Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu historické články, časopisecké články, práce podpořená grantem
PubMed
29746563
PubMed Central
PMC5944922
DOI
10.1371/journal.ppat.1006997
PII: PPATHOGENS-D-17-02430
Knihovny.cz E-zdroje
- MeSH
- dějiny středověku MeSH
- DNA bakterií genetika dějiny MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetická variace MeSH
- genom bakteriální MeSH
- interakce hostitele a patogenu genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lepra epidemiologie dějiny mikrobiologie MeSH
- lidé MeSH
- molekulární evoluce MeSH
- Mycobacterium leprae klasifikace genetika patogenita MeSH
- Check Tag
- dějiny středověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Názvy látek
- DNA bakterií MeSH
Studying ancient DNA allows us to retrace the evolutionary history of human pathogens, such as Mycobacterium leprae, the main causative agent of leprosy. Leprosy is one of the oldest recorded and most stigmatizing diseases in human history. The disease was prevalent in Europe until the 16th century and is still endemic in many countries with over 200,000 new cases reported annually. Previous worldwide studies on modern and European medieval M. leprae genomes revealed that they cluster into several distinct branches of which two were present in medieval Northwestern Europe. In this study, we analyzed 10 new medieval M. leprae genomes including the so far oldest M. leprae genome from one of the earliest known cases of leprosy in the United Kingdom-a skeleton from the Great Chesterford cemetery with a calibrated age of 415-545 C.E. This dataset provides a genetic time transect of M. leprae diversity in Europe over the past 1500 years. We find M. leprae strains from four distinct branches to be present in the Early Medieval Period, and strains from three different branches were detected within a single cemetery from the High Medieval Period. Altogether these findings suggest a higher genetic diversity of M. leprae strains in medieval Europe at various time points than previously assumed. The resulting more complex picture of the past phylogeography of leprosy in Europe impacts current phylogeographical models of M. leprae dissemination. It suggests alternative models for the past spread of leprosy such as a wide spread prevalence of strains from different branches in Eurasia already in Antiquity or maybe even an origin in Western Eurasia. Furthermore, these results highlight how studying ancient M. leprae strains improves understanding the history of leprosy worldwide.
ADES AMU CNRS EFS Anthropology and Health Aix Marseille Université Marseille France
Center for Bioinformatics University of Tübingen Tübingen Germany
Department of Anthropology National Museum Prague Czech Republic
Department of Archaeogenetics Max Planck Institute for the Science of Human History Jena Germany
Department of Archaeology University of Southampton Southampton United Kingdom
Department of Biological Anthropology University of Szeged Szeged Hungary
Department of Biological Geological and Environmental Sciences Bologna Italy
Department of Biology University of Florence Firenze Italy
Global Health Institute Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
Historic England Portsmouth United Kingdom
Institute for Archaeological Sciences University of Tübingen Tübingen Germany
Institute of Clinical Molecular Biology Kiel University Kiel Germany
Institute of Evolutionary Medicine University of Zurich Zurich Switzerland
McDonald Institute for Archaeological Research University of Cambridge Cambridge United Kingdom
Senckenberg Centre for Human Evolution and Palaeoenvironment University of Tübingen Tübingen Germany
Unit of Anthropology Department of Forensic Medicine University of Southern Denmark Odense S Denmark
Zobrazit více v PubMed
Dharmendra. Leprosy in ancient Indian medicine. International Journal of Leprosy. 1947;15:424–30. PubMed
Hulse EV. The nature of biblical “leprosy” and the use of alternative medical terms in modern translations of the Bible. The Palestine Exploration Quarterly. 1975;107:87–105. PubMed
Robbins G, Tripathy VM, Misra VN, Mohanty RK, Shinde VS, Gray KM, et al. Ancient skeletal evidence for leprosy in India (2000 B.C.). PLoS One. 2009;4(5):e5669 Epub 2009/05/30. doi: 10.1371/journal.pone.0005669 ; PubMed Central PMCID: PMCPmc2682583. PubMed DOI PMC
Boldsen JL. Epidemiological approach to the paleopathological diagnosis of leprosy. American Journal of Physical Anthropology. 2001;115(4):380–7. doi: 10.1002/ajpa.1094 PubMed DOI
Boldsen JL. Leprosy in Medieval Denmark—Osteological and epidemiological analyses. Anthropologischer Anzeiger. 2009:407–25. PubMed
Nerlich AG, Zink AR. Past Leprae. In: Raoult D, Drancourt M (eds) Paleomicrobiology. Past human infections Springer-Verlag, Berlin: 2005:99–123.
Boldsen JL, Mollerup L. Outside St. Jørgen: leprosy in the medieval Danish city of Odense. American journal of physical anthropology. 2006;130(3):344–51. doi: 10.1002/ajpa.20363 PubMed DOI
Avanzi C, Busso P, Benjak A, Loiseau C, Fomba A, Doumbia G, et al. Transmission of Drug-Resistant Leprosy in Guinea-Conakry Detected Using Molecular Epidemiological Approaches. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2016;63(11):1482–4. Epub 2016/08/26. doi: 10.1093/cid/ciw572 . PubMed DOI
Schuenemann VJ, Singh P, Mendum TA, Krause-Kyora B, Jager G, Bos KI, et al. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science. 2013;341(6142):179–83. Epub 2013/06/15. doi: 10.1126/science.1238286 . PubMed DOI
Monot M, Honore N, Garnier T, Zidane N, Sherafi D, Paniz-Mondolfi A, et al. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet. 2009;41(12):1282–9. Epub 2009/11/03. doi: 10.1038/ng.477 . PubMed DOI
Singh P, Benjak A, Carat S, Kai M, Busso P, Avanzi C, et al. Genome-wide re-sequencing of multidrug-resistant Mycobacterium leprae Airaku-3. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2014;20(10):O619–22. Epub 2014/03/13. doi: 10.1111/1469-0691.12609 . PubMed DOI
Das M, Chaitanya VS, Kanmani K, Rajan L, Ebenezer M. Genomic diversity in Mycobacterium leprae isolates from leprosy cases in South India. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2016;45:285–9. Epub 2016/10/23. doi: 10.1016/j.meegid.2016.09.014 . PubMed DOI
Lavania M, Jadhav RS, Turankar RP, Chaitanya VS, Singh M, Sengupta U. Single nucleotide polymorphisms typing of Mycobacterium leprae reveals focal transmission of leprosy in high endemic regions of India. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2013;19(11):1058–62. Epub 2013/01/22. doi: 10.1111/1469-0691.12125 . PubMed DOI
Benjak A, Avanzi C, Singh P, Loiseau C, Girma S, Busso P, et al. Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun. 2018;9(1):352 Epub 2018/01/26. doi: 10.1038/s41467-017-02576-z ; PubMed Central PMCID: PMCPMC5783932. PubMed DOI PMC
Truman RW, Singh P, Sharma R, Busso P, Rougemont J, Paniz-Mondolfi A, et al. Probable zoonotic leprosy in the southern United States. The New England journal of medicine. 2011;364(17):1626–33. Epub 2011/04/29. doi: 10.1056/NEJMoa1010536 ; PubMed Central PMCID: PMCPmc3138484. PubMed DOI PMC
Sharma R, Singh P, Loughry WJ, Lockhart JM, Inman WB, Duthie MS, et al. Zoonotic Leprosy in the Southeastern United States. Emerg Infect Dis. 2015;21(12):2127–34. Epub 2015/11/20. doi: 10.3201/eid2112.150501 ; PubMed Central PMCID: PMCPmc4672434. PubMed DOI PMC
Avanzi C, Del-Pozo J, Benjak A, Stevenson K, Simpson VR, Busso P, et al. Red squirrels in the British Isles are infected with leprosy bacilli. Science. 2016;354(6313):744–7. Epub 2016/11/16. doi: 10.1126/science.aah3783 . PubMed DOI
Honap TP, Pfister LA, Housman G, Mills S, Tarara RP, Suzuki K, et al. Mycobacterium leprae genomes from naturally infected nonhuman primates. PLoS Negl Trop Dis. 2018;12(1):e0006190 Epub 2018/01/31. doi: 10.1371/journal.pntd.0006190 PubMed DOI PMC
Singh P, Benjak A, Schuenemann VJ, Herbig A, Avanzi C, Busso P, et al. Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(14):4459–64. Epub 2015/04/02. doi: 10.1073/pnas.1421504112 ; PubMed Central PMCID: PMCPmc4394283. PubMed DOI PMC
Mendum TA, Schuenemann VJ, Roffey S, Taylor GM, Wu H, Singh P, et al. Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC genomics. 2014;15:270 Epub 2014/04/09. doi: 10.1186/1471-2164-15-270 ; PubMed Central PMCID: PMCPmc4234520. PubMed DOI PMC
Inskip SA, Taylor GM, Zakrzewski SR, Mays SA, Pike AW, Llewellyn G, et al. Osteological, biomolecular and geochemical examination of an early anglo-saxon case of lepromatous leprosy. PLoS One. 2015;10(5):e0124282 Epub 2015/05/15. doi: 10.1371/journal.pone.0124282 ; PubMed Central PMCID: PMCPmc4430215. PubMed DOI PMC
Mariotti V, Dutour O, Belcastro MG, Facchini F, Brasili P. Probable early presence of leprosy in Europe in a Celtic skeleton of the 4th–3rd century BC (Casalecchio di Reno, Bologna, Italy). International Journal of Osteoarchaeology. 2005;15(5):311–25.
Donoghue HD, Michael Taylor G, Marcsik A, Molnar E, Palfi G, Pap I, et al. A migration-driven model for the historical spread of leprosy in medieval Eastern and Central Europe. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2015;31:250–6. Epub 2015/02/15. doi: 10.1016/j.meegid.2015.02.001 . PubMed DOI
Belcastro M, Mariotti V, Facchini F, Dutour O. Leprosy in a skeleton from the 7th century necropolis of Vicenne‐Campochiaro (Molise, Italy). International Journal of Osteoarchaeology. 2005;15(6):431–48.
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor protocols. 2010;2010(6):pdb.prot5448. Epub 2010/06/03. doi: 10.1101/pdb.prot5448 . PubMed DOI
Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic acids research. 2012;40(1):e3 Epub 2011/10/25. doi: 10.1093/nar/gkr771 ; PubMed Central PMCID: PMCPmc3245947. PubMed DOI PMC
Vagene AJ, Herbig A, Campana MG, Robles Garcia NM, Warinner C, Sabin S, et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nature ecology & evolution. 2018;2(3):520–8. Epub 2018/01/18. doi: 10.1038/s41559-017-0446-6 . PubMed DOI
Maricic T, Whitten M, Paabo S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One. 2010;5(11):e14004 Epub 2010/11/26. doi: 10.1371/journal.pone.0014004 ; PubMed Central PMCID: PMCPmc2982832. PubMed DOI PMC
Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, Prufer K, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(37):14616–21. Epub 2007/08/24. doi: 10.1073/pnas.0704665104 ; PubMed Central PMCID: PMCPmc1976210. PubMed DOI PMC
Stoneking M, Krause J. Learning about human population history from ancient and modern genomes. Nature reviews Genetics. 2011;12(9):603–14. Epub 2011/08/19. doi: 10.1038/nrg3029 . PubMed DOI
Sawyer S, Krause J, Guschanski K, Savolainen V, Paabo S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One. 2012;7(3):e34131 Epub 2012/04/06. doi: 10.1371/journal.pone.0034131 ; PubMed Central PMCID: PMCPmc3316601. PubMed DOI PMC
Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Paabo S. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic acids research. 2010;38(6):e87 Epub 2009/12/24. doi: 10.1093/nar/gkp1163 ; PubMed Central PMCID: PMCPmc2847228. PubMed DOI PMC
Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, et al. Genome-wide in situ exon capture for selective resequencing. Nature genetics. 2007;39(12):1522–7. doi: 10.1038/ng.2007.42 PubMed DOI
Peltzer A, Jager G, Herbig A, Seitz A, Kniep C, Krause J, et al. EAGER: efficient ancient genome reconstruction. Genome biology. 2016;17:60 Epub 2016/04/03. doi: 10.1186/s13059-016-0918-z ; PubMed Central PMCID: PMCPmc4815194. PubMed DOI PMC
Arentoft E. De spedalskes hospital: udgravninger af Sankt Jørgensgården i Odense: Odense Bys Museer; 1999.
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular biology and evolution. 2012;29:1969–73. doi: 10.1093/molbev/mss075 PubMed DOI PMC
Kingman JFC. The coalescent. Stoch Proc Appl. 1982;13(3):235–48.
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular biology and evolution. 2005;22(5):1185–92. Epub 2005/02/11. doi: 10.1093/molbev/msi103 . PubMed DOI
Veale EM, Harding V. The English fur trade in the later Middle Ages: London Record Society; Loughborough; 2003.
Walker-Meikle K. Medieval pets: Boydell Press; 2012.
Browne SG. The history of leprosy. In: Hastings RC, editor Leprosy 1st ed Edinburgh (Scotland) and New York: Churchill Livingstone; 1985:1–14.
Kohler K, Marcsik A, Zadori P, Biro G, Szeniczey T, Fabian S, et al. Possible cases of leprosy from the Late Copper Age (3780–3650 cal BC) in Hungary. PLoS One. 2017;12(10):e0185966 Epub 2017/10/13. doi: 10.1371/journal.pone.0185966 ; PubMed Central PMCID: PMCPMC5638319. PubMed DOI PMC
Boldsen JL. Leprosy and mortality in the Medieval Danish village of Tirup. American Journal of Physical Anthropology. 2005;126(2):159–68. doi: 10.1002/ajpa.20085 PubMed DOI
Clarke DL. Trade and Industry in Barbarian Europe till Roman Times. In: Postan C, Miller E, Postan MM, editors. The Cambridge Economic History of Europe from the Decline of the Roman Empire: Volume 2: Trade and Industry in the Middle Ages. The Cambridge Economic History of Europe. 2. 2 ed. Cambridge: Cambridge University Press; 1987. p. 1–70.
Fernández-Götz M, Wendling H, Winger K. Paths to complexity: Centralisation and urbanisation in Iron Age Europe: Oxbow Books; 2014.
Weng X, Xing Y, Liu J, Wang Y, Ning Y, Li M, et al. Molecular, ethno-spatial epidemiology of leprosy in China: novel insights for tracing leprosy in endemic and non endemic provinces. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2013;14:361–8. Epub 2013/01/08. doi: 10.1016/j.meegid.2012.12.009 ; PubMed Central PMCID: PMCPMC3668695. PubMed DOI PMC
Yuan Y, Wen Y, You Y, Xing Y, Li H, Weng X, et al. Characterization of Mycobacterium leprae Genotypes in China—Identification of a New Polymorphism C251T in the 16S rRNA Gene. PLoS One. 2015;10(7):e0133268 Epub 2015/07/22. doi: 10.1371/journal.pone.0133268 ; PubMed Central PMCID: PMCPMC4510365. PubMed DOI PMC
Kim JP. SNP Genotypes of Mycobacterium leprae Isolated in Korea. Korean Lepr Bull. 2012;45:3–19.
Fontes ANB, Sakamuri RM, Baptista I, Ura S, Moraes MO, Martinez AN, et al. Genetic diversity of mycobacterium leprae isolates from Brazilian leprosy patients. Leprosy review. 2009;80(3):302 PubMed
Hohmann N, Voss-Bohme A. The epidemiological consequences of leprosy-tuberculosis co-infection. Mathematical biosciences. 2013;241(2):225–37. Epub 2012/12/19. doi: 10.1016/j.mbs.2012.11.008 . PubMed DOI
Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(39):15758–63. Epub 2013/09/11. doi: 10.1073/pnas.1314445110 ; PubMed Central PMCID: PMCPmc3785785. PubMed DOI PMC
Hodges E, Rooks M, Xuan Z, Bhattacharjee A, Benjamin Gordon D, Brizuela L, et al. Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing. Nature protocols. 2009;4(6):960–74. Epub 2009/05/30. doi: 10.1038/nprot.2009.68 ; PubMed Central PMCID: PMCPmc2990409. PubMed DOI PMC
Herbig A, Maixner F, Bos KI, Zink A, Krause J, Huson DH. MALT: Fast alignment and analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman. bioRxiv doi: http://dxdoiorg/101101/050559. 2016.
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95. Epub 2010/01/19. doi: 10.1093/bioinformatics/btp698 ; PubMed Central PMCID: PMCPmc2828108. PubMed DOI PMC
Okonechnikov K, Conesa A, Garcia-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32(2):292–4. Epub 2015/10/03. doi: 10.1093/bioinformatics/btv566 ; PubMed Central PMCID: PMCPmc4708105. PubMed DOI PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research. 2010;20(9):1297–303. doi: 10.1101/gr.107524.110 PubMed DOI PMC
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution. 2016;33(7):1870–4. doi: 10.1093/molbev/msw054 . PubMed DOI PMC