible films: Influence of film-making and potassium sorbate. Food Res. Int. 2007;40:257–265. doi: 10.1016/j.foodres.2006.02.004. DOI
Nagy E.M., Todica M., Cota C., Pop V.C., Cioica N., Cozar O. Aktualni Zadaci Mehanizacije Poljoprivrede: Actual Tasks on Agricultural Engineering, Proceedings of the 43rd International Symposium on Agricultural Engineering, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 24–27 February 2015. Volume 43. University of Zagreb; Zagreb, Croatia: 2015. Water degradation effect on some starch-based plastics; pp. 755–762.
Meriem H., Messaoud C., Badra H., Anissa B. Biodegradation of plastic film based on starch. Biointerface Res. Appl. Chem. 2016;6:1517–1519.
Khan B., Niazi M.B.K., Samin G., Jahan Z. Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review. J. Food Process Eng. 2017;40:e12447. doi: 10.1111/jfpe.12447. DOI
Doane W.M. USDA research on starch-based biodegradable plastics. Staerke. 1992;44:293–295. doi: 10.1002/star.19920440805. DOI
Ataeian P., Trinh B.M., Mekonnen T.H. Effect of pro-oxidants on the aerobic biodegradation, disintegration, and physio-mechanical properties of compostable polymers. J. Appl. Polym. Sci. 2023;141:e54970. doi: 10.1002/app.54970. DOI
Shamsabadi O.D., Soltanolkottabi F. Green nanocomposite of (starch/polylactic acid/cellulose nanofiber) thermoplastic. Polym. Polym. Composites. 2024;32:09673911241294213. doi: 10.1177/09673911241294213. DOI
Gamage A., Thiviya P., Mani S., Ponnusamy P.G., Manamperi A., Evon P., Merah O., Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers. 2022;14:4578. doi: 10.3390/polym14214578. PubMed DOI PMC
Jayarathna S., Andersson M., Andersson R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers. 2022;14:4557. doi: 10.3390/polym14214557. PubMed DOI PMC
Razavi S.M.A., Cui S.W., Ding H. Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed. Int. J. Biol. Macromol. 2016;83:142–151. doi: 10.1016/j.ijbiomac.2015.11.076. PubMed DOI
Domene-López D., García-Quesada J.C., Martin-Gullon I., Montalbán M.G. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers. 2019;11:1084. doi: 10.3390/polym11071084. PubMed DOI PMC
Touchaleaume F., Angellier-Coussy H., César G., Raffard G., Gontard N., Gastaldi E. How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageing. J. Polym. Environ. 2018;26:2588–2600. doi: 10.1007/s10924-017-1154-7. DOI
Chen G. Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chem. Rev. 2012;112:2082–2099. doi: 10.1021/cr200162d. PubMed DOI
Luchese C.L., Garrido T., Spada J.C., Tessaro I.C., de la Caba K. Development and characterization of cassava starch films incorporated with blueberry pomace. Int. J. Biol. Macromol. 2018;106:834–839. doi: 10.1016/j.ijbiomac.2017.08.083. PubMed DOI
Nogueira G.F., Fakhouri F.M., de Oliveira R.A. Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydr. Polym. 2018;186:64–72. doi: 10.1016/j.carbpol.2018.01.024. PubMed DOI
Hornung P.S., Ávila S., Masisi K., Malunga L.N., Lazzarotto M., Schnitzler E., Ribani R.H., Beta T. Green development of biodegradable films based on native yam (Dioscoreaceae) starch mixtures. Starch-Stärke. 2018;70:1700234. doi: 10.1002/star.201700234. DOI
Domene-López D., Guillén M., Martin-Gullon I., García-Quesada J., Montalbán M. Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydr. Polym. 2018;202:299–305. doi: 10.1016/j.carbpol.2018.08.137. PubMed DOI
Sanyang M., Sapuan S., Jawaid M., Ishak M., Sahari J. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydr. Polym. 2016;146:36–45. doi: 10.1016/j.carbpol.2016.03.051. PubMed DOI
Ewing T.A., Nouse N., van Lint M., van Haveren J., Hugenholtz J., van Es D.S. Fermentation for the Production of Biobased Chemicals in a Circular Economy: A Perspective for the Period 2022–2050. Green Chem. 2022;24:6373–6405. doi: 10.1039/D1GC04758B. DOI
Tang X., Alavi S., Herald T.J. Barrier and Mechanical Properties of Starch–Clay Nanocomposite Films. Cereal Chem. 2008;85:433–439. doi: 10.1094/CCHEM-85-3-0433. DOI
Frangopoulos T., Marinopoulou A., Goulas A., Likotrafiti E., Rhoades J., Petridis D., Kannidou E., Stamelos A., Theodoridou M., Arampatzidou A., et al. Optimizing the Functional Properties of Starch-Based Biodegradable Films. Foods. 2023;12:2812. doi: 10.3390/foods12142812. PubMed DOI PMC
Singh G.P., Bangar S.P., Yang T., Trif M., Kumar V., Kumar D. Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers. 2022;14:1987. doi: 10.3390/polym14101987. PubMed DOI PMC
Jiménez A., Fabra M.J., Talens P., Chiralt A. Edible and Biodegradable Starch Films: A Review. Food Bioprocess Technol. 2012;5:2058–2076. doi: 10.1007/s11947-012-0835-4. DOI
Pesterev M.A., Rudenko O.S., Kondrat’ev N.B., Bazhenova A.E., Usachev I.S. Effect of Biodegradable and Polypropylene Film Packaging on the Safety Profile of Jelly Marmalade. Food Process. Tech. Technol. 2020;50:536–548. doi: 10.21603/2074-9414-2020-3-536-548. DOI
Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atikah M.S.N., Mohd Nurazzi N., Atiqah A., Ansari M.N.M., et al. Effect of Sugar Palm Nanofibrillated Cellulose Concentrations on Morphological, Mechanical and Physical Properties of Biodegradable Films Based on Agro-Waste Sugar Palm (Arenga Pinnata (Wurmb.) Merr) Starch. J. Mater. Res. Technol. 2019;8:4819–4830. doi: 10.1016/j.jmrt.2019.08.028. DOI
Mojibayo I., Samson A.O., Johnson O.Y., Joshusa I.O.A.S.A. A Preliminary Investigation of Cassava Starch Potentials as Natural Polymer in Bioplastic Production. Am. J. Interdiscip. Innov. Res. 2020;2:31–39. doi: 10.37547/tajiir/Volume02Issue09-05. DOI
Asrofi M., Sapuan S.M., Ilyas R.A., Ramesh M. Characteristic of Composite Bioplastics from Tapioca Starch and Sugarcane Bagasse Fiber: Effect of Time Duration of Ultrasonication (Bath-Type) Mater. Today Proc. 2021;46:1626–1630. doi: 10.1016/j.matpr.2020.07.254. DOI
Pinto T., Pinto A., Vilela A. Edible Coatings and Films for Preparation of Grapevine By-Product Infusions and in Freshly Processed Products. Coatings. 2023;13:1350. doi: 10.3390/coatings13081350. DOI
Matloob A., Ayub H., Mohsin M., Ambreen S., Khan F.A., Oranab S., Rahim M.A., Khalid W., Nayik G.A., Ramniwas S., et al. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS Omega. 2023;8:28932–28944. doi: 10.1021/acsomega.3c03459. PubMed DOI PMC
Chettri S., Sharma N., Mohite A.M. Formulation of Extracted Soyabean Starch Based Edible Coatings by Different Methods and Their Impact on Shelf Life of Sapota Fruit. J. Saudi Soc. Agric. Sci. 2024;23:205–211. doi: 10.1016/j.jssas.2023.11.003. DOI
Weng S., Marcet I., Rendueles M., Díaz M. Edible Films from the Laboratory to Industry: A Review of the Different Production Methods. Food Bioprocess Technol. 2024;18:3245–3271. doi: 10.1007/s11947-024-03641-4. DOI
Pillai A.R.S., Eapen A.S., Zhang W., Roy S. Polysaccharide-Based Edible Biopolymer-Based Coatings for Fruit Preservation: A Review. Foods. 2024;13:1529. doi: 10.3390/foods13101529. PubMed DOI PMC
Miranda M., Bai J., Pilon L., Torres R., Casals C., Solsona C., Teixidó N. Fundamentals of Edible Coatings and Combination with Biocontrol Agents: A Strategy to Improve Postharvest Fruit Preservation. Foods. 2024;13:2980. doi: 10.3390/foods13182980. PubMed DOI PMC
Zhang Y., Rempel C., Liu Q. Thermoplastic Starch Processing and Characteristics-A Review. Crit. Rev. Food Sci. Nutr. 2014;54:1353–1370. doi: 10.1080/10408398.2011.636156. PubMed DOI
Surendren A., Mohanty A.K., Liu Q., Misra M. A Review of Biodegradable Thermoplastic Starches, Their Blends and Composites: Recent Developments and Opportunities for Single-Use Plastic Packaging Alternatives. Green Chem. 2022;19:8606–8636. doi: 10.1039/D2GC02169B. DOI
Zhu W., Zhang D., Liu X., Ma T., He J., Dong Q., Din Z.-U., Zhou J., Chen L., Hu Z., et al. Improving the Hydrophobicity and Mechanical Properties of Starch Nanofibrous Films by Electrospinning and Cross-Linking for Food Packaging Applications. LWT. 2022;169:114005. doi: 10.1016/j.lwt.2022.114005. DOI
Yu L., Chen Y., Lin H., Du W., Chen H., Shi J. Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials. 2018;161:292–305. doi: 10.1016/j.biomaterials.2018.01.046. PubMed DOI
Dorigato A. Recycling of Polymer Blends. Adv. Ind. Eng. Polym. Res. 2021;4:53–69. doi: 10.1016/j.aiepr.2021.02.005. DOI
Van Roijen E.C., Miller S.A. A Review of Bioplastics at End-of-Life: Linking Experimental Biodegradation Studies and Life Cycle Impact Assessments. Resour. Conserv. Recycl. 2022;181:106236. doi: 10.1016/j.resconrec.2022.106236. DOI
Chandra R., Rustgi R. Biodegradable Polymers. Prog. Polym. Sci. 1998;23:1273–1335. doi: 10.1016/S0079-6700(97)00039-7. DOI
Barrows T.H. Degradable implant materials: A review of synthetic absorbable polymers and their applications. Clin. Mater. 1986;1:233–257. doi: 10.1016/S0267-6605(86)80015-4. DOI
Hou L., Majumder E.L.-W. Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms. Materials. 2021;14:503. doi: 10.3390/ma14030503. PubMed DOI PMC
Fontanella S., Bonhomme S., Koutny M., Husarova L., Brussson J.M., Courdavault J.P., Delort A.M. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym. Degrad. Stab. 2010;95:1011–1021. doi: 10.1016/j.polymdegradstab.2010.03.009. DOI
Vorobyeva E.V., Popov A.A. Biodegradable composites based on fossil raw materials. Part I: Strategies of synthesis, key properties, and market trends. Polym. Mater. Technol. 2022;4:6–24.
Heris Y.S. Bacterial biodegradation of synthetic plastics: A review. Bull. Natl. Res. Cent. 2024;48:41. doi: 10.1186/s42269-024-01241-y. DOI
Grabitz E., Olsson O., Kümmerer K. Towards the Design of Organosilicon Compounds for Environmental Degradation by Using Structure Biodegradability Relationships. Chemosphere. 2021;279:130442. doi: 10.1016/j.chemosphere.2021.130442. PubMed DOI
Ermolovich O.A. Influence of compatibilizer additives on technological and operational characteristics of biodegradable materials based on starch-filled polyethylene. Zh. Prikl. Khim. 2006;79:1542–1547.
De Donno Novelli L., Moreno Sayavedra S., Rene E.R. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. Bioresour. Technol. 2021;331:124985. doi: 10.1016/j.biortech.2021.124985. PubMed DOI
Kraus S.V., Lukin N.D., Ivanova T.V., Sdobnikova O.A. Physicochemical Properties of Polymer Compositions Using Starch. Khranenie I Pererab. Sel’khozsyr’ya. 2011;1:8–11.
Awasthi S.K., Kumar M., Kumar V., Sarsaiya S., Anerao P., Ghosh P., Singh L., Liu H., Zhang Z., Awasthi M.K. A Comprehensive Review on Recent Advancements in Biodegradation and Sustainable Management of Biopolymers. Environ. Pollut. 2022;307:119600. doi: 10.1016/j.envpol.2022.119600. PubMed DOI
Lukin N.D., Usachev I.S. Technology of Thermoplastic Starches. Vestn. Voronezh. Gos. Univ. Inzh. Tekhnol. 2015;66:156–159.
Scaffaro R., Maio A., Sutera F., Gulino E.F., Morreale M. Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers. 2019;11:651. doi: 10.3390/polym11040651. PubMed DOI PMC
Gioia C., Giacobazzi G., Vannini M., Totaro G., Sisti L., Colonna M., Marchese P., Celli A. End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. ChemSusChem. 2021;14:4167–4175. doi: 10.1002/cssc.202101226. PubMed DOI PMC
Wu J., Wang J., Zeng Y., Sun X., Yuan Q., Liu L., Shen X. Biodegradation: The best solution to the world problem of discarded polymers. Bioresour. Bioprocess. 2024;11:79. doi: 10.1186/s40643-024-00793-1. PubMed DOI PMC
Hemwey R. Environmental Impacts of Coronavirus Crisis, Challenges Ahead: Report. [(accessed on 4 June 2025)]. Available online: https://unctad.org/news/environmental-impacts-coronavirus-crisis-challenges-ahead.
Chow C.-F., So W.-M.W., Cheung T.-Y., Yeung S.-K.D. Emerging Practices in Scholarship of Learning and Teaching in a Digital Era. Springer; Berlin/Heidelberg, Germany: 2017. Plastic Waste Problem and Education for Plastic Waste Management; pp. 125–140.
Popov A.A., Zykova A.K., Mastalygina E.E. Biodegradable Composite Materials (Review) Chem. Phys. 2020;39:71–80. doi: 10.1134/S1990793120030239. DOI
Kasyanov G.I. Biodegradable Packaging for Food Products. Sci. Technol. Technol. (Polytech. Bull.) 2015;3:165–184.
Garifullina L.I., Li N.I., Garipov R.M., Minnakhmetova A.K. Biodegradation of Polymeric Film Materials (Review) Bull. Technol. Univ. 2019;22:47–53.
Aumnate C., Kiesel R., Rudolph N. Understanding Plastics Recycling: Economic, Ecological and Technical Aspects of Plastic Waste. Hanser Publishers; Munich, Germany: 2017.
Tsuchimoto I., Kajikawa Y. Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis. Sustainability. 2022;14:16340. doi: 10.3390/su142416340. DOI
Rameshkumar S., Shaiju P., O’Connor K.E. Bio-Based and Biodegradable Polymers—State-of-the-Art, Challenges and Emerging Trends. Curr. Opin. Green Sustain. Chem. 2020;21:75–81. doi: 10.1016/j.cogsc.2019.12.005. DOI
Sousa A.F., Vilela C., Fonseca A.C., Matos M., Freire C.S.R., Gruter G.-J.M., Coelho J.F.J., Silvestre A.J.D. Biobased Polyesters and Other Polymers from 2,5-Furandicarboxylic Acid: A Tribute to Furan Excellency. Polym. Chem. 2015;6:5961–5983. doi: 10.1039/C5PY00686D. DOI
Lamtai A., Elkoun S., Robert M., Mighri F., Diez C. Mechanical Recycling of Thermoplastics: A Review of Key Issues. Waste. 2023;1:860–883. doi: 10.3390/waste1040050. DOI
Kumar R., Sadeghi K., Jang J., Seo J. Mechanical, Chemical, and Bio-Recycling of Biodegradable Plastics: A Review. Sci. Total Environ. 2023;882:163446. doi: 10.1016/j.scitotenv.2023.163446. PubMed DOI
Hirschberg C., Rodrigue D. Recycling of Polyamides: Processes and Conditions. J. Polym. Sci. 2023;61:1669–1682. doi: 10.1002/pol.20230154. DOI
Piemonte V., Sabatini S., Gironi F. Chemical Recycling of PLA: A Great Opportunity Towards Sustainable Development. J. Polym. Environ. 2013;21:640–647. doi: 10.1007/s10924-013-0608-9. DOI
Vu D.H., Akesson D., Taherzadeh M.J., Ferreira J.A. Recycling Strategies for Polyhydroxyalkanoate-Based Waste Materials: An Overview. Bioresour. Technol. 2020;298:122393. doi: 10.1016/j.biortech.2019.122393. PubMed DOI
International Standards Organization. Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 2: Gravimetric Measurement of Carbon Dioxide Evolved in a Laboratory. ISO; Geneva, Switzerland: 2018. [(accessed on 3 June 2025)]. Available online: https://www.iso.org/standard/72046.html.
EU Commission Directive (EU) 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste. Off. J. Eur. Union L. 2008;312:3–30.
Ruj B., Pandey V., Jash P., Srivastava V.K. Sorting of Plastic Waste for Effective Recycling. Int. J. Appl. Sci. Eng. Res. 2015;4:564–571.
Pacheco-Torgal F., Khatib J., Colangelo F., Tuladhar R. Use of Recycled Plastics in Eco-Efficient Concrete. Woodhead Publishing; Duxford, UK: 2019.
EU Commission Council Directive (EU) 1999/31/EC of 26 April 1999 on the Landfill of Waste. Off. J. Eur. Union L. 1999;182:1–19.
You Y.S., Oh Y.S., Kim U.S., Choi S.W. National Certification Marks and Standardization Trends for Biodegradable, Oxo-Biodegradable and Bio-Based Plastics. Clean Technol. 2015;21:1–11. doi: 10.7464/ksct.2015.21.1.001. DOI
Vasnev V.A. Biodegradable Polymers. Vysokomol. Soedin. Ser. B. 1997;39:2073–2086.
Emadian S.M., Onay T.T., Demirel B. Biodegradation of Bioplastics in Natural Environments. Waste Manag. 2017;59:526–536. doi: 10.1016/j.wasman.2016.10.006. PubMed DOI
Briassoulis D., Dejean C. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part I: Biodegradation in Soil. J. Polym. Environ. 2010;18:384–400. doi: 10.1007/s10924-010-0168-1. DOI
Gastaldi E., Buendia F., Greuet P., Benbrahim Bouchou Z., Benihya A., Cesar G., Domenek S. Degradation and Environmental Assessment of Compostable Packaging Mixed with Biowaste in Full-Scale Industrial Composting Conditions. Bioresour. Technol. 2024;400:130670. doi: 10.1016/j.biortech.2024.130670. PubMed DOI
Gnanavel G., Thirumarimurugan M., Valli M.J. Biodegradation of Oxo Polyethylene: An Approach Using Soil Compost Degraders. Int. J. Adv. Eng. Technol. 2016;2:140–144.
Mhaddolkar N., Tischberger-Aldrian A., Astrup T.F., Vollprecht D. Consumers Confused ‘Where to Dispose Biodegradable Plastics?’: A Study of Three Waste Streams. Waste Manag. Res. 2024;42 doi: 10.1177/0734242X241231408. PubMed DOI PMC
Briassoulis D., Dejean C., Picuno P. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part II: Composting. J. Polym. Environ. 2010;18:364–383. doi: 10.1007/s10924-010-0222-z. DOI
Folino A., Pangallo D., Calabrò P.S. Assessing Bioplastics Biodegradability by Standard and Research Methods: Current Trends and Open Issues. J. Environ. Chem. Eng. 2023;11:109424. doi: 10.1016/j.jece.2023.109424. DOI
Gadaleta G., Andrade-Chapal J.C., López-Ibáñez S., Mozo-Toledo M., Navarro-Calderón Á. Biodegradability of Bioplastics in Managed and Unmanaged Environments: A Comprehensive Review. Materials. 2025;18:2382. doi: 10.3390/ma18102382. PubMed DOI PMC
Fernández-Dacosta C. Alternative Sources to Fossil Carbon: Ex-Ante Assessment of Novel Technologies Using Waste as a Source. Utrecht University; Utrecht, The Netherlands: 2018.
Tschan M.J.-L., Brule E., Haquette P., Thomas C.M. Synthesis of Biodegradable Polymers from Renewable Resources. Polym. Chem. 2012;3:836–845. doi: 10.1039/C2PY00452F. DOI
Ryberg M.W., Hauschild M.Z., Wang F., Averous-Monnery S., Laurent A. Global Environmental Losses of Plastics across Their Value Chains. Resour. Conserv. Recycl. 2019;151:104459. doi: 10.1016/j.resconrec.2019.104459. DOI
Bondarenko A.V., Islamov S.R., Ignatyev K.V., Mardashov D.V. Laboratory Studies of Polymer Compositions for Well-Kill under Increased Fracturing. Perm J. Pet. Min. Eng. 2020;20:37–48. doi: 10.15593/2224-9923/2020.1.4. DOI
Belousov A., Lushpeev V., Sokolov A., Sultanbekov R., Tyan Y., Ovchinnikov E., Shvets A., Bushuev V., Islamov S. Experimental Research of the Possibility of Applying the Hartmann–Sprenger Effect to Regulate the Pressure of Natural Gas in Non-Stationary Conditions. Processes. 2025;13:1189. doi: 10.3390/pr13041189. DOI
Oliver-Cuenca V., Salaris V., Muñoz-Gimena P.F., Agüero Á., Peltzer M.A., Montero V.A., Arrieta M.P., Sempere-Torregrosa J., Pavon C., Samper M.D., et al. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers. 2024;16:3015. doi: 10.3390/polym16213015. PubMed DOI PMC