The origins and spread of domestic horses from the Western Eurasian steppes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34671162
PubMed Central
PMC8550961
DOI
10.1038/s41586-021-04018-9
PII: 10.1038/s41586-021-04018-9
Knihovny.cz E-zdroje
- MeSH
- archeologie MeSH
- domestikace * MeSH
- fylogeneze MeSH
- genom MeSH
- koně * genetika MeSH
- pastviny MeSH
- populační genetika * MeSH
- starobylá DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
- Názvy látek
- starobylá DNA MeSH
Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12.
Albrecht Daniel Thaer Institute Faculty of Life Sciences Humboldt University Berlin Berlin Germany
Anthropology Faculty Hartwick College Oneonta NY USA
Archaeological Institute of America Boston MA USA
Archaeological Research Collection Tallinn University Tallinn Estonia
Archaeological School Chuvash State Institute of Humanities Cheboksary Russia
Arctic and Antarctic Research Institute St Petersburg Russia
ArScAn UMR 7041 Equipe Ethnologie préhistorique CNRS MSH Mondes Nanterre Cedex France
Center for the Study of Human Origins Anthropology Department New York University New York NY USA
Centre d'Anthropobiologie et de Génomique de Toulouse Université Paul Sabatier Toulouse France
Centro Mixto UCM ISCIII de Evolución y Comportamiento Humanos Madrid Spain
Chinggis Khaan Museum Ulaanbaatar Mongolia
Departament d'Història i Arqueologia SERP Universitat de Barcelona Barcelona Spain
Departamento de Medicina Animal Facultad de Veterinaria Universidad de Extremadura Cáceres Spain
Department of Academic Management Academy of Science of Moldova Chișinău Republic of Moldova
Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Archaeogenetics Max Planck Institute for the Science of Human History Jena Germany
Department of Archaeology Ethnography and Museology Altai State University Barnaul Russia
Department of Archaeology History Faculty Vilnius University Vilnius Lithuania
Department of Archaeology Institute of History and Archaeology Tartu Estonia
Department of Archaeology Max Planck Institute for the Science of Human History Jena Germany
Department of Archaeology Ulaanbaatar State University Ulaanbaatar Mongolia
Department of Archaeology University of Exeter Exeter UK
Department of Biology National University of Mongolia Ulaanbaatar Mongolia
Department of Biology Universidad Autónoma de Madrid Madrid Spain
Department of Biotechnology Abdul Wali Khan University Mardan Pakistan
Department of Early Prehistory and Quaternary Ecology University of Tübingen Tübingen Germany
Department of Eastern European and Siberian Archaeology State Hermitage Museum St Petersburg Russia
Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
Department of Evolutionary Genetics Leibniz Institute for Zoo and Wildlife Research Berlin Germany
Department of Genetics and Evolution University of Geneva Geneva Switzerland
Department of Genetics Eötvös Loránd University Budapest Hungary
Department of Historical Studies University of Gothenburg Gothenburg Sweden
Department of History and Archaeology Surgut Governmental University Surgut Russia
Department of History Kyrgyz Turkish Manas University Bishkek Kyrgyzstan
Department of History of the Institute of Humanities Ural Federal University Ekaterinburg Russia
Department of Human Evolutionary Biology Harvard University Cambridge MA USA
Department of Nordic Studies and Linguistics University of Copenhagen Copenhagen Denmark
Department of paleontology Faculty of Geology Moscow State University Moscow Russia
Department of Zoology Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
Diamond and Precious Metals Geology Institute SB RAS Yakutsk Russia
Division of Archaeology Biodiversity Institute University of Kansas Lawrence KS USA
Earth System Science Department University of California Irvine Irvine CA USA
Estonian Biocentre Institute of Genomics University of Tartu Tartu Estonia
Eurasia Department of the German Archaeological Institute Berlin Germany
Faculty of History L N Gumilev Eurasian National University Nur Sultan Kazakhstan
Geneva Natural History Museum Geneva Switzerland
Geological Institute Russian Academy of Sciences Moscow Russia
Georgian National Museum Tbilisi Georgia
Grup d'Investigació Prehistòrica Universitat de Lleida PID2019 110022GB I00 Lleida Spain
Howard Hughes Medical Institute University of California Santa Cruz Santa Cruz CA USA
Institute for Prehistoric and Protohistoric Archaeology Kiel University Kiel Germany
Institute for the History of Material Culture Russian Academy of Sciences St Petersburg Russia
Institute of Animal Breeding and Genetics University of Veterinary Medicine Vienna Vienna Austria
Institute of Archaeology and Ethnology Polish Academy of Sciences Kraków Poland
Institute of Archaeology Jagiellonian University Kraków Poland
Institute of Archaeology Mongolian Academy of Sciences Ulaanbaatar Mongolia
Institute of Geology and Petroleum Technologies Kazan Federal University Kazan Russia
Institute of Systematics and Evolution of Animals Polish Academy of Sciences Kraków Poland
Instituto de Arqueología Mérida Spain
Laboratori d'Arqueologia Prehistòrica Universitat Jaume 1 Castelló de la Plana Spain
Leiden University Center for Linguistics Leiden University Leiden The Netherlands
Lundbeck Foundation GeoGenetics Centre Copenhagen Denmark
Lundbeck Foundation GeoGenetics Centre GLOBE Institute University of Copenhagen Copenhagen Denmark
Musée d'Anthropologie préhistorique de Monaco Monaco Monaco
Muséum d'histoire naturelle Secteur des Vertébrés Geneva Switzerland
Museum of Natural History University of Colorado Boulder Boulder CO USA
Museum Østjylland Randers Denmark
Nasledie Cultural Heritage Unit Stavropol Russia
OD Earth and History of Life Royal Belgian Institute of Natural Sciences Brussels Belgium
Research Center for the Preservation of Cultural Heritage Saratov Russia
Research Institute and Museum of Anthropology Lomonosov Moscow State University Moscow Russia
Rippl Rónai Municipal Museum with Country Scope Kaposvár Hungary
ROOTS Excellence Cluster Kiel University Kiel Germany
Russian and Foreign History Department South Ural State University Chelyabinsk Russia
Saryarka Archaeological Institute Buketov Karaganda University Karaganda Kazakhstan
Saxo Institute section of Archaeology University of Copenhagen Copenhagen Denmark
School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
School of History Classics and Archaeology University of Edinburgh Old Medical School Edinburgh UK
Scientific Research Department Orenburg State Pedagogical University Orenburg Russia
Semenov Tyan Shanskii Lipetsk State Pedagogical University Lipetsk Russia
SFB 1070 Resource Cultures University of Tübingen Tübingen Germany
SNSB State Collection of Anthropology and Palaeoanatomy Munich Germany
Tbilisi State University Tbilisi Georgia
Toraighyrov University Joint Research Center for Archeological Studies Pavlodar Kazakhstan
UMR 7194 Muséum National d'Histoire Naturelle CNRS UPVD Paris France
Università degli Studi di Milano Dipartimento di Beni Culturali e Ambientali Milan Italy
University of Tehran Central Laboratory Bioarchaeology Laboratory Archaeozoology Section Tehran Iran
W Szafer Institute of Botany Polish Academy of Sciences Kraków Poland
Zoological Institute Russian Academy of Sciences St Petersburg Russia
Zoology Department College of Science King Saud University Riyadh Saudi Arabia
Zobrazit více v PubMed
Kelekna, P. The Horse in Human History (Cambridge Univ. Press, 2009).
Outram AK, et al. The earliest horse harnessing and milking. Science. 2009;323:1332–1335. doi: 10.1126/science.1168594. PubMed DOI
Gaunitz C, et al. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science. 2018;360:111–114. doi: 10.1126/science.aao3297. PubMed DOI
Olsen, S. L. in Horses and Humans: The Evolution of Human Equine Relationships (eds Olsen S. L.et al.) 81–113 (Archaeopress, 2006).
Fages A, et al. Tracking five millennia of horse management with extensive ancient genome time series. Cell. 2019;177:1419–1435.e31. doi: 10.1016/j.cell.2019.03.049. PubMed DOI PMC
Guimaraes, S. et al. Ancient DNA shows domestic horses were introduced in the southern Caucasus and Anatolia during the Bronze Age. Sci. Adv. 6, eabb0030 (2020). PubMed PMC
Anthony, D. W. The Horse, the Wheel and Language (Princeton Univ. Press, 2007).
Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. doi: 10.1038/nature14317. PubMed DOI PMC
Allentoft ME, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–172. doi: 10.1038/nature14507. PubMed DOI
Demoule, J. P. Mais où sont passés les Indo-Européens ? Le mythe d'origine de l'Occident (Le Seuil, 2014).
de Barros Damgaard P, et al. 137 ancient human genomes from across the Eurasian steppes. Nature. 2018;557:369–374. doi: 10.1038/s41586-018-0094-2. PubMed DOI
Narasimhan VM, et al. The formation of human populations in South and Central Asia. Science. 2019;365:eaat7487. doi: 10.1126/science.aat7487. PubMed DOI PMC
Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B. 2015;370:20130624. doi: 10.1098/rstb.2013.0624. PubMed DOI PMC
Schubert M, et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc. Natl Acad. Sci. USA. 2014;111:E5661–E5669. doi: 10.1073/pnas.1416991111. PubMed DOI PMC
Librado P, et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl Acad. Sci. USA. 2015;112:E6889–E6897. doi: 10.1073/pnas.1513696112. PubMed DOI PMC
Petkova D, Novembre J, Stephens M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 2016;48:94–100. doi: 10.1038/ng.3464. PubMed DOI PMC
Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. doi: 10.1534/genetics.112.145037. PubMed DOI PMC
Harney É, Patterson N, Reich D, Wakeley J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics. 2021;217:iyaa045. doi: 10.1093/genetics/iyaa045. PubMed DOI PMC
Molloy, E. K., Durvasula, A. & Sankararaman, S. Advancing admixture graph estimation via maximum likelihood network orientation. Bioinformatics37, i142–i150 (2021). PubMed PMC
Battey C, Ralph PL, Kern AD. Predicting geographic location from genetic variation with deep neural networks. eLife. 2020;9:e54507. doi: 10.7554/eLife.54507. PubMed DOI PMC
de Barros Damgaard P, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science. 2018;360:eaar7711. doi: 10.1126/science.aar7711. PubMed DOI PMC
Reinhold, S. et al. in Appropriating Innovations: Entangled Knowledge in Eurasia, 5000–1500 bce (eds Stockhammer, P. W. & Maran, J.) 78–97 (Oxbow Books, 2017).
Kristiansen, K. in Trade and Civilization. Economic Networks and Cultural Ties, from Prehistory to the Early Modern Period (eds Kristiansen, K. et al.) (Cambridge Univ. Press, 2018).
Chechushkov I. V., & Epimakhov, A. V. in The Puzzle of Indo-European Origins and Dispersals: Archeology, Linguistics and Genetics (eds Kristiansen, K. et al.) (Cambridge Univ. Press, in the press).
Littauer MA, Crouwel JH. The origin of the true chariot. Antiquity. 1996;70:934–939. doi: 10.1017/S0003598X00084192. DOI
Lindner S. Chariots in the Eurasian Steppe: a Bayesian approach to the emergence of horse-drawn transport in the early second millennium BC. Antiquity. 2020;94:361–380. doi: 10.15184/aqy.2020.37. DOI
Moorey PRS. Pictorial evidence for the history of horse-riding in Iraq before the Kassite period . Iraq. 1970;32:36–50. doi: 10.2307/4199890. DOI
Kanne, K. Riding, ruling, and resistance equestrianism and political authority in the Hungarian Bronze Age. Curr. Anthropol. (in the press).
Suri P, et al. Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain. PLoS Genet. 2018;14:e1007601. doi: 10.1371/journal.pgen.1007601. PubMed DOI PMC
Jiang H, et al. Two GWAS-identified variants are associated with lumbar spinal stenosis and Gasdermin-C expression in Chinese population. Sci. Rep. 2020;10:21069. doi: 10.1038/s41598-020-78249-7. PubMed DOI PMC
Tikker L, et al. Inactivation of the GATA cofactor ZFPM1 results in abnormal development of dorsal raphe serotonergic neuron subtypes and increased anxiety-like behavior. J. Neurosci. 2020;40:8669–8682. doi: 10.1523/JNEUROSCI.2252-19.2020. PubMed DOI PMC
Takahashi A, Miczek KA. Neurogenetics of aggressive behavior: studies in rodents. Curr. Top. Behav. Neurosci. 2014;17:3–44. doi: 10.1007/7854_2013_263. PubMed DOI PMC
Schmitt T, Varga Z. Extra-Mediterranean refugia: the rule and not the exception? Frontiers Zool. 2012;9:22. doi: 10.1186/1742-9994-9-22. PubMed DOI PMC
Spasskaya, N. N., & Pavlinov, I. in Zoological Research (Arch. Zoological Museum, Moscow State Univ., 2016).
Colledge S, Conolly J, Crema E, Shennan S. Neolithic population crash in northwest Europe associated with agricultural crisis. Quat. Res. 2019;92:686–707. doi: 10.1017/qua.2019.42. DOI
Outram, A. K. & Bogaard, A. Subsistence and Society in Prehistory: New Directions in Economic Archaeology (Cambridge Univ. Press, 2019).
Anthony, D. W. in Social Complexity in Prehistoric Eurasia: Monuments, Metals and Mobility (eds Hanks, B. K. & Lindruff, K. M.) Ch. 4 (2009).
Maran, J., Bajenaru, R., Ailincai, S.-C., Popescu, A.-D. & Hansen, S. I. Objects, ideas and travelers. Contacts between the Balkans, the Aegean and Western Anatolia during the Bronze and Early Iron Age. In: Proc. of the Conference in Tulcea 10-13 November, 2017 (Rudolf Habelt, 2020).
Glob, P. V. Denmark: An Archaeological History from the Stone Age to the Vikings (Cornell Univ. Press, 1971).
Gimbutas M. The first wave of Eurasian Steppe pastoralists into Copper Age Europe. J. Indo. Eur. Stud. 1977;5:277–338.
Anthony DW. The “Kurgan Culture,” Indo-European origins, and the domestication of the horse: a reconsideration. Curr. Anthropol. 1986;27:291–313. doi: 10.1086/203441. DOI
Renfrew C. They ride horses, don’t they?: Mallory on the Indo-Europeans. Antiquity. 1989;63:843–847. doi: 10.1017/S0003598X00077012. DOI
Vandkilde, H. Culture and Change in Central European Prehistory (Aarhus Univ. Press, 2007).
Häusler, A. in Indogermanen und das Pferd (eds Hänsel, B. & Zimmer, S.) 217–257 (Archaeolingua Alapitvany, 1994).
Kroonen, G., Barjamovic, G. & Peyrot, M.Linguistic supplement to de Barros Damgaard et al. 2018: Early Indo-European languages, Anatolian, Tocharian and Indo-Iranian https://zenodo.org/record/1240524#.YFtLgGjTVMQ (2018).
South A. rworldmap: a new R package for mapping global data. R J. 2011;3:35–43. doi: 10.32614/RJ-2011-006. DOI
Brownrigg, R. maps: draw geographical maps. R package version 3.3.0 https://CRAN.R-project.org/package=maps (2018).
Reimer P, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP) Radiocarbon. 2020;62:725. doi: 10.1017/RDC.2020.41. DOI
Ramsey CB. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI
Seguin-Orlando A, et al. Heterogeneous hunter-gatherer and steppe-related ancestries in Late Neolithic and Bell Beaker genomes from present-day France. Curr. Biol. 2021;31:1072–1083.e10. doi: 10.1016/j.cub.2020.12.015. PubMed DOI
Gamba C, et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour. 2016;16:459–469. doi: 10.1111/1755-0998.12470. PubMed DOI
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:88. doi: 10.1186/s13104-016-1900-2. PubMed DOI PMC
Kalbfleisch TS, et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 2018;1:197. doi: 10.1038/s42003-018-0199-z. PubMed DOI PMC
Xu X, Arnason U. The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene. 1994;148:357–362. doi: 10.1016/0378-1119(94)90713-7. PubMed DOI
Felkel S, et al. The horse Y chromosome as an informative marker for tracing sire lines. Sci. Rep. 2019;9:6095. doi: 10.1038/s41598-019-42640-w. PubMed DOI PMC
Poullet M, Orlando L. Assessing DNA sequence alignment methods for characterizing ancient genomes and methylomes. Front. Ecol. Evol. 2020;8:105. doi: 10.3389/fevo.2020.00105. DOI
Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC
Orlando L, et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:74–78. doi: 10.1038/nature12323. PubMed DOI
Jónsson H, et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc. Natl Acad. Sci. USA. 2014;111:18655–18660. doi: 10.1073/pnas.1412627111. PubMed DOI PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC
Skoglund P, et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA. 2014;111:2229–2234. doi: 10.1073/pnas.1318934111. PubMed DOI PMC
Librado P, et al. Ancient genomic changes associated with domestication of the horse. Science. 2017;356:442–445. doi: 10.1126/science.aam5298. PubMed DOI
Der Sarkissian C, et al. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr. Biol. 2015;25:2577–2583. doi: 10.1016/j.cub.2015.08.032. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Bouckaert R, et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15:e1006650. doi: 10.1371/journal.pcbi.1006650. PubMed DOI PMC
Heller R, Chikhi L, Siegismund HR. The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS ONE. 2013;8:e62992. doi: 10.1371/journal.pone.0062992. PubMed DOI PMC
Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 2006;6:29. doi: 10.1186/1471-2148-6-29. PubMed DOI PMC
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 2005;22:1185–1192. doi: 10.1093/molbev/msi103. PubMed DOI
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015;32:2798–2800. doi: 10.1093/molbev/msv150. PubMed DOI PMC
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Schraiber J. Assessing the relationship of ancient and modern populations. Genetics. 2018;208:383–398. doi: 10.1534/genetics.117.300448. PubMed DOI PMC
Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC
Cheng JY, Mailund T, Nielsen R. Fast admixture analysis and population tree estimation for SNP and NGS data. Bioinformatics. 2017;33:2148–2155. doi: 10.1093/bioinformatics/btx098. PubMed DOI PMC
Lawson DJ, van Dorp L, Falush D. A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nat. Commun. 2018;9:3258. doi: 10.1038/s41467-018-05257-7. PubMed DOI PMC
Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet. 2013;9:e1003905. doi: 10.1371/journal.pgen.1003905. PubMed DOI PMC
Gerritsen, H. mapplots: data visualisation on maps. R package version 1.5.1 https://CRAN.R-project.org/package=mapplots (2018).
Bjornstad, O. N. & Cai, J. ncf: spatial covariance functions. R package version 1.2-9 http://ento.psu.edu/directory/onb1 (2020).
Loog L, et al. Estimating mobility using sparse data: application to human genetic variation. Proc. Natl Acad. Sci. USA. 2017;114:12213–12218. doi: 10.1073/pnas.1703642114. PubMed DOI PMC
Hijmans, R. J., Williams, E. & Vennes, C. E.. geosphere: spherical trigonometry. R package version 1.5.1 (2019).
Boyle, J. GeoRange: calculating geographic range from occurrence data. R package version 0.1.0. (2017).
Hahne F, Ivanek R. Visualizing genomic data using Gviz and Bioconductor. Methods Mol. Biol. 2016;1418:335–351. doi: 10.1007/978-1-4939-3578-9_16. PubMed DOI
Renaud G, et al. Improved de novo genomic assembly for the domestic donkey. Sci. Adv. 2018;4:eaaq0392. doi: 10.1126/sciadv.aaq0392. PubMed DOI PMC
Jagannathan V, et al. Comprehensive characterization of horse genome variation by whole-genome sequencing of 88 horses. Anim. Genet. 2019;50:74–77. doi: 10.1111/age.12753. PubMed DOI
Andersson LS, et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature. 2012;488:642–646. doi: 10.1038/nature11399. PubMed DOI PMC
Teufer M. Ein Scheibenknebel aus Dzarkutan (Süduzbekistan). Archäologische Mitteilungen aus Iran und Turan. Band. 1999;31:69–142.
Chechushkov, I. V. Wheel Complex of the Late Bronze Age Era of Steppe and Forest-Steppe Eurasia (from Dnieper to Irtysh). PhD thesis. Department of Archeology and Ethnography of the Federal State Budgetary Institution of Science, Institute of History and Archeology of the Ural Branch of the Russian Academy of Sciences (2013).
Widespread horse-based mobility arose around 2200 BCE in Eurasia
Population genomics of post-glacial western Eurasia
Testing Times: Challenges in Disentangling Admixture Histories in Recent and Complex Demographies
On the limits of fitting complex models of population history to f-statistics
The genetic history of the Southern Arc: A bridge between West Asia and Europe