Guidelines for minimal reporting requirements, design and interpretation of experiments involving the use of eukaryotic dual gene expression reporters (MINDR)
Language English Country United States Media print-electronic
Document type Journal Article, Review
Grant support
DP1 GM146256
NIGMS NIH HHS - United States
PubMed
40033152
PubMed Central
PMC12246961
DOI
10.1038/s41594-025-01492-x
PII: 10.1038/s41594-025-01492-x
Knihovny.cz E-resources
- MeSH
- Eukaryota * genetics MeSH
- Humans MeSH
- RNA, Messenger genetics MeSH
- Protein Biosynthesis MeSH
- Genes, Reporter * MeSH
- Guidelines as Topic * MeSH
- Research Design * standards MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- RNA, Messenger MeSH
Dual reporters encoding two distinct proteins within the same mRNA have had a crucial role in identifying and characterizing unconventional mechanisms of eukaryotic translation. These mechanisms include initiation via internal ribosomal entry sites (IRESs), ribosomal frameshifting, stop codon readthrough and reinitiation. This design enables the expression of one reporter to be influenced by the specific mechanism under investigation, while the other reporter serves as an internal control. However, challenges arise when intervening test sequences are placed between these two reporters. Such sequences can inadvertently impact the expression or function of either reporter, independent of translation-related changes, potentially biasing the results. These effects may occur due to cryptic regulatory elements inducing or affecting transcription initiation, splicing, polyadenylation and antisense transcription as well as unpredictable effects of the translated test sequences on the stability and activity of the reporters. Unfortunately, these unintended effects may lead to misinterpretation of data and the publication of incorrect conclusions in the scientific literature. To address this issue and to assist the scientific community in accurately interpreting dual-reporter experiments, we have developed comprehensive guidelines. These guidelines cover experimental design, interpretation and the minimal requirements for reporting results. They are designed to aid researchers conducting these experiments as well as reviewers, editors and other investigators who seek to evaluate published data.
Belozersky Institute of Physico Chemical Biology Lomonosov Moscow State University Moscow Russia
Center for Biomolecular Sciences University of Illinois Chicago Chicago IL USA
Department of Biochemistry and Molecular Biophysics Columbia University New York NY USA
Department of Biochemistry McGill University Montréal Quebec Canada
Department of Biological Sciences Carnegie Mellon University Pittsburgh PA USA
Department of Biological Sciences University of Maryland Baltimore County Baltimore MD USA
Department of Biology Texas A and M University College Station TX USA
Department of Bionanoscience Delft University of Technology Delft the Netherlands
Department of Cell Biology and Molecular Genetics University of Maryland College Park MD USA
Department of Chemistry and Biochemistry University of Notre Dame Notre Dame IN USA
Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Bern Switzerland
Department of Human Biology University of Haifa Haifa Israel
Department of Medicine Harvard Medical School Boston MA USA
Department of Molecular Biophysics and Biochemistry Yale School of Medicine New Haven CT USA
Department of Oncology Pathology Science for Life Laboratory Karolinska Institute Stockholm Sweden
Division of Experimental Medicine McGill University Montréal Quebec Canada
Division of Rheumatology Inflammation and Immunity Brigham and Women's Hospital Boston MA USA
EIRNA Bio Bioinnovation Hub Cork Ireland
Faculty of Biology and Preclinical Medicine University of Regensburg Regensburg Germany
Gerald Bronfman Department of Oncology McGill University Montréal Quebec Canada
Institute for Bioscience and Biotechnology Research Rockville MD USA
Institute for Integrative Biology of the Cell CEA Université Paris Saclay CNRS Gif sur Yvette France
Institute of Biochemistry and Molecular Biology University of Hamburg Hamburg Germany
Institute of Biophysics National Research Council Unit Povo Italy
Institute of Genetics and Biotechnology Faculty of Biology University of Warsaw Warsaw Poland
Lady Davis Institute McGill University Montréal Quebec Canada
MRC Toxicology Unit University of Cambridge Cambridge UK
New York Structural Biology Center New York NY USA
RNA Bioscience Initiative University of Colorado Anschutz Medical Campus Aurora CO USA
RNA Systems Biochemistry Laboratory RIKEN Cluster for Pioneering Research Wako Japan
School of Biochemistry and Cell Biology University College Cork Cork Ireland
Shemyakin Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
See more in PubMed
Pelletier J & Sonenberg N Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325 (1988). PubMed
Jang SK, Kräusslich HG, Nicklin MJ, Duke GM, Palmenberg AC & Wimmer E A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62, 2636–2643 (1988). PubMed PMC
Reil H, Höxter M, Moosmayer D, Pauli G & Hauser H CD4 Expressing Human 293 Cells as a Tool for Studies in HIV-1 Replication: The Efficiency of Translational Frameshifting Is Not Altered by HIV-1 Infection. Virology 205, 371–375 (1994). PubMed
Stahl G, Bidou L, Rousset J-P & Cassan M Versatile vectors to study recoding: conservation of rules between yeast and mammalian cells. Nucl Acids Res 23, 1557–1560 (1995). PubMed PMC
Bidou L, Stahl G, Grima B, Liu H, Cassan M & Rousset JP In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal. RNA 3, 1153–1158 (1997). PubMed PMC
Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF & Atkins JF A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486 (1998). PubMed PMC
Chiba S, Jamal A & Suzuki N First Evidence for Internal Ribosomal Entry Sites in Diverse Fungal Virus Genomes. mBio 9, e02350–17 (2018). PubMed PMC
Rakauskaite R, Liao P-Y, Rhodin MHJ, Lee K & Dinman JD A rapid, inexpensive yeast-based dual-fluorescence assay of programmed--1 ribosomal frameshifting for high-throughput screening. Nucleic Acids Res 39, e97 (2011). PubMed PMC
Cardno TS, Poole ES, Mathew SF, Graves R & Tate WP A homogeneous cell-based bicistronic fluorescence assay for high-throughput identification of drugs that perturb viral gene recoding and read-through of nonsense stop codons. RNA 15, 1614–1621 (2009). PubMed PMC
Harger JW & Dinman JD An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA 9, 1019–1024 (2003). PubMed PMC
Bert AG, Grépin R, Vadas MA & Goodall GJ Assessing IRES activity in the HIF-1alpha and other cellular 5’ UTRs. RNA 12, 1074–1083 (2006). PubMed PMC
Loughran G, Howard MT, Firth AE & Atkins JF Avoidance of reporter assay distortions from fused dual reporters. RNA 23, 1285–1289 (2017). PubMed PMC
Jacobs JL, Belew AT, Rakauskaite R & Dinman JD Identification of functional, endogenous programmed −1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucleic Acids Res 35, 165–174 (2007). PubMed PMC
Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF & Howard MT Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332, 498–510 (2005). PubMed PMC
Charbonneau J, Gendron K, Ferbeyre G & Brakier-Gingras L The 5’ UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed −1 ribosomal frameshift that generates HIV-1 enzymes. RNA 18, 519–529 (2012). PubMed PMC
Gendron K, Charbonneau J, Dulude D, Heveker N, Ferbeyre G & Brakier-Gingras L The presence of the TAR RNA structure alters the programmed −1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation. Nucleic Acids Res 36, 30–40 (2008). PubMed PMC
Howard MT, Shirts BH, Petros LM, Flanigan KM, Gesteland RF & Atkins JF Sequence specificity of aminoglycoside-induced stop condon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 48, 164–169 (2000). PubMed
Harrell L, Melcher U & Atkins JF Predominance of six different hexanucleotide recoding signals 3’ of read-through stop codons. Nucleic Acids Res 30, 2011–2017 (2002). PubMed PMC
Yordanova MM, Loughran G, Zhdanov AV, Mariotti M, Kiniry SJ, O’Connor PBF, Andreev DE, Tzani I, Saffert P, Michel AM, Gladyshev VN, Papkovsky DB, Atkins JF & Baranov PV AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature 553, 356–360 (2018). PubMed
Hennecke M, Kwissa M, Metzger K, Oumard A, Kröger A, Schirmbeck R, Reimann J & Hauser H Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 29, 3327–3334 (2001). PubMed PMC
Bochkov YA & Palmenberg AC Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. Biotechniques 41, 283–284, 286, 288 passim (2006). PubMed
Vallejos M, Ramdohr P, Valiente-Echeverría F, Tapia K, Rodriguez FE, Lowy F, Huidobro-Toro JP, Dangerfield JA & López-Lastra M The 5’-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation. Nucleic Acids Res 38, 618–632 (2010). PubMed PMC
Baranov PV, Wills NM, Barriscale KA, Firth AE, Jud MC, Letsou A, Manning G & Atkins JF Programmed ribosomal frameshifting in the expression of the regulator of intestinal stem cell proliferation, adenomatous polyposis coli (APC). RNA Biol 8, 637–647 (2011). PubMed PMC
Beznosková P, Wagner S, Jansen ME, von der Haar T & Valášek LS Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res 43, 5099–5111 (2015). PubMed PMC
Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R, Pleschka S, Ziebuhr J, Hartmann RK & Grünweller A Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res 150, 123–129 (2018). PubMed PMC
Zinshteyn B, Sinha NK, Enam SU, Koleske B & Green R Translational repression of NMD targets by GIGYF2 and EIF4E2. PLoS Genet 17, e1009813 (2021). PubMed PMC
Kobayashi Y, Zhuang J, Peltz S & Dougherty J Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting. J Biol Chem 285, 19776–19784 (2010). PubMed PMC
Green L, Houck-Loomis B, Yueh A & Goff SP Large ribosomal protein 4 increases efficiency of viral recoding sequences. J Virol 86, 8949–8958 (2012). PubMed PMC
Young DJ, Makeeva DS, Zhang F, Anisimova AS, Stolboushkina EA, Ghobakhlou F, Shatsky IN, Dmitriev SE, Hinnebusch AG & Guydosh NR Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR Recycle Post-termination 40S Subunits In Vivo. Mol Cell 71, 761–774.e5 (2018). PubMed PMC
Schult P, Roth H, Adams RL, Mas C, Imbert L, Orlik C, Ruggieri A, Pyle AM & Lohmann V microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nat Commun 9, 2613 (2018). PubMed PMC
LaFontaine E, Miller CM, Permaul N, Martin ET & Fuchs G Ribosomal protein RACK1 enhances translation of poliovirus and other viral IRESs. Virology 545, 53–62 (2020). PubMed PMC
Zhang H, Song L, Cong H & Tien P Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation. J Virol 89, 10031–10043 (2015). PubMed PMC
Bidou L, Hatin I, Perez N, Allamand V, Panthier J-J & Rousset J-P Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 11, 619–627 (2004). PubMed
Mikl M, Pilpel Y & Segal E High-throughput interrogation of programmed ribosomal frameshifting in human cells. Nat Commun 11, 3061 (2020). PubMed PMC
Cencic R, Robert F & Pelletier J Identifying small molecule inhibitors of eukaryotic translation initiation. Methods Enzymol 431, 269–302 (2007). PubMed
Novac O, Guenier A-S & Pelletier J Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen. Nucleic Acids Res 32, 902–915 (2004). PubMed PMC
Ahn D-G, Lee W, Choi J-K, Kim S-J, Plant EP, Almazán F, Taylor DR, Enjuanes L & Oh J-W Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res 91, 1–10 (2011). PubMed PMC
Sun Y, Abriola L, Niederer RO, Pedersen SF, Alfajaro MM, Silva Monteiro V, Wilen CB, Ho Y-C, Gilbert WV, Surovtseva YV, Lindenbach BD & Guo JU Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting. Proc Natl Acad Sci U S A 118, e2023051118 (2021). PubMed PMC
Feng Y, Pinkerton AB, Hulea L, Zhang T, Davies MA, Grotegut S, Cheli Y, Yin H, Lau E, Kim H, De SK, Barile E, Pellecchia M, Bosenberg M, Li J-L, James B, Hassig CA, Brown KM, Topisirovic I & Ronai ZA SBI-0640756 Attenuates the Growth of Clinically Unresponsive Melanomas by Disrupting the eIF4F Translation Initiation Complex. Cancer Res 75, 5211–5218 (2015). PubMed PMC
Hekman KE, Yu G-Y, Brown CD, Zhu H, Du X, Gervin K, Undlien DE, Peterson A, Stevanin G, Clark HB, Pulst SM, Bird TD, White KP & Gomez CM A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum Mol Genet 21, 5472–5483 (2012). PubMed PMC
Chen C-K, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E, Jackson PK & Chang HY Structured elements drive extensive circular RNA translation. Mol Cell 81, 4300–4318.e13 (2021). PubMed PMC
Weingarten-Gabbay S, Elias-Kirma S, Nir R, Gritsenko AA, Stern-Ginossar N, Yakhini Z, Weinberger A & Segal E Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016). PubMed
Lidsky PV, Dmitriev SE & Andino R Robust Expression of Transgenes in Drosophila Melanogaster. http://biorxiv.org/lookup/doi/10.1101/2022.10.30.514414 (2022) doi: 10.1101/2022.10.30.514414. DOI
Mäkeläinen KJ & Mäkinen K Testing of internal translation initiation via dicistronic constructs in yeast is complicated by production of extraneous transcripts. Gene 391, 275–284 (2007). PubMed
Han B & Zhang J-T Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol Cell Biol 22, 7372–7384 (2002). PubMed PMC
Van Eden ME, Byrd MP, Sherrill KW & Lloyd RE Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10, 720–730 (2004). PubMed PMC
Holcik M, Graber T, Lewis SM, Lefebvre CA, Lacasse E & Baird S Spurious splicing within the XIAP 5’ UTR occurs in the Rluc/Fluc but not the betagal/CAT bicistronic reporter system. RNA 11, 1605–1609 (2005). PubMed PMC
Kozak M A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 33, 6593–6602 (2005). PubMed PMC
Baranick BT, Lemp NA, Nagashima J, Hiraoka K, Kasahara N & Logg CR Splicing mediates the activity of four putative cellular internal ribosome entry sites. Proc Natl Acad Sci U S A 105, 4733–4738 (2008). PubMed PMC
Young RM, Wang S-J, Gordan JD, Ji X, Liebhaber SA & Simon MC Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem 283, 16309–16319 (2008). PubMed PMC
Andreev DE, Dmitriev SE, Terenin IM, Prassolov VS, Merrick WC & Shatsky IN Differential contribution of the m7G-cap to the 5’ end-dependent translation initiation of mammalian mRNAs. Nucleic Acids Res 37, 6135–6147 (2009). PubMed PMC
Lemp NA, Hiraoka K, Kasahara N & Logg CR Cryptic transcripts from a ubiquitous plasmid origin of replication confound tests for cis-regulatory function. Nucleic Acids Res 40, 7280–7290 (2012). PubMed PMC
Khan YA, Loughran G, Steckelberg A-L, Brown K, Kiniry SJ, Stewart H, Baranov PV, Kieft JS, Firth AE & Atkins JF Evaluating ribosomal frameshifting in CCR5 mRNA decoding. Nature 604, E16–E23 (2022). PubMed PMC
Akirtava C, May GE & McManus CJ False-positive IRESes from Hoxa9 and other genes resulting from errors in mammalian 5’ UTR annotations. Proc Natl Acad Sci U S A 119, e2122170119 (2022). PubMed PMC
Nejepinska J, Malik R, Moravec M & Svoboda P Deep sequencing reveals complex spurious transcription from transiently transfected plasmids. PLoS One 7, e43283 (2012). PubMed PMC
Loughran G, Fedorova AD, Khan YA, Atkins JF & Baranov PV Lack of evidence for ribosomal frameshifting in ATP7B mRNA decoding. Mol Cell 82, 3745–3749.e2 (2022). PubMed PMC
Terenin IM, Andreev DE, Dmitriev SE & Shatsky IN A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Res 41, 1807–1816 (2013). PubMed PMC
Payne AJ, Gerdes BC, Kaja S & Koulen P Insert sequence length determines transfection efficiency and gene expression levels in bicistronic mammalian expression vectors. Int J Biochem Mol Biol 4, 201–208 (2013). PubMed PMC
Shikama Y, Hu H, Ohno M, Matsuoka I, Shichishima T & Kimura J Transcripts expressed using a bicistronic vector pIREShyg2 are sensitized to nonsense-mediated mRNA decay. BMC Mol Biol 11, 42 (2010). PubMed PMC
Jünemann C, Song Y, Bassili G, Goergen D, Henke J & Niepmann M Picornavirus internal ribosome entry site elements can stimulate translation of upstream genes. J Biol Chem 282, 132–141 (2007). PubMed
Yordanova MM, Loughran G, Atkins JF & Baranov PV Stop codon readthrough contexts influence reporter expression differentially depending on the presence of an IRES. Wellcome Open Res 5, 221 (2020). PubMed PMC
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE & Shatsky IN A researcher’s guide to the galaxy of IRESs. Cell Mol Life Sci 74, 1431–1455 (2017). PubMed PMC
Kozak M New ways of initiating translation in eukaryotes? Mol Cell Biol 21, 1899–1907 (2001). PubMed PMC
Schneider R, Agol VI, Andino R, Bayard F, Cavener DR, Chappell SA, Chen JJ, Darlix JL, Dasgupta A, Donzé O, Duncan R, Elroy-Stein O, Farabaugh PJ, Filipowicz W, Gale M, Gehrke L, Goldman E, Groner Y, Harford JB, Hatzglou M, He B, Hellen CU, Hentze MW, Hershey J, Hershey P, Hohn T, Holcik M, Hunter CP, Igarashi K, Jackson R, Jagus R, Jefferson LS, Joshi B, Kaempfer R, Katze M, Kaufman RJ, Kiledjian M, Kimball SR, Kimchi A, Kirkegaard K, Koromilas AE, Krug RM, Kruys V, Lamphear BJ, Lemon S, Lloyd RE, Maquat LE, Martinez-Salas E, Mathews MB, Mauro VP, Miyamoto S, Mohr I, Morris DR, Moss EG, Nakashima N, Palmenberg A, Parkin NT, Pe’ery T, Pelletier J, Peltz S, Pestova TV, Pilipenko EV, Prats AC, Racaniello V, Read GS, Rhoads RE, Richter JD, Rivera-Pomar R, Rouault T, Sachs A, Sarnow P, Scheper GC, Schiff L, Schoenberg DR, Semler BL, Siddiqui A, Skern T, Sonenberg N, Sossin W, Standart N, Tahara SM, Thomas AA, Toulmé JJ, Wilusz J, Wimmer E, Witherell G & Wormington M New ways of initiating translation in eukaryotes. Mol Cell Biol 21, 8238–8246 (2001). PubMed PMC
Kozak M Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene 318, 1–23 (2003). PubMed
Jacobs JL & Dinman JD Systematic analysis of bicistronic reporter assay data. Nucleic Acids Res 32, e160 (2004). PubMed PMC
Mardanova ES, Zamchuk LA & Ravin NV Contribution of internal initiation to translation of cellular mRNAs containing IRESs. Biochem Soc Trans 36, 694–697 (2008). PubMed
Thompson SR So you want to know if your message has an IRES? Wiley Interdiscip Rev RNA 3, 697–705 (2012). PubMed PMC
Jackson RJ The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb Perspect Biol 5, a011569 (2013). PubMed PMC
Shatsky IN, Dmitriev SE, Andreev DE & Terenin IM Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes. Crit Rev Biochem Mol Biol 49, 164–177 (2014). PubMed
Bustin SA Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25, 169–193 (2000). PubMed
Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P & Hayashizaki Y Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100, 15776–15781 (2003). PubMed PMC
Atkins JF, Wills NM, Loughran G, Wu C-Y, Parsawar K, Ryan MD, Wang C-H & Nelson CC A case for ‘StopGo’: reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). RNA 13, 803–810 (2007). PubMed PMC
Ryan MD & Drew J Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 13, 928–933 (1994). PubMed PMC
Minskaia E, Nicholson J & Ryan MD Optimisation of the foot-and-mouth disease virus 2A co-expression system for biomedical applications. BMC Biotechnol 13, 67 (2013). PubMed PMC
Kim JH, Lee S-R, Li L-H, Park H-J, Park J-H, Lee KY, Kim M-K, Shin BA & Choi S-Y High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, e18556 (2011). PubMed PMC
Donnelly MLL, Hughes LE, Luke G, Mendoza H, Ten Dam E, Gani D & Ryan MD The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J Gen Virol 82, 1027–1041 (2001). PubMed
Sahin U, Karikó K & Türeci Ö mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 13, 759–780 (2014). PubMed
Pardi N, Hogan MJ, Porter FW & Weissman D mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov 17, 261–279 (2018). PubMed PMC
Juszkiewicz S & Hegde RS Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. Molecular Cell 65, 743–750.e4 (2017). PubMed PMC
Sundaramoorthy E, Leonard M, Mak R, Liao J, Fulzele A & Bennett EJ ZNF598 and RACK1 Regulate Mammalian Ribosome-Associated Quality Control Function by Mediating Regulatory 40S Ribosomal Ubiquitylation. Molecular Cell 65, 751–760.e4 (2017). PubMed PMC
Matsuo Y, Ikeuchi K, Saeki Y, Iwasaki S, Schmidt C, Udagawa T, Sato F, Tsuchiya H, Becker T, Tanaka K, Ingolia NT, Beckmann R & Inada T Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat Commun 8, 159 (2017). PubMed PMC
Ikeuchi K, Tesina P, Matsuo Y, Sugiyama T, Cheng J, Saeki Y, Tanaka K, Becker T, Beckmann R & Inada T Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. The EMBO Journal 38, e100276 (2019). PubMed PMC
Kisly I, Kattel C, Remme J & Tamm T Luciferase-based reporter system for PubMed PMC
Akulich KA, Andreev DE, Terenin IM, Smirnova VV, Anisimova AS, Makeeva DS, Arkhipova VI, Stolboushkina EA, Garber MB, Prokofjeva MM, Spirin PV, Prassolov VS, Shatsky IN & Dmitriev SE Four translation initiation pathways employed by the leaderless mRNA in eukaryotes. Sci Rep 6, 37905 (2016). PubMed PMC
Barreau C, Dutertre S, Paillard L & Osborne HB Liposome-mediated RNA transfection should be used with caution. RNA 12, 1790–1793 (2006). PubMed PMC
Paramasivam P, Franke C, Stöter M, Höijer A, Bartesaghi S, Sabirsh A, Lindfors L, Arteta MY, Dahlén A, Bak A, Andersson S, Kalaidzidis Y, Bickle M & Zerial M Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J Cell Biol 221, e202110137 (2022). PubMed PMC
Hollien J, Lin JH, Li H, Stevens N, Walter P & Weissman JS Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186, 323–331 (2009). PubMed PMC
Han D, Lerner AG, Vande Walle L, Upton J-P, Xu W, Hagen A, Backes BJ, Oakes SA & Papa FR IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009). PubMed PMC
Karasik A, Jones GD, DePass AV & Guydosh NR Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences. Nucleic Acids Res 49, 6007–6026 (2021). PubMed PMC
Malka Y, Alkan F, Ju S, Körner P-R, Pataskar A, Shulman E, Loayza-Puch F, Champagne J, Wenzel C, Faller WJ, Elkon R, Lee C & Agami R Alternative cleavage and polyadenylation generates downstream uncapped RNA isoforms with translation potential. Mol Cell 82, 3840–3855.e8 (2022). PubMed PMC
Andreev DE, Terenin IM, Dmitriev SE & Shatsky IN Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells. Gene 578, 1–6 (2016). PubMed
Matreyek KA, Stephany JJ, Chiasson MA, Hasle N & Fowler DM An improved platform for functional assessment of large protein libraries in mammalian cells. Nucleic Acids Res 48, e1 (2020). PubMed PMC
She R, Luo J & Weissman JS Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity. Nucleic Acids Res 51, 6355–6369 (2023). PubMed PMC
Dmitriev SE, Andreev DE, Ad’ianova ZV, Terenin IM & Shatskiĭ IN [Efficient cap-dependent in vitro and in vivo translation of mammalian mRNAs with long and highly structured 5’-untranslated regions]. Mol Biol (Mosk) 43, 119–125 (2009). PubMed
Kozak M Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res 18, 2828 (1990). PubMed PMC
Soto Rifo R, Ricci EP, Décimo D, Moncorgé O & Ohlmann T Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation. Nucleic Acids Res 35, e121 (2007). PubMed PMC
Dmitriev SE, Bykova NV, Andreev DE & Terenin IM [Adequate system for investigation of translation initiation of the human retrotransposon L1 mRNA in vitro]. Mol Biol (Mosk) 40, 25–30 (2006). PubMed
Iizuka N, Najita L, Franzusoff A & Sarnow P Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 14, 7322–7330 (1994). PubMed PMC
Tuite MF & McLaughlin CS Polyamines enhance the efficiency of tRNA-mediated readthrough of amber and UGA termination codons in a yeast cell-free system. Curr Genet 7, 421–426 (1983). PubMed
Skabkin MA, Skabkina OV, Hellen CUT & Pestova TV Reinitiation and other unconventional posttermination events during eukaryotic translation. Mol Cell 51, 249–264 (2013). PubMed PMC
Zinoviev A, Hellen CUT & Pestova TV Multiple mechanisms of reinitiation on bicistronic calicivirus mRNAs. Mol Cell 57, 1059–1073 (2015). PubMed PMC
Terenin IM, Dmitriev SE, Andreev DE, Royall E, Belsham GJ, Roberts LO & Shatsky IN A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol Cell Biol 25, 7879–7888 (2005). PubMed PMC
Abaeva IS, Pestova TV & Hellen CUT Attachment of ribosomal complexes and retrograde scanning during initiation on the Halastavi árva virus IRES. Nucleic Acids Res 44, 2362–2377 (2016). PubMed PMC
Beznosková P, Pavlíková Z, Zeman J, Echeverría Aitken C & Valášek LS Yeast applied readthrough inducing system (YARIS): an invivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res 47, 6339–6350 (2019). PubMed PMC
Beznosková P, Gunišová S & Valášek LS Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22, 456–466 (2016). PubMed PMC
Powell ML, Leigh KE, Pöyry TAA, Jackson RJ, Brown TDK & Brierley I Further characterisation of the translational termination-reinitiation signal of the influenza B virus segment 7 RNA. PLoS One 6, e16822 (2011). PubMed PMC
Luttermann C & Meyers G A bipartite sequence motif induces translation reinitiation in feline calicivirus RNA. J Biol Chem 282, 7056–7065 (2007). PubMed
Pöyry TAA, Kaminski A, Connell EJ, Fraser CS & Jackson RJ The mechanism of an exceptional case of reinitiation after translation of a long ORF reveals why such events do not generally occur in mammalian mRNA translation. Genes Dev 21, 3149–3162 (2007). PubMed PMC
Gould PS, Dyer NP, Croft W, Ott S & Easton AJ Cellular mRNAs access second ORFs using a novel amino acid sequence-dependent coupled translation termination-reinitiation mechanism. RNA 20, 373–381 (2014). PubMed PMC
Michel AM, Kiniry SJ, O’Connor PBF, Mullan JP & Baranov PV GWIPS-viz: 2018 update. Nucleic Acids Res 46, D823–D830 (2018). PubMed PMC
Kiniry SJ, Judge CE, Michel AM & Baranov PV Trips-Viz: an environment for the analysis of public and user-generated ribosome profiling data. Nucleic Acids Res 49, W662–W670 (2021). PubMed PMC
Andreev DE, O’Connor PBF, Loughran G, Dmitriev SE, Baranov PV & Shatsky IN Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Res 45, 513–526 (2017). PubMed PMC
Ingolia NT, Hussmann JA & Weissman JS Ribosome Profiling: Global Views of Translation. Cold Spring Harb Perspect Biol 11, a032698 (2019). PubMed PMC
Gunišová S, Hronová V, Mohammad MP, Hinnebusch AG & Valášek LS Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol Rev 42, 165–192 (2018). PubMed PMC
Kozak M Constraints on reinitiation of translation in mammals. Nucleic Acids Res 29, 5226–5232 (2001). PubMed PMC
Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI & Dmitriev SE Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. Biochemistry (Mosc) 86, 1060–1094 (2021). PubMed PMC
Makeeva DS, Riggs CL, Burakov AV, Ivanov PA, Kushchenko AS, Bykov DA, Popenko VI, Prassolov VS, Ivanov PV & Dmitriev SE Relocalization of Translation Termination and Ribosome Recycling Factors to Stress Granules Coincides with Elevated Stop-Codon Readthrough and Reinitiation Rates upon Oxidative Stress. Cells 12, 259 (2023). PubMed PMC
Brown CM, Dinesh-Kumar SP & Miller WA Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J Virol 70, 5884–5892 (1996). PubMed PMC
Xu Y, Ju H-J, DeBlasio S, Carino EJ, Johnson R, MacCoss MJ, Heck M, Miller WA & Gray SM A Stem-Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream. J Virol 92, e01544–17 (2018). PubMed PMC
Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T & Sugano S Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 16, 55–65 (2006). PubMed PMC
Makhnovskii PA, Gusev OA, Bokov RO, Gazizova GR, Vepkhvadze TF, Lysenko EA, Vinogradova OL, Kolpakov FA & Popov DV Alternative transcription start sites contribute to acute-stress-induced transcriptome response in human skeletal muscle. Hum Genomics 16, 24 (2022). PubMed PMC
Huang F, Gonçalves C, Bartish M, Rémy-Sarrazin J, Issa ME, Cordeiro B, Guo Q, Emond A, Attias M, Yang W, Plourde D, Su J, Gimeno MG, Zhan Y, Galán A, Rzymski T, Mazan M, Masiejczyk M, Faber J, Khoury E, Benoit A, Gagnon N, Dankort D, Journe F, Ghanem GE, Krawczyk CM, Saragovi HU, Piccirillo CA, Sonenberg N, Topisirovic I, Rudd CE, Miller WH & Del Rincón SV Inhibiting the MNK1/2-eIF4E axis impairs melanoma phenotype switching and potentiates antitumor immune responses. J Clin Invest 131, e140752, 140752 (2021). PubMed PMC
Watt K, Dauber B, Szkop KJ, Lee L, Jovanovic P, Chen S, Masvidal L, Tandoc K, Palia R, Topisirovic I, Larsson O & Postovit L-M Epigenetic Coordination of Transcriptional and Translational Programs in Hypoxia. http://biorxiv.org/lookup/doi/10.1101/2023.09.16.558067 (2023) doi: 10.1101/2023.09.16.558067. DOI
Wang X-Q & Rothnagel JA 5’-untranslated regions with multiple upstream AUG codons can support low-level translation via leaky scanning and reinitiation. Nucleic Acids Res 32, 1382–1391 (2004). PubMed PMC
Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, Merrick WC & Shatsky IN Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5’ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol Cell Biol 27, 4685–4697 (2007). PubMed PMC