Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
27903527
PubMed Central
PMC5291958
DOI
10.1182/blood-2016-07-726307
PII: S0006-4971(20)33777-0
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- genová přestavba MeSH
- kojenec MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- pre-B-buněčná leukemie diagnóza MeSH
- předškolní dítě MeSH
- průtoková cytometrie metody normy MeSH
- receptory antigenů B-buněk genetika MeSH
- reziduální nádor diagnóza MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory antigenů B-buněk MeSH
A fully-standardized EuroFlow 8-color antibody panel and laboratory procedure was stepwise designed to measure minimal residual disease (MRD) in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) patients with a sensitivity of ≤10-5, comparable to real-time quantitative polymerase chain reaction (RQ-PCR)-based MRD detection via antigen-receptor rearrangements. Leukocyte markers and the corresponding antibodies and fluorochromes were selected based on their contribution in separating BCP-ALL cells from normal/regenerating BCP cells in multidimensional principal component analyses. After 5 multicenter design-test-evaluate-redesign phases with a total of 319 BCP-ALL patients at diagnosis, two 8-color antibody tubes were selected, which allowed separation between normal and malignant BCP cells in 99% of studied patients. These 2 tubes were tested with a new erythrocyte bulk-lysis protocol allowing acquisition of high cell numbers in 377 bone marrow follow-up samples of 178 BCP-ALL patients. Comparison with RQ-PCR-based MRD data showed a clear positive relation between the percentage concordant cases and the number of cells acquired. For those samples with >4 million cells acquired, concordant results were obtained in 93% of samples. Most discordances were clarified upon high-throughput sequencing of antigen-receptor rearrangements and blind multicenter reanalysis of flow cytometric data, resulting in an unprecedented concordance of 98% (97% for samples with MRD < 0.01%). In conclusion, the fully standardized EuroFlow BCP-ALL MRD strategy is applicable in >98% of patients with sensitivities at least similar to RQ-PCR (≤10-5), if sufficient cells (>4 × 106, preferably more) are evaluated.
Centro Ricerca Tettamanti Clinica Pediatrica Università di Milano Bicocca Monza Italy
Department of Hematology University of Schleswig Holstein Campus Kiel Kiel Germany
Department of Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
Department of Pediatric Hematology and Oncology Zabrze Medical University of Silesia Katowice Poland
Department of Pediatrics Federal University of Rio de Janeiro Rio de Janeiro Brazil
Zobrazit více v PubMed
Flohr T, Schrauder A, Cazzaniga G, et al. ; International BFM Study Group (I-BFM-SG). Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22(4):771-782. PubMed
van der Velden VH, Cazzaniga G, Schrauder A, et al. ; European Study Group on MRD detection in ALL (ESG-MRD-ALL). Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604-611. PubMed
van der Velden VH, van Dongen JJ. MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol. 2009;538:115-150. PubMed
Basso G, Veltroni M, Valsecchi MG, et al. . Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168-5174. PubMed
Borowitz MJ, Wood BL, Devidas M, et al. . Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood. 2015;126(8):964-971. PubMed PMC
Cheng SH, Lau KM, Li CK, et al. . Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction. PLoS One. 2013;8(7):e69467. PubMed PMC
Stow P, Key L, Chen X, et al. . Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood. 2010;115(23):4657-4663. PubMed PMC
Weng XQ, Shen Y, Sheng Y, et al. . Prognostic significance of monitoring leukemia-associated immunophenotypes by eight-color flow cytometry in adult B-acute lymphoblastic leukemia. Blood Cancer J. 2013;3:e133. PubMed PMC
Dworzak MN, Fröschl G, Printz D, et al. ; Austrian Berlin-Frankfurt-Münster Study Group. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952-1958. PubMed
Denys B, van der Sluijs-Gelling AJ, Homburg C, et al. . Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2013;27(3):635-641. PubMed
Ryan J, Quinn F, Meunier A, et al. . Minimal residual disease detection in childhood acute lymphoblastic leukaemia patients at multiple time-points reveals high levels of concordance between molecular and immunophenotypic approaches. Br J Haematol. 2009;144(1):107-115. PubMed
Gaipa G, Cazzaniga G, Valsecchi MG, et al. . Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for for minimal residual disease detection in childhood acute lymphoblasticleukemia. Haematologica. 2012;97:1582-1593. PubMed PMC
Thörn I, Forestier E, Botling J, et al. . Minimal residual disease assessment in childhood acute lymphoblastic leukaemia: a Swedish multi-centre study comparing real-time polymerase chain reaction and multicolour flow cytometry. Br J Haematol. 2011;152(6):743-753. PubMed
Karawajew L, Dworzak M, Ratei R, et al. . Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica. 2015;100(7):935-944. PubMed PMC
Shaver AC, Greig BW, Mosse CA, Seegmiller AC. B-ALL minimal residual disease flow cytometry: an application of a novel method for optimization of a single-tube model. Am J Clin Pathol. 2015;143(5):716-724. PubMed
Pedreira CE, Costa ES, Almeida J, et al. ; EuroFlow Consortium. A probabilistic approach for the evaluation of minimal residual disease by multiparameter flow cytometry in leukemic B-cell chronic lymphoproliferative disorders. Cytometry A. 2008;73A(12):1141-1150. PubMed
Pedreira CE, Costa ES, Barrena S, et al. ; EuroFlow Consortium. Generation of flow cytometry data files with a potentially infinite number of dimensions. Cytometry A. 2008;73(9):834-846. PubMed
van Dongen JJ, Lhermitte L, Böttcher S, et al. ; EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708). EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908-1975. PubMed PMC
Kalina T, Flores-Montero J, van der Velden VH, et al. ; EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708). EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986-2010. PubMed PMC
Aalbers AM, van den Heuvel-Eibrink MM, Baumann I, et al. . Bone marrow immunophenotyping by flow cytometry in refractory cytopenia of childhood. Haematologica. 2015;100(3):315-323. PubMed PMC
Arroz M, Came N, Lin P, et al. . Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom. 2016;90(1):31-39. PubMed
van der Velden VHJ, Willemse MJ, van der Schoot CE, Hählen K, van Wering ER, van Dongen JJM. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia. 2002;16(5):928-936. PubMed
van der Velden VHJ, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJM. T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia. 2002;16(7):1372-1380. PubMed
van der Velden VH, de Bie M, van Wering ER, van Dongen JJ. Immunoglobulin light chain gene rearrangements in precursor-B-acute lymphoblastic leukemia: characteristics and applicability for the detection of minimal residual disease. Haematologica. 2006;91(5):679-682. PubMed
Szczepanski T, van der Velden VHJ, Hoogeveen PG, et al. . Vdelta2-Jalpha rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood. 2004;103(10):3798-3804. PubMed
Brüggemann M, van der Velden VHJ, Raff T, et al. . Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia. 2004;18(4):709-719. PubMed
Kotrova M, Muzikova K, Mejstrikova E, et al. . The predictive strength of next-generation sequencing MRD detection for relapse compared with current methods in childhood ALL. Blood. 2015;126(8):1045-1047. PubMed PMC
Lucio P, Gaipa G, van Lochem EG, et al. ; BIOMED-I. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted action investigation of minimal residual disease in acute leukemia: international standardization and clinical evaluation. Leukemia. 2001;15(8):1185-1192. PubMed
Lúcio P, Parreira A, van den Beemd MW, et al. . Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia. 1999;13(3):419-427. PubMed
Mejstríková E, Fronková E, Kalina T, et al. . Detection of residual B precursor lymphoblastic leukemia by uniform gating flow cytometry. Pediatr Blood Cancer. 2010;54(1):62-70. PubMed
Veltroni M, De Zen L, Sanzari MC, et al. ; I-BFM-ALL-FCM-MRD-Study Group. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica. 2003;88(11):1245-1252. PubMed
Coustan-Smith E, Song G, Clark C, et al. . New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267-6276. PubMed PMC
Solly F, Angelot F, Garand R, et al. . CD304 is preferentially expressed on a subset of B-lineage acute lymphoblastic leukemia and represents a novel marker for minimal residual disease detection by flow cytometry. Cytometry A. 2012;81(1):17-24. PubMed
Vaskova M, Kovac M, Volna P, et al. . High expression of cytoskeletal protein drebrin in TEL/AML1pos B-cell precursor acute lymphoblastic leukemia identified by a novel monoclonal antibody. Leuk Res. 2011;35(8):1111-1113. PubMed
Vaskova M, Mejstrikova E, Kalina T, et al. . Transfer of genomics information to flow cytometry: expression of CD27 and CD44 discriminates subtypes of acute lymphoblastic leukemia. Leukemia. 2005;19(5):876-878. PubMed
Wang W, Gao L, Li Y, et al. . The application of CD73 in minimal residual disease monitoring using flow cytometry in B-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2016;57(5):1174-1181. PubMed
van Dongen JJ, van der Velden VH, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996-4009. PubMed PMC
Behm FG, Smith FO, Raimondi SC, Pui CH, Bernstein ID. Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood. 1996;87(3):1134-1139. PubMed
Jansen MW, Corral L, van der Velden VH, et al. . Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia. 2007;21(4):633-641. PubMed
Kalina T, Vaskova M, Mejstrikova E, et al. . Myeloid antigens in childhood lymphoblastic leukemia: clinical data point to regulation of CD66c distinct from other myeloid antigens. BMC Cancer. 2005;5:38-49. PubMed PMC
Kiyokawa N, Iijima K, Tomita O, et al. . Significance of CD66c expression in childhood acute lymphoblastic leukemia. Leuk Res. 2014;38(1):42-48. PubMed
Djokic M, Björklund E, Blennow E, Mazur J, Söderhäll S, Porwit A. Overexpression of CD123 correlates with the hyperdiploid genotype in acute lymphoblastic leukemia. Haematologica. 2009;94(7):1016-1019. PubMed PMC
Cherian S, Miller V, McCullouch V, Dougherty K, Fromm JR, Wood BL. A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy. Cytometry B Clin Cytom. In press. PubMed
van Lochem EG, van der Velden VHJ, Wind HK, te Marvelde JG, Westerdaal NAC, van Dongen JJM. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin Cytom. 2004;60(1):1-13. PubMed
Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom. 2016;90(1):47-53. PubMed
Fronkova E, Muzikova K, Mejstrikova E, et al. . B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant. 2008;42(3):187-196. PubMed
van der Velden VH, Wijkhuijs JM, van Dongen JJ. Non-specific amplification of patient-specific Ig/TCR gene rearrangements depends on the time point during therapy: implications for minimal residual disease monitoring. Leukemia. 2008;22(3):641-644. PubMed
Current applications of multiparameter flow cytometry in plasma cell disorders