Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu historické články, časopisecké články
PubMed
35412864
PubMed Central
PMC9169917
DOI
10.1073/pnas.2116722119
Knihovny.cz E-zdroje
- Klíčová slova
- Yersinia pestis, ancient DNA, plague,
- MeSH
- chov zvířat dějiny MeSH
- dějiny starověku MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom bakteriální * MeSH
- lidé MeSH
- migrace lidstva dějiny MeSH
- mor * epidemiologie dějiny mikrobiologie MeSH
- starobylá DNA MeSH
- Yersinia pestis * klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Názvy látek
- starobylá DNA MeSH
The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague’s formative years in terms of its early evolution and ecology.
Archaeological Centre 779 00 Olomouc Czech Republic
Archeolodzy org Foundation 50316 Wrocław Poland
Begazy Tasmola Research Center of History and Archeology 050008 Almaty Kazakhstan
Biology and Biotechnology Faculty Al Farabi Kazakh National University 050040 Almaty Kazakhstan
Curt Engelhorn Center Archaeometry 68159 Mannheim Germany
Department of Anthropology Harvard University Cambridge MA 02138
Department of Anthropology University of Auckland 01010 Auckland New Zealand
Department of Evolutionary Anthropology University of Vienna 1030 Vienna Austria
Department of Genetics Harvard Medical School Boston MA 02115
Department of Heritage Management Archaeological Heritage Office Saxony 01108 Dresden Germany
Department of Human Evolutionary Biology Harvard University Cambridge MA 02138
Department of Organismic and Evolutionary Biology Harvard University Cambridge MA 02138
Eurasia Department German Archaeological Institute 14195 Berlin Germany
Evolutionary Pathogenomics Max Planck Institute for Infection Biology 10117 Berlin Germany
Faculty of Biological Sciences Friedrich Schiller University 07743 Jena Germany
Faculty of Mathematics and Computer Science Friedrich Schiller University 07743 Jena Germany
History Department Al Farabi Kazakh National University 050040 Almaty Kazakhstan
Institute for Archaeological Sciences Eberhard Karls University of Tübingen 72074 Tübingen Germany
Institute of Archaeology University of Wrocław 50139 Wrocław Poland
Institute of Ethnology and Anthropology Russian Academy of Science 119991 Moscow Russian Federation
Institute of Genetics and Physiology Al Farabi Kazakh National University Almaty 050060 Kazakhstan
Nasledie Cultural Heritage Unit 355006 Stavropol Russian Federation
Zobrazit více v PubMed
Rasmussen S., et al. , Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163, 571–582 (2015). PubMed PMC
Rascovan N., et al. , Emergence and spread of basal lineages of Yersinia pestis during the Neolithic decline. Cell 176, 295–305.e10 (2019). PubMed
Andrades Valtueña A., et al. , The stone age plague and its persistence in Eurasia. Curr. Biol. 27, 3683–3691.e8 (2017). PubMed
Susat J., et al. , A 5,000-year-old hunter-gatherer already plagued by Yersinia pestis. Cell Rep. 35, 109278 (2021). PubMed
Stenseth N. C., et al. , Plague dynamics are driven by climate variation. Proc. Natl. Acad. Sci. U.S.A. 103, 13110–13115 (2006). PubMed PMC
Gage K. L., Kosoy M. Y., Natural history of plague: Perspectives from more than a century of research. Annu. Rev. Entomol. 50, 505–528 (2005). PubMed
Hinnebusch B. J., Erickson D. L., Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr. Top. Microbiol. Immunol. 322, 229–248 (2008). PubMed PMC
Eisen R. J., et al. , Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc. Natl. Acad. Sci. U.S.A. 103, 15380–15385 (2006). PubMed PMC
Vetter S. M., et al. , Biofilm formation is not required for early-phase transmission of Yersinia pestis. Microbiology (Reading) 156, 2216–2225 (2010). PubMed PMC
Spyrou M. A., et al. , Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nat. Commun. 9, 2234 (2018). PubMed PMC
Yu H., et al. , Paleolithic to Bronze Age Siberians reveal connections with first Americans and across Eurasia. Cell 181, 1232–1245.e20 (2020). PubMed
Begier E. M., et al. , Pneumonic plague cluster, Uganda, 2004. Emerg. Infect. Dis. 12, 460–467 (2006). PubMed PMC
Bertherat E., et al. , Lessons learned about pneumonic plague diagnosis from two outbreaks, Democratic Republic of the Congo. Emerg. Infect. Dis. 17, 778–784 (2011). PubMed PMC
Lien-Teh W., Chun J. W. H., Pollitzer R., Wu C. Y., Plague: A Manual for Medical and Public Health Workers (Weishengshu, Shanghai Station, 1936).
Ratsitorahina M., Chanteau S., Rahalison L., Ratsifasoamanana L., Boisier P., Epidemiological and diagnostic aspects of the outbreak of pneumonic plague in Madagascar. Lancet 355, 111–113 (2000). PubMed
Richard V., et al. , Pneumonic plague outbreak, Northern Madagascar, 2011. Emerg. Infect. Dis. 21, 8–15 (2015). PubMed PMC
Gamsa M., The epidemic of pneumonic plague in Manchuria 1910–1911. Past Present 190, 147–183 (2006).
Arbaji A., et al. , A 12-case outbreak of pharyngeal plague following the consumption of camel meat, in north-eastern Jordan. Ann. Trop. Med. Parasitol. 99, 789–793 (2005). PubMed
Kehrmann J., et al. , Two fatal cases of plague after consumption of raw marmot organs. Emerg. Microbes Infect. 9, 1878–1880 (2020). PubMed PMC
Malek M. A., Bitam I., Drancourt M., Plague in Arab Maghreb, 1940-2015: A Review. Front. Public Health 4, 112 (2016). PubMed PMC
Christie A. B., Chen T. H., Elberg S. S., Plague in camels and goats: Their role in human epidemics. J. Infect. Dis. 141, 724–726 (1980). PubMed
Bin Saeed A. A., Al-Hamdan N. A., Fontaine R. E., Plague from eating raw camel liver. Emerg. Infect. Dis. 11, 1456–1457 (2005). PubMed PMC
Klimscha F., Transforming technical know-how in time and space. Using the digital atlas of innovations to understand the innovation process of animal traction and the wheel. eTopoi, Journal for Ancient Studies 6, 16–63 (2017).
Librado P., et al. , The origins and spread of domestic horses from the Western Eurasian steppes. Nature 598, 634–640 (2021). PubMed PMC
Hansen S., “The 4th millennium: A watershed in European prehistory” in Western Anatolia Before Troy. Proto-Urbanisation in the 4th Millennium BC? Horejs B., Mehofer M., Eds. (Academy of Science Press, 2014), pp. 243–259.
Anthony D. W., The Horse, the Wheel, and Language: How Bronze-Age Riders from Eurasian Steppes Shaped the Modern World (Princeton University Press, 2007).
Frachetti M. D., Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Curr. Anthropol. 53, 2–38 (2012).
Hübler R., et al. , HOPS: Automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol. 20, 280 (2019). PubMed PMC
Huson D. H., et al. , MEGAN community edition–Interactive exploration and analysis of large-scale microbiome sequencing data. PLOS Comput. Biol. 12, e1004957 (2016). PubMed PMC
Feldman M., et al. , A high-coverage Yersinia pestis genome from a sixth-century Justinianic Plague victim. Mol. Biol. Evol. 33, 2911–2923 (2016). PubMed PMC
Keller M., et al. , Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). Proc. Natl. Acad. Sci. U.S.A. 116, 12363–12372 (2019). PubMed PMC
Bos K. I., et al. , A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011). PubMed PMC
Bos K. I., et al. , Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. eLife 5, e12994 (2016). PubMed PMC
Spyrou M. A., et al. , Historical Y. pestis genomes reveal the European Black Death as the source of ancient and modern plague pandemics. Cell Host Microbe 19, 874–881 (2016). PubMed
Spyrou M. A., et al. , Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nat. Commun. 10, 4470 (2019). PubMed PMC
Bouckaert R., et al. , BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019). PubMed PMC
Lillie M., Budd C., Potekhina I., Hedges R., The radiocarbon reservoir effect: New evidence from the cemeteries of the middle and lower Dnieper basin, Ukraine. J. Archaeol. Sci. 36, 256–264 (2009).
Lillie M., Budd C., Potekhina I., Stable isotope analysis of prehistoric populations from the cemeteries of the Middle and Lower Dnieper Basin, Ukraine. J. Archaeol. Sci. 38, 57–68 (2010).
Wickham H., ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, NY, 2009).
Kahle D., Wickham H., ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).
Rudis B., Bolker B., Schulz J., ggalt: Extra Coordinate Systems, “Geoms”, Statistical Transformations, Scales and Fonts for “ggplot2” (2017). https://CRAN.R-project.org/package=ggalt. Accessed 15 February 2017.
Kassambara A., ggpubr: “ggplot2” Based Publication Ready Plots (2020). https://github.com/kassambara/ggpubr. Accessed 27 June 2020.
R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008).
Inkscape Project, Inkscape (2020). https://inkscape.org/news/2020/05/04/introducing-inkscape-10/. Accessed 23 November 2020.
Bos K. I., et al. , Paleomicrobiology: Diagnosis and evolution of ancient pathogens. Annu. Rev. Microbiol. 73, 639–666 (2019). PubMed
Derbise A., Carniel E., YpfΦ: A filamentous phage acquired by Yersinia pestis. Front. Microbiol. 5, 701 (2014). PubMed PMC
Hinnebusch B. J., et al. , Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735 (2002). PubMed
Pradel E., et al. , New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. PLoS Pathog. 10, e1004029 (2014). PubMed PMC
Yang X., Pan J., Wang Y., Shen X., Type VI secretion systems present new insights on pathogenic Yersinia. Front. Cell. Infect. Microbiol. 8, 260 (2018). PubMed PMC
Ponnusamy D., et al. , High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect. Immun. 83, 2065–2081 (2015). PubMed PMC
Liang Y., et al. , Chromosomal rearrangement features of Yersinia pestis strains from natural plague foci in China. Am. J. Trop. Med. Hyg. 91, 722–728 (2014). PubMed PMC
Cingolani P., et al. , A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). PubMed PMC
Minnich S. A., Rohde H. N., “A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host” in The Genus Yersinia: From Genomics to Function, Perry R. D., Fetherston J. D., Eds. (Advances In Experimental Medicine And Biology, Springer, 2007), pp. 298–311. PubMed
Key F. M., et al. , Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 4, 324–333 (2020). PubMed PMC
Zhou Z., et al. , Pan-genome analysis of ancient and modern Salmonella enterica demonstrates genomic stability of the invasive para C lineage for millennia. Curr. Biol. 28, 2420–2428.e10 (2018). PubMed PMC
Vågene Å. J., et al. , Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2, 520–528 (2018). PubMed
Schuenemann V. J., et al. , Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341, 179–183 (2013). PubMed
Mendum T. A., et al. , Mycobacterium leprae genomes from a British medieval leprosy hospital: Towards understanding an ancient epidemic. BMC Genomics 15, 270 (2014). PubMed PMC
Schuenemann V. J., et al. , Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog. 14, e1006997 (2018). PubMed PMC
Guellil M., et al. , A genomic and historical synthesis of plague in 18th century Eurasia. Proc. Natl. Acad. Sci. U.S.A. 117, 28328–28335 (2020). PubMed PMC
Sun Y.-C., Hinnebusch B. J., Darby C., Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc. Natl. Acad. Sci. U.S.A. 105, 8097–8101 (2008). PubMed PMC
Chouikha I., Hinnebusch B. J., Silencing urease: A key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route. Proc. Natl. Acad. Sci. U.S.A. 111, 18709–18714 (2014). PubMed PMC
Stenseth N. C., et al. , Plague: Past, present, and future. PLoS Med. 5, e3 (2008). PubMed PMC
Gage K. L., Montenieri J. A., Thomas R. E., “The role of predators in the ecology, epidemiology, and surveillance of plague in the United States” in Proceedings of the Vertebrate Pest Conference 1994 (University of California, Davis, CA, 1994), pp. 200–206.
Mahmoudi A., et al. , Plague reservoir species throughout the world. Integr. Zool. 16, 820–833 (2021). PubMed
Allentoft M. E., et al. , Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). PubMed
Haak W., et al. , Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). PubMed PMC
Scott A., et al. , Emergence and intensification of dairying in the Caucasus and Eurasian steppes. Nat. Ecol. Evol. 10.1038/s41559-022-01701-6. PubMed DOI PMC
Wilkin S., et al. , Dairy pastoralism sustained eastern Eurasian steppe populations for 5,000 years. Nat. Ecol. Evol. 4, 346–355 (2020). PubMed PMC
Nyirenda S. S., et al. , Potential roles of pigs, small ruminants, rodents, and their flea vectors in plague epidemiology in Sinda District, eastern Zambia. J. Med. Entomol. 54, 719–725 (2017). PubMed
Dai R., et al. , Human plague associated with Tibetan sheep originates in marmots. PLoS Negl. Trop. Dis. 12, e0006635 (2018). PubMed PMC
Koskiniemi S., Sun S., Berg O. G., Andersson D. I., Selection-driven gene loss in bacteria. PLoS Genet. 8, e1002787 (2012). PubMed PMC
Ochman H., Moran N. A., Genes lost and genes found: Evolution of bacterial pathogenesis and symbiosis. Science 292, 1096–1099 (2001). PubMed
Sheppard S. K., Guttman D. S., Fitzgerald J. R., Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565 (2018). PubMed
Johnson T. L., et al. , Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae). Microbiology (Reading) 160, 2517–2525 (2014). PubMed PMC
Eisen R. J., Dennis D. T., Gage K. L., The role of early-phase transmission in the spread of Yersinia pestis. J. Med. Entomol. 52, 1183–1192 (2015). PubMed PMC
Bland D. M., Miarinjara A., Bosio C. F., Calarco J., Hinnebusch B. J., Acquisition of yersinia murine toxin enabled Yersinia pestis to expand the range of mammalian hosts that sustain flea-borne plague. PLoS Pathog. 17, e1009995 (2021). PubMed PMC
Sebbane F., Jarrett C. O., Gardner D., Long D., Hinnebusch B. J., Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc. Natl. Acad. Sci. U.S.A. 103, 5526–5530 (2006). PubMed PMC
Zimbler D. L., Schroeder J. A., Eddy J. L., Lathem W. W., Early emergence of Yersinia pestis as a severe respiratory pathogen. Nat. Commun. 6, 7487 (2015). PubMed PMC
Wong D., et al. , Primary pneumonic plague contracted from a mountain lion carcass. Clin. Infect. Dis. 49, e33–e38 (2009). PubMed
Mathieson I., et al. , The genomic history of southeastern Europe. Nature 555, 197–203 (2018). PubMed PMC
Neumann G. U., Andrades Valtueña A., Fellows Yates J. A., Stahl R., Brandt G., Tooth sampling from the inner pulp chamber for ancient DNA extraction (protocols.io, 2020). 10.17504/protocols.io.bqebmtan. Accessed 24 March 2021. DOI
Velsko I., Skourtanioti E., Brandt G., Ancient DNA extraction from skeletal material (protocols.io, 2020). 10.17504/protocols.io.baksicwe. Accessed 30 October 2020. DOI
Dabney J., et al. , Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U.S.A. 110, 15758–15763 (2013). PubMed PMC
Meyer M., Kircher M., Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010). PubMed
Rohland N., Harney E., Mallick S., Nordenfelt S., Reich D., Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130624 (2015). PubMed PMC
Aron F., Neumann G. U., Brandt G., Half-UDG treated double-stranded ancient DNA library preparation for Illumina sequencing (protocols.io, 2020). 10.17504/protocols.io.bmh6k39e. Accessed 24 March 2021. DOI
Olalde I., et al. , The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019). PubMed PMC
Gansauge M.-T., Aximu-Petri A., Nagel S., Meyer M., Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020). PubMed
Fellows Yates J. A., et al. , Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ 9, e10947 (2021). PubMed PMC
Schubert M., Lindgreen S., Orlando L., AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016). PubMed PMC
Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Broad Institute, Picard Tools (March 12, 2020). https://broadinstitute.github.io/picard/. Accessed 12 March 2020.
McKenna A., et al. , The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). PubMed PMC
Bos K. I., et al. , Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014). PubMed PMC
Quinlan A. R., Hall I. M., BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). PubMed PMC
Paradis E., Schliep K., ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019). PubMed
Hijmans R. J., geosphere: Spherical trigonometry (2019). https://CRAN.R-project.org/package=geosphere 2019. Accessed 26 May 2019.
Oksanen J., et al. , vegan: Community ecology package (2020). https://cran.r-project.org/web/packages/vegan/index.html. Accessed 28 November 2020.
A. A. Valtueña, M. A. Spyrou, G. U. Neumann, LNBAplague (2022). GitHub. https://github.com/aidaanva/LNBAplague. Deposited 21 October 2020.