Morphological profiling data resource enables prediction of chemical compound properties

. 2025 May 16 ; 28 (5) : 112445. [epub] 20250416

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40384930
Odkazy

PubMed 40384930
PubMed Central PMC12084007
DOI 10.1016/j.isci.2025.112445
PII: S2589-0042(25)00706-0
Knihovny.cz E-zdroje

Morphological profiling with the Cell Painting assay has emerged as a promising method in drug discovery research. The assay captures morphological changes across various cellular compartments enabling the rapid prediction of compound bioactivity. We present a comprehensive morphological profiling resource using the carefully curated and well-annotated EU-OPENSCREEN Bioactive compounds. The data were generated across four imaging sites with high-throughput confocal microscopes using the Hep G2 as well as the U2 OS cell lines. We employed an extensive assay optimization process to achieve high data quality across the different sites. An analysis of the extracted profiles validates the robustness of the generated data. We used this resource to compare the morphological features of the different cell lines. By correlating the profiles with overall activity, cellular toxicity, several specific mechanisms of action (MOAs), and protein targets, we demonstrate the dataset's potential for facilitating more extensive exploration of MOAs.

Zobrazit více v PubMed

Bray M.A., Singh S., Han H., Davis C.T., Borgeson B., Hartland C., Kost-Alimova M., Gustafsdottir S.M., Gibson C.C., Carpenter A.E. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 2016;11:1757–1774. doi: 10.1038/nprot.2016.105. PubMed DOI PMC

Gustafsdottir S.M., Ljosa V., Sokolnicki K.L., Anthony Wilson J., Walpita D., Kemp M.M., Petri Seiler K., Carrel H.A., Golub T.R., Schreiber S.L., et al. Multiplex cytological profiling assay to measure diverse cellular states. PLoS One. 2013;8 doi: 10.1371/journal.pone.0080999. PubMed DOI PMC

Ziegler S., Sievers S., Waldmann H. Morphological profiling of small molecules. Cell Chem. Biol. 2021;28:300–319. doi: 10.1016/j.chembiol.2021.02.012. PubMed DOI

Boutros M., Heigwer F., Laufer C. Microscopy-Based High-Content Screening. Cell. 2015;163:1314–1325. doi: 10.1016/j.cell.2015.11.007. PubMed DOI

Caicedo J.C., Cooper S., Heigwer F., Warchal S., Qiu P., Molnar C., Vasilevich A.S., Barry J.D., Bansal H.S., Kraus O., et al. Data-analysis strategies for image-based cell profiling. Nat. Methods. 2017;14:849–863. doi: 10.1038/nmeth.4397. PubMed DOI PMC

Chandrasekaran S.N., Ceulemans H., Boyd J.D., Carpenter A.E. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat. Rev. Drug Discov. 2021;20:145–159. PubMed PMC

Pratapa A., Doron M., Caicedo J.C. Image-based cell phenotyping with deep learning. Curr. Opin. Chem. Biol. 2021;65:9–17. doi: 10.1016/j.cbpa.2021.04.001. PubMed DOI

Stirling D.R., Swain-Bowden M.J., Lucas A.M., Carpenter A.E., Cimini B.A., Goodman A. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinf. 2021;22:433. doi: 10.1186/s12859-021-04344-9. PubMed DOI PMC

Foley D.J., Zinken S., Corkery D., Laraia L., Pahl A., Wu Y.W., Waldmann H. Phenotyping Reveals Targets of a Pseudo-Natural-Product Autophagy Inhibitor. Angew. Chem. Int. Ed. 2020;59:12470–12476. doi: 10.1002/anie.202000364. PubMed DOI PMC

Hughes R.E., Elliott R.J.R., Munro A.F., Makda A., O'Neill J.R., Hupp T., Carragher N.O. High-Content Phenotypic Profiling in Esophageal Adenocarcinoma Identifies Selectively Active Pharmacological Classes of Drugs for Repurposing and Chemical Starting Points for Novel Drug Discovery. SLAS Discov. 2020;25:770–782. doi: 10.1177/2472555220917115. PubMed DOI PMC

Laraia L., Garivet G., Foley D.J., Kaiser N., Müller S., Zinken S., Pinkert T., Wilke J., Corkery D., Pahl A., et al. Image-Based Morphological Profiling Identifies a Lysosomotropic, Iron-Sequestering Autophagy Inhibitor. Angew. Chem. Int. Ed. 2020;59:5721–5729. doi: 10.1002/anie.201913712. PubMed DOI PMC

Schneidewind T., Brause A., Pahl A., Burhop A., Mejuch T., Sievers S., Waldmann H., Ziegler S. Morphological Profiling Identifies a Common Mode of Action for Small Molecules with Different Targets. Chembiochem. 2020;21:3197–3207. doi: 10.1002/cbic.202000381. PubMed DOI PMC

Wilke J., Kawamura T., Xu H., Brause A., Friese A., Metz M., Schepmann D., Wunsch B., Artacho-Cordon A., Nieto F.R., et al. Discovery of a sigma(1) receptor antagonist by combination of unbiased cell painting and thermal proteome profiling. Cell Chem. Biol. 2021;28:848–854.e5. doi: 10.1016/j.chembiol.2021.01.009. PubMed DOI

Liu J., Mallick S., Xie Y., Grassin C., Lucas B., Schölermann B., Pahl A., Scheel R., Strohmann C., Protzel C., et al. Morphological Profiling Identifies the Motor Protein Eg5 as Cellular Target of Spirooxindoles. Angew. Chem. Int. Ed. 2023;62 doi: 10.1002/anie.202301955. PubMed DOI

Mirabelli C., Wotring J.W., Zhang C.J., McCarty S.M., Fursmidt R., Pretto C.D., Qiao Y., Zhang Y., Frum T., Kadambi N.S., et al. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2105815118. PubMed DOI PMC

Chandrasekaran S.N., Ackerman J., Alix E., Ando D.M., Arevalo J., Bennion M., Boisseau N., Borowa A., Boyd J.D., Brino L., et al. JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic perturbations. bioRxiv. 2023 doi: 10.1101/2023.03.23.534023. Preprint at. DOI

Cimini B.A., Chandrasekaran S.N., Kost-Alimova M., Miller L., Goodale A., Fritchman B., Byrne P., Garg S., Jamali N., Logan D.J., et al. Optimizing the Cell Painting assay for image-based profiling. Bioinformatics. 2022;18:1981–2013. doi: 10.1101/2022.07.13.499171. PubMed DOI PMC

Frank R. EU-OPENSCREEN - A European Infrastructure of Open Screening Platforms for Chemical Biology. ACS Chem. Biol. 2014;9:853–854. doi: 10.1021/cb500189k. PubMed DOI

Horvath D., Lisurek M., Rupp B., Kühne R., Specker E., von Kries J., Rognan D., Andersson C.D., Almqvist F., Elofsson M., et al. Design of a general-purpose European compound screening library for EU-OPENSCREEN. ChemMedChem. 2014;9:2309–2326. doi: 10.1002/cmdc.201402126. PubMed DOI

Weisbart E., Kumar A., Arevalo J., Carpenter A.E., Cimini B.A., Singh S. Cell Painting Gallery: an open resource for image-based profiling. arXiv. 2024 doi: 10.48550/arXiv.2402.02203. Preprint at. PubMed DOI PMC

Akbarzadeh M., Deipenwisch I., Schoelermann B., Pahl A., Sievers S., Ziegler S., Waldmann H. Morphological profiling by means of the Cell Painting assay enables identification of tubulin-targeting compounds. Cell Chem. Biol. 2022;29:1053–1064.e3. doi: 10.1016/j.chembiol.2021.12.009. PubMed DOI

Bray M.A., Gustafsdottir S.M., Rohban M.H., Singh S., Ljosa V., Sokolnicki K.L., Bittker J.A., Bodycombe N.E., Dancík V., Hasaka T.P., et al. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay. GigaScience. 2017;6:1–5. doi: 10.1093/gigascience/giw014. PubMed DOI PMC

Christoforow A., Wilke J., Binici A., Pahl A., Ostermann C., Sievers S., Waldmann H. Design, Synthesis, and Phenotypic Profiling of Pyrano-Furo-Pyridone Pseudo Natural Products. Angew. Chem. Int. Ed. 2019;58:14715–14723. doi: 10.1002/anie.201907853. PubMed DOI PMC

Grigalunas M., Burhop A., Zinken S., Pahl A., Gally J.M., Wild N., Mantel Y., Sievers S., Foley D.J., Scheel R., et al. Natural product fragment combination to performance-diverse pseudo-natural products. Nat. Commun. 2021;12:1883. doi: 10.1038/s41467-021-22174-4. PubMed DOI PMC

Rezvani A., Bigverdi M., Rohban M.H. Image-based cell profiling enhancement via data cleaning methods. PLoS One. 2022;17 doi: 10.1371/journal.pone.0267280. PubMed DOI PMC

Serrano E., Chandrasekaran S.N., Bunten D., Brewer K.I., Tomkinson J., Kern R., Bornholdt M., Fleming S., Pei R., Arevalo J., et al. Reproducible image-based profiling with Pycytominer. Nat Methods. 2025;22:677–680. doi: 10.1038/s41592-025-02611-8. PubMed DOI

Dahlin J.L., Hua B.K., Zucconi B.E., Nelson S.D., Jr., Singh S., Carpenter A.E., Shrimp J.H., Lima-Fernandes E., Wawer M.J., Chung L.P.W., et al. Reference compounds for characterizing cellular injury in high-content cellular morphology assays. Nat. Commun. 2023;14:1364. doi: 10.1038/s41467-023-36829-x. PubMed DOI PMC

Heinrich L., Kumbier K., Li L., Altschuler S.J., Wu L.F. Selection of Optimal Cell Lines for High-Content Phenotypic Screening. ACS Chem. Biol. 2023;18:679–685. doi: 10.1021/acschembio.2c00878. PubMed DOI PMC

McInnes L., Healy J., Saul N., Großberger L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 2018;3:861. doi: 10.21105/joss.00861. DOI

Arevalo J., Su E., Ewald J.D., van Dijk R., Carpenter A.E., Singh S. Evaluating batch correction methods for image-based cell profiling. Nat. Commun. 2024;15:6516. doi: 10.1038/s41467-024-50613-5. PubMed DOI PMC

Way G.P., Natoli T., Adeboye A., Litichevskiy L., Yang A., Lu X., Caicedo J.C., Cimini B.A., Karhohs K., Logan D.J., et al. Morphology and gene expression profiling provide complementary information for mapping cell state. Cell Syst. 2022;13:911–923.e9. doi: 10.1016/j.cels.2022.10.001. PubMed DOI PMC

Faklaris O., Bancel-Vallee L., Dauphin A., Monterroso B., Frere P., Geny D., Manoliu T., de Rossi S., Cordelieres F.P., Schapman D., et al. Quality assessment in light microscopy for routine use through simple tools and robust metrics. J. Cell Biol. 2022;221 doi: 10.1083/jcb.202107093. PubMed DOI PMC

Piergiovanni M., Mennecozzi M., Barale-Thomas E., Danovi D., Dunst S., Egan D., Fassi A., Hartley M., Kainz P., Koch K., et al. Bridging imaging-based in vitro methods from biomedical research to regulatory toxicology. Arch. Toxicol. 2025;99:1271–1285. doi: 10.1007/s00204-024-03922-z. PubMed DOI PMC

Willis C., Nyffeler J., Harrill J. Phenotypic Profiling of Reference Chemicals across Biologically Diverse Cell Types Using the Cell Painting Assay. SLAS Discov. 2020;25:755–769. doi: 10.1177/2472555220928004. PubMed DOI PMC

Huang H., Wang Y., Rudin C., Browne E.P. Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization. Commun. Biol. 2022;5:719. doi: 10.1038/s42003-022-03628-x. PubMed DOI PMC

Gascoigne K.E., Taylor S.S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell. 2008;14:111–122. doi: 10.1016/j.ccr.2008.07.002. PubMed DOI

Hayflick L. The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp. Cell Res. 1965;37:614–636. doi: 10.1016/0014-4827(65)90211-9. PubMed DOI

Kuilman T., Michaloglou C., Mooi W.J., Peeper D.S. The essence of senescence. Genes Dev. 2010;24:2463–2479. doi: 10.1101/gad.1971610. PubMed DOI PMC

Cristofalo V.J., Pignolo R.J. Replicative senescence of human fibroblast-like cells in culture. Physiol. Rev. 1993;73:617–638. doi: 10.1152/physrev.1993.73.3.617. PubMed DOI

Zhao H., Halicka H.D., Traganos F., Jorgensen E., Darzynkiewicz Z. New biomarkers probing depth of cell senescence assessed by laser scanning cytometry. Cytometry. A. 2010;77:999–1007. doi: 10.1002/cyto.a.20983. PubMed DOI PMC

Petrova N.V., Velichko A.K., Razin S.V., Kantidze O.L. Small molecule compounds that induce cellular senescence. Aging Cell. 2016;15:999–1017. doi: 10.1111/acel.12518. PubMed DOI PMC

Herrmann A.L., Kuhn B.J., Holzer A., Krijgsveld J., Hoppe-Seyler K., Hoppe-Seyler F. Delineating the Switch between Senescence and Apoptosis in Cervical Cancer Cells under Ciclopirox Treatment. Cancers (Basel) 2021;13 doi: 10.3390/cancers13194995. PubMed DOI PMC

Lukasova E., Rezacova M., Bacikova A., Sebejova L., Vavrova J., Kozubek S. Distinct cellular responses to replication stress leading to apoptosis or senescence. FEBS Open Bio. 2019;9:870–890. doi: 10.1002/2211-5463.12632. PubMed DOI PMC

Wang X.L., Sun R.X., Li D.X., Chen Z.G., Li X.F., Sun S.Y., Lin F., Zhao G.A. Salidroside Regulates Mitochondrial Homeostasis After Polarization of RAW264.7 Macrophages. J. Cardiovasc. Pharmacol. 2023;81:85–92. doi: 10.1097/FJC.0000000000001362. PubMed DOI PMC

Shao J., Zhou B., Di Bilio A.J., Zhu L., Wang T., Qi C., Shih J., Yen Y. A Ferrous-Triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol. Cancer Ther. 2006;5:586–592. doi: 10.1158/1535-7163.MCT-05-0384. PubMed DOI

Seifrtova M., Havelek R., Soukup T., Filipova A., Mokry J., Rezacova M. Mitoxantrone ability to induce premature senescence in human dental pulp stem cells and human dermal fibroblasts. J. Physiol. Pharmacol. 2013;64:255–266. PubMed

Zhen H., Zhang X., Zhang L., Zhou M., Lu L., Wu L., He N., Wang J., Li R., Guo Y. SP2509, an inhibitor of LSD1, exerts potential antitumor effects by targeting the JAK/STAT3 signaling. Acta Biochim. Biophys. Sin. 2021;53:1098–1105. doi: 10.1093/abbs/gmab083. PubMed DOI

Shao Z.M., Dawson M.I., Li X.S., Rishi A.K., Sheikh M.S., Han Q.X., Ordonez J.V., Shroot B., Fontana J.A. p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene. 1995;11:493–504. PubMed

Cai X., Li Y., Zheng J., Liu L., Jiao Z., Lin J., Jiang S., Lin X., Sun Y. Modeling of senescence-related chemoresistance in ovarian cancer using data analysis and patient-derived organoids. Front. Oncol. 2023;13 doi: 10.3389/fonc.2023.1291559. PubMed DOI PMC

Caicedo J.C., McQuin C., Goodman A., Singh S., Carpenter A.E. Weakly Supervised Learning of Single-Cell Feature Embeddings. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2018;2018:9309–9318. doi: 10.1109/CVPR.2018.00970. PubMed DOI PMC

Moshkov N., Bornholdt M., Benoit S., Smith M., McQuin C., Goodman A., Senft R.A., Han Y., Babadi M., Horvath P., et al. Learning representations for image-based profiling of perturbations. Nat Commun. 2024;15:1594. doi: 10.1038/s41467-024-45999-1. PubMed DOI PMC

Perakis A., Gorji A., Jain S., Chaitanya K., Rizza S., Konukoglu E. Machine Learning in Medical Imaging. Springer Nature; 2021. Contrastive Learning of Single-Cell Phenotypic Representations for Treatment Classification; pp. 565–575.

Bushiri Pwesombo D., Beese C., Schmied C., Sun H. Semisupervised Contrastive Learning for Bioactivity Prediction Using Cell Painting Image Data. J. Chem. Inf. Model. 2025;65:528–543. doi: 10.1021/acs.jcim.4c00835. PubMed DOI PMC

Chandrasekaran S.N., Cimini B.A., Goodale A., Miller L., Kost-Alimova M., Jamali N., Doench J.G., Fritchman B., Skepner A., Melanson M., et al. Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations. Nat Methods. 2024;21:1114–1121. doi: 10.1038/s41592-024-02241-6. PubMed DOI PMC

O'Brien P.J., Irwin W., Diaz D., Howard-Cofield E., Krejsa C.M., Slaughter M.R., Gao B., Kaludercic N., Angeline A., Bernardi P., et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch. Toxicol. 2006;80:580–604. doi: 10.1007/s00204-006-0091-3. PubMed DOI

Schoonen W.G.E.J., de Roos J.A.D.M., Westerink W.M.A., Débiton E. Cytotoxic effects of 110 reference compounds on HepG2 cells and for 60 compounds on HeLa, ECC-1 and CHO cells. II mechanistic assays on NAD(P)H, ATP and DNA contents. Toxicol. Vitro. 2005;19:491–503. doi: 10.1016/j.tiv.2005.01.002. PubMed DOI

Schoonen W.G.E.J., Westerink W.M.A., de Roos J.A.D.M., Débiton E. Cytotoxic effects of 100 reference compounds on Hep G2 and HeLa cells and of 60 compounds on ECC-1 and CHO cells. I mechanistic assays on ROS, glutathione depletion and calcein uptake. Toxicol. Vitro. 2005;19:505–516. doi: 10.1016/j.tiv.2005.01.003. PubMed DOI

De Brabander M.J., Van de Veire R.M., Aerts F.E., Borgers M., Janssen P.A. The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Res. 1976;36:905–916. PubMed

Hartley M., Kleywegt G.J., Patwardhan A., Sarkans U., Swedlow J.R., Brazma A. The BioImage Archive - Building a Home for Life-Sciences Microscopy Data. J. Mol. Biol. 2022;434 doi: 10.1016/j.jmb.2022.167505. PubMed DOI

Skuta C., Muller T., Vorsilak M., Popr M., Epp T., Skopelitou K.E., Rossella F., Stechmann B., Gribbon P., Bartunek P. ECBD: European chemical biology database. Nucleic Acids Res. 2025;53:D1383–D1392. doi: 10.1093/nar/gkae904. PubMed DOI PMC

Sanchez-Fernandez A., Rumetshofer E., Hochreiter S., Klambauer G. CLOOME: contrastive learning unlocks bioimaging databases for queries with chemical structures. Nat. Commun. 2023;14:7339. doi: 10.1038/s41467-023-42328-w. PubMed DOI PMC

Skuta C., Popr M., Muller T., Jindrich J., Kahle M., Sedlak D., Svozil D., Bartunek P. Probes &Drugs portal: an interactive, open data resource for chemical biology. Nat. Methods. 2017;14:759–760. doi: 10.1038/nmeth.4365. PubMed DOI

Corsello S.M., Bittker J.A., Liu Z., Gould J., McCarren P., Hirschman J.E., Johnston S.E., Vrcic A., Wong B., Khan M., et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 2017;23:405–408. doi: 10.1038/nm.4306. PubMed DOI PMC

Zhao Y., Nasrullah Z., Li Z. PyOD: A Python Toolbox for Scalable Outlier Detection. J. Mach. Learn. Res. 2019;20:1–7.

Rossum G.V., Drake F.L. CreateSpace; 2009. Python 3 Reference Manual.

Berthold M.R., Cebron N., Dill F., Gabriel T.R., Kötter T., Meinl T., Ohl P., Thiel K., Wiswedel B. KNIME - the Konstanz information miner: version 2.0 and beyond. SIGKDD Explor. Newsl. 2009;11:26–31. doi: 10.1145/1656274.1656280. DOI

Team R.C. R Foundation for Statistical Computing; 2023. R: A Language and Environment for Statistical Computing.

Wickham H. Springer-Verlag; 2016. ggplot2: Elegant Graphics for Data Analysis.

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Skuta C., Southan C., Bartunek P. Will the chemical probes please stand up? RSC Med. Chem. 2021;12:1428–1441. doi: 10.1039/d1md00138h. PubMed DOI PMC

Antolin A.A., Sanfelice D., Crisp A., Villasclaras Fernandez E., Mica I.L., Chen Y., Collins I., Edwards A., Müller S., Al-Lazikani B., Workman P. The Chemical Probes Portal: an expert review-based public resource to empower chemical probe assessment, selection and use. Nucleic Acids Res. 2023;51:D1492–D1502. doi: 10.1093/nar/gkac909. PubMed DOI PMC

Schmied C., Jambor H.K. Effective image visualization for publications - a workflow using open access tools and concepts. F1000Res. 2020;9:1373. doi: 10.12688/f1000research.27140.2. PubMed DOI PMC

Schmied C., Nelson M.S., Avilov S., Bakker G.J., Bertocchi C., Bischof J., Boehm U., Brocher J., Carvalho M.T., Chiritescu C., et al. Community-developed checklists for publishing images and image analyses. Nat. Methods. 2024;21:170–181. doi: 10.1038/s41592-023-01987-9. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...