An Extensive Quality Control and Quality Assurance (QC/QA) Program Significantly Improves Inter-Laboratory Concordance Rates of Flow-Cytometric Minimal Residual Disease Assessment in Acute Lymphoblastic Leukemia: An I-BFM-FLOW-Network Report
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
825749 "CLOSER"
European Union's H2020 Research and Innovation Program
26.01.2019 / 42/772
Polish Ministry of Health program
PubMed
34885257
PubMed Central
PMC8656726
DOI
10.3390/cancers13236148
PII: cancers13236148
Knihovny.cz E-zdroje
- Klíčová slova
- acute lymphoblastic leukemia, flow cytometry, minimal residual disease, quality control program,
- Publikační typ
- časopisecké články MeSH
Monitoring of minimal residual disease (MRD) by flow cytometry (FCM) is a powerful prognostic tool for predicting outcomes in acute lymphoblastic leukemia (ALL). To apply FCM-MRD in large, collaborative trials, dedicated laboratory staff must be educated to concordantly high levels of expertise and their performance quality should be continuously monitored. We sought to install a unique and comprehensive training and quality control (QC) program involving a large number of reference laboratories within the international Berlin-Frankfurt-Münster (I-BFM) consortium, in order to complement the standardization of the methodology with an educational component and persistent quality control measures. Our QC and quality assurance (QA) program is based on four major cornerstones: (i) a twinning maturation program, (ii) obligatory participation in external QA programs (spiked sample send around, United Kingdom National External Quality Assessment Service (UK NEQAS)), (iii) regular participation in list-mode-data (LMD) file ring trials (FCM data file send arounds), and (iv) surveys of independent data derived from trial results. We demonstrate that the training of laboratories using experienced twinning partners, along with continuous educational feedback significantly improves the performance of laboratories in detecting and quantifying MRD in pediatric ALL patients. Overall, our extensive education and quality control program improved inter-laboratory concordance rates of FCM-MRD assessments and ultimately led to a very high conformity of risk estimates in independent patient cohorts.
Bioquimica Inmunologia Hospital de Ninos Rocardo Gutierrez Buenos Aires C1425EFD Argentina
Cellular Immunology Laboratory Hospital de Pediatria Dr Juan P Garrahan Buenos Aires C1245 Argentina
Children's Cancer Research Institute Medical University of Vienna 1090 Vienna Austria
Clinic for Hematology and Tumor Immunology HELIOS Klinikum Berlin Buch 13125 Berlin Germany
Clinica Pediatrica University degli Studi di Milano Biococca Fondazione MBBM 20900 Monza Italy
Department of Cytopathology Institute of Oncology 1000 Ljubljana Slovenia
Department of Hematology University Hospital Schleswig Holstein 24105 Kiel Germany
Department of Immunology and Histocompatibility Agia Sophia Children's Hospital 115 27 Athens Greece
Department of Laboratory Medicine University of Debrecen 4032 Debrecen Hungary
Department of Microbiology and Immunology Medical University of Silesia 40 055 Katowice Poland
Department of Pediatric Oncology and Hematology Charité Berlin 10117 Berlin Germany
Department of Pediatric Oncology Hippokration General Hospital 546 42 Thessaloniki Greece
Faculty of Medicine University of Ljubljana 1000 Ljubljana Slovenia
Flow Cytometry Laboratory FUNDALEU Buenos Aires C1114 Argentina
Georgios Gennimatas General Hospital of Athens 115 27 Athens Greece
Hematology Lab Sheba Medical Center Ramat Gan 52621 Israel
Hospital de Clinica Jose de San Martin Buenos Aires C1120 Argentina
Hospital Guillermo Rawson San Juan J5400 Argentina
Hospital Nacional de Clínicas Universidad Nacional de Córdoba Cordoba X5000HUA Argentina
IICT Labs Rosario S2000 Argentina
Laboratorio CEBAC SRL Posadas N3300 Argentina
Laboratory Flow Cytometry Citomlab Buenos Aires C1406AWK Argentina
LEB Laboratorio Servicio de Hematologia Hospital Penna Bahia Blanca B8000 Argentina
National Institute of Children's Diseases 831 01 Bratislava Slovakia
P and A Kyriakou Children's Hospital of Athens 115 27 Athens Greece
PAPSI Laboratorio Mendoza Rosario S2000 Argentina
Pediatric Hematology and Oncology Hospital Sant Joan de Deu 08950 Barcelona Spain
Servicio de Bioquimica Hospital Posadas Buenos Aires B1684 Argentina
The Children's Hospital at Westmead Sydney NSW 2145 Australia
Zobrazit více v PubMed
Gaipa G., Buracchi C., Biondi A. Flow cytometry for minimal residual disease testing in acute leukemia: Opportunities and challenges. Expert Rev. Mol. Diagn. 2018;18:775–787. doi: 10.1080/14737159.2018.1504680. PubMed DOI
Coustan-Smith E., Behm F.G., Sanchez J., Boyett J.M., Hancock M.L., Raimondi S.C., E Rubnitz J., Rivera G.K., Sandlund J.T., Pui C.-H., et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351:550–554. doi: 10.1016/S0140-6736(97)10295-1. PubMed DOI
Borowitz M.J., Devidas M., Hunger S.P., Bowman W.P., Carroll A.J., Carroll W.L., Linda S., Martin P.L., Pullen D.J., Viswanatha D., et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: A Children’s Oncology Group study. Blood. 2008;111:5477–5485. doi: 10.1182/blood-2008-01-132837. PubMed DOI PMC
Dworzak M.N., Fröschl G., Printz D., Mann G., Pötschger U., Mühlegger N., Fritsch G., Gadner H.G. Austrian Berlin-Frankfurt-Munster Study, Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99:1952–1958. doi: 10.1182/blood.V99.6.1952. PubMed DOI
Brüggemann M., Schrauder A., Raff T., Pfeifer H., Dworzak M., Ottmann O.G., Asnafi V., Baruchel A., Bassan R., Benoit Y., et al. Standardized MRD quantification in European ALL trials; Proceedings of the Second International Symposium on MRD Assessment; Kiel, Germany. 18–20 September 2008. PubMed
Basso G., Veltroni M., Valsecchi M.G., Dworzak M.N., Ratei R., Silvestri D., Benetello A., Buldini B., Maglia O., Masera G., et al. Risk of Relapse of Childhood Acute Lymphoblastic Leukemia Is Predicted By Flow Cytometric Measurement of Residual Disease on Day 15 Bone Marrow. J. Clin. Oncol. 2009;27:5168–5174. doi: 10.1200/JCO.2008.20.8934. PubMed DOI
Irving J., Jesson J., Virgo P., Case M., Minto L., Eyre L., Noel N., Johansson U., Macey M., Knotts L., et al. Establishment and validation of a standard protocol for the detection of minimal residual disease in B lineage childhood acute lymphoblastic leukemia by flow cytometry in a multi-center setting. Haematologica. 2009;94:870–874. doi: 10.3324/haematol.2008.000414. PubMed DOI PMC
Björklund E., Matinlauri I., Tierens A., Axelsson S., Forestier E., Jacobsson S., Ahlberg A.J., Kauric G., Mäntymaa P., Osnes L., et al. Quality Control of Flow Cytometry Data Analysis for Evaluation of Minimal Residual Disease in Bone Marrow from Acute Leukemia Patients during Treatment. J. Pediatr. Hematol. Oncol. 2009;31:406–415. doi: 10.1097/MPH.0b013e3181a1c0e8. PubMed DOI
Dworzak M.N., Gaipa G., Ratei R., Veltroni M., Schumich A., Maglia O., Karawajew L., Benetello A., Pötschger U., Husak Z., et al. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: Multicentric assessment is feasible. Cytom. Part B Clin. Cytom. 2008;74:331–340. doi: 10.1002/cyto.b.20430. PubMed DOI
Theunissen P., Mejstrikova E., Sędek L., Van Der Sluijs-Gelling A.J., Gaipa G., Bartels M., da Costa E.S., Kotrová M., Novakova M., Sonneveld E., et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129:347–357. doi: 10.1182/blood-2016-07-726307. PubMed DOI PMC
Lorenzana R., Coustan-Smith E., Antillon F., Ribeiro R., Campana D. Simple methods for the rapid exchange of flow cytometric data between remote centers. Leukemia. 2000;14:336–337. doi: 10.1038/sj.leu.2401612. PubMed DOI
Keeney M., Wood B.L., Hedley B.D., DiGiuseppe J.A., Stetler-Stevenson M., Paietta E., Lozanski G., Seegmiller A.C., Greig B.W., Shaver A.C., et al. A QA Program for MRD Testing Demonstrates That Systematic Education Can Reduce Discordance Among Experienced Interpreters. Cytom. Part B Clin. Cytom. 2018;94:239–249. doi: 10.1002/cyto.b.21528. PubMed DOI PMC
Dworzak M.N., Fritsch G., Fleischer C., Printz D., Fröschl G., Buchinger P., Mann G., Gadner H. Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow. Leukemia. 1997;11:1266–1273. doi: 10.1038/sj.leu.2400732. PubMed DOI
Bainbridge J., Rountree W., Louzao R., Wong J., Whitby L., Denny T.N., Barnett D. Laboratory Accuracy Improvement in the UK NEQAS Leucocyte Immunophenotyping Immune Monitoring Program: An Eleven-Year Review via Longitudinal Mixed Effects Modeling. Cytom. Part B Clin. Cytom. 2017;94:250–256. doi: 10.1002/cyto.b.21531. PubMed DOI PMC
Freeman G.H., Halton J.H. Note on an Exact Treatment of Contingency, Goodness of Fit and Other Problems of Significance. Biometrika. 1951;38:141–149. doi: 10.1093/biomet/38.1-2.141. PubMed DOI
Soper D. 2 × 3 Contingency Table Exact Test Calculator. 2020. [(accessed on 20 November 2021)]. Available online: http://www.analyticscalculators.com.
Reiter M., Diem M., Schumich A., Maurer-Granofszky M., Karawajew L., Rossi J.G., Ratei R., Groeneveld-Krentz S., Sajaroff E.O., Suhendra S., et al. Automated Flow Cytometric MRD Assessment in Childhood Acute B-Lymphoblastic Leukemia Using Supervised Machine Learning. Cytom. Part A. 2019;95:966–975. doi: 10.1002/cyto.a.23852. PubMed DOI
Denys B., Van Der Sluijs-Gelling A.J., Homburg C., Van Der Schoot C.E., De Haas V., Philippé J., Pieters R., Van Dongen J., Van Der Velden V.H.J. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2012;27:635–641. doi: 10.1038/leu.2012.231. PubMed DOI
Karawajew L., Dworzak M., Ratei R., Rhein P., Gaipa G., Buldini B., Basso G., Hrusak O., Ludwig W.-D., Henze G., et al. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica. 2015;100:935–944. doi: 10.3324/haematol.2014.116707. PubMed DOI PMC
Bouriche L., Bernot D., Nivaggioni V., Arnoux I., Loosveld M. Detection of Minimal Residual Disease in B Cell Acute Lymphoblastic Leukemia Using an Eight-Color Tube with Dried Antibody Reagents. Cytom. Part B Clin. Cytom. 2019;96:158–163. doi: 10.1002/cyto.b.21766. PubMed DOI
Tembhare P.R., Pg P.G.S., Ghogale S., Chatterjee G., Patkar N., Gupta A., Shukla R., Badrinath Y., Deshpande N., Narula G., et al. A High-Sensitivity 10-Color Flow Cytometric Minimal Residual Disease Assay in B-Lymphoblastic Leukemia/Lymphoma Can Easily Achieve the Sensitivity of 2-in-10 6 and Is Superior to Standard Minimal Residual Disease Assay: A Study of 622 Patients. Cytom. Part B Clin. Cytom. 2019;98:57–67. doi: 10.1002/cyto.b.21831. PubMed DOI
Van Gassen S., Callebaut B., Van Helden M.J., Lambrecht B.N., Demeester P., Dhaene T., Saeys Y. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytom. Part A. 2015;87:636–645. doi: 10.1002/cyto.a.22625. PubMed DOI
Ni W., Hu B., Zheng C., Tong Y., Wang L., Li Q.-Q., Tong X., Han Y. Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine. Oncotarget. 2016;7:71915–71921. doi: 10.18632/oncotarget.12430. PubMed DOI PMC
Conrad V.K., Dubay C.J., Malek M., Brinkman R.R., Koguchi Y., Redmond W.L. Implementation and Validation of an Automated Flow Cytometry Analysis Pipeline for Human Immune Profiling. Cytom. Part A. 2019;95:183–191. doi: 10.1002/cyto.a.23664. PubMed DOI