Bone Marrow Stromal Cell Regeneration Profile in Treated B-Cell Precursor Acute Lymphoblastic Leukemia Patients: Association with MRD Status and Patient Outcome

. 2022 Jun 23 ; 14 (13) : . [epub] 20220623

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35804860

Grantová podpora
E26/110.105/2014; E26/102.191/2013 Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro of Brazil
400194/2014-7 Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPQ of Brazil
Actions to improve pediatric cancer assistance in RJ Instituto Desiderata/Chevron, Rio de Janeiro, Brazil
DGPU 311/15 Bilateral Cooperation Program between Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Brasília/Brazil) and Dirección General de Políticas Universitárias - Ministério de Educación, Cultura y Deportes - DPGU (Madrid/Spain)
LSHB-CT-2006-018708 EuroFlow Consortium
CB16/12/00400, CB16/12/00233, CB16/12/00369, CB16/12/00489 and CB16/12/00480 Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC; Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain and FONDOS FEDER) and PI (Instituto de Salud Carlos III, Ministerio de Economia y Competitividad, Madrid,

For the last two decades, measurable residual disease (MRD) has become one of the most powerful independent prognostic factors in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, the effect of therapy on the bone marrow (BM) microenvironment and its potential relationship with the MRD status and disease free survival (DFS) still remain to be investigated. Here we analyzed the distribution of mesenchymal stem cells (MSC) and endothelial cells (EC) in the BM of treated BCP-ALL patients, and its relationship with the BM MRD status and patient outcome. For this purpose, the BM MRD status and EC/MSC regeneration profile were analyzed by multiparameter flow cytometry (MFC) in 16 control BM (10 children; 6 adults) and 1204 BM samples from 347 children and 100 adult BCP-ALL patients studied at diagnosis (129 children; 100 adults) and follow-up (824 childhood samples; 151 adult samples). Patients were grouped into a discovery cohort (116 pediatric BCP-ALL patients; 338 samples) and two validation cohorts (74 pediatric BCP-ALL, 211 samples; and 74 adult BCP-ALL patients; 134 samples). Stromal cells (i.e., EC and MSC) were detected at relatively low frequencies in all control BM (16/16; 100%) and in most BCP-ALL follow-up samples (874/975; 90%), while they were undetected in BCP-ALL BM at diagnosis. In control BM samples, the overall percentage of EC plus MSC was higher in children than adults (p = 0.011), but with a similar EC/MSC ratio in both groups. According to the MRD status similar frequencies of both types of BM stromal cells were detected in BCP-ALL BM studied at different time points during the follow-up. Univariate analysis (including all relevant prognostic factors together with the percentage of stromal cells) performed in the discovery cohort was used to select covariates for a multivariate Cox regression model for predicting patient DFS. Of note, an increased percentage of EC (>32%) within the BCP-ALL BM stromal cell compartment at day +78 of therapy emerged as an independent unfavorable prognostic factor for DFS in childhood BCP-ALL in the discovery cohort—hazard ratio (95% confidence interval) of 2.50 (1−9.66); p = 0.05—together with the BM MRD status (p = 0.031). Further investigation of the predictive value of the combination of these two variables (%EC within stromal cells and MRD status at day +78) allowed classification of BCP-ALL into three risk groups with median DFS of: 3.9, 3.1 and 1.1 years, respectively (p = 0.001). These results were confirmed in two validation cohorts of childhood BCP-ALL (n = 74) (p = 0.001) and adult BCP-ALL (n = 40) (p = 0.004) treated at different centers. In summary, our findings suggest that an imbalanced EC/MSC ratio in BM at day +78 of therapy is associated with a shorter DFS of BCP-ALL patients, independently of their MRD status. Further prospective studies are needed to better understand the pathogenic mechanisms involved.

Center of Biostatistics for Clinical Epidemiology Department of Health Science University of Milano Bicocca 20126 Milano Italy

Childhood Leukaemia Investigation Prague Department of Paediatric Haematology and Oncology 2nd Faculty of Medicine Charles University University Hospital Motol 15006 Prague Czech Republic

Cytometry Service Instituto de Puericultura e Pediatria Martagão Gesteira Rio de Janeiro 21941 912 Brazil

Department of Immunohematology and Blood Transfusion Leiden University Medical Center 2333 ZA Leiden The Netherlands

Department of Immunology Erasmus MC University Medical Center Rotterdam Dr Molewaterplein 80 3015 CN Rotterdam The Netherlands

Department of Microbiology and Immunology Medical University of Silesia in Katowice 41 808 Zabrze Poland

Department of Pediatric Hematology and Oncology Medical University of Silesia in Katowice 41 800 Zabrze Poland

Department of Pediatric Hematology University Hospital Schleswig Holstein Campus Kiel 24105 Kiel Germany

Institut Català d'Oncologia Hospital Germans Trias 1 Pujol Josep Carreras Research Institute Badalona Universitat Autònoma de Barcelona 08193 Barcelona Spain

Internal Medicine Postgraduate Program Faculty of Medicine Federal University of Rio de Janeiro Rio de Janeiro 21941 617 Brazil

M Tettamanti Foundation Research Center Department of Pediatrics University of Milano Bicocca 20900 Monza Italy

Pediatric Hematology Oncology Unit Department of Pediatrics University of Milano Bicocca MBBM Foundation ASST Monza 20900 Monza Italy

Princess Maxima Center for Pediatric Oncology 3584 CS Utrecht The Netherlands

Translational and Clinical Research Program Centro de Investigación del Cáncer and IBMCC 37007 Salamanca Spain

Zobrazit více v PubMed

Bhojwani D., Pui C.H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14:e205–e217. doi: 10.1016/S1470-2045(12)70580-6. PubMed DOI

Pierro J., Hogan L.E., Bhatla T., Carroll W.L. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Rev. Anticancer Ther. 2017;17:725–736. doi: 10.1080/14737140.2017.1347507. PubMed DOI PMC

Boullosa L.F., Savaliya P., Bonney S., Orchard L., Wickenden H., Lee C., Smits E., Banham A.H., Mills K.I., Orchard K., et al. Identification of survivin as a promising target for the immunotherapy of adult B-cell acute lymphoblastic leukemia. Oncotarget. 2018;9:3853–3866. doi: 10.18632/oncotarget.23380. PubMed DOI PMC

Pui C.H., Yang J.J., Hunger S.P., Pieters R., Schrappe M., Biondi A., Vora A., Baruchel A., Silverman L.B., Schmiegelow K., et al. Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. J. Clin. Oncol. 2015;33:2938–2948. doi: 10.1200/JCO.2014.59.1636. PubMed DOI PMC

Diaz de la Guardia R., Lopez-Millan B., Lavoie J.R., Bueno C., Castano J., Gomez-Casares M., Vives S., Palomo L., Juan M., Delgado J., et al. Detailed Characterization of Mesenchymal Stem/Stromal Cells from a Large Cohort of AML Patients Demonstrates a Definitive Link to Treatment Outcomes. Stem Cell Rep. 2017;8:1573–1586. doi: 10.1016/j.stemcr.2017.04.019. PubMed DOI PMC

Li Y., Schwab C., Ryan S., Papaemmanuil E., Robinson H.M., Jacobs P., Moorman A.V., Dyer S., Borrow J., Griffiths M., et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature. 2014;508:98–102. doi: 10.1038/nature13115. PubMed DOI PMC

Noetzli L., Lo R.W., Lee-Sherick A.B., Callaghan M., Noris P., Savoia A., Rajpurkar M., Jones K., Gowan K., Balduini C., et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat. Genet. 2015;47:535–538. doi: 10.1038/ng.3253. PubMed DOI PMC

Roberts I., Izraeli S. Haematopoietic development and leukaemia in Down syndrome. Br. J. Haematol. 2014;167:587–599. doi: 10.1111/bjh.13096. PubMed DOI

Shah S., Schrader K.A., Waanders E., Timms A.E., Vijai J., Miething C., Wechsler J., Yang J., Hayes J., Klein R.J., et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 2013;45:1226–1231. doi: 10.1038/ng.2754. PubMed DOI PMC

Stengel A., Schnittger S., Weissmann S., Kuznia S., Kern W., Kohlmann A., Haferlach T., Haferlach C. TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis. Blood. 2014;124:251–258. doi: 10.1182/blood-2014-02-558833. PubMed DOI

Stieglitz E., Loh M.L. Genetic predispositions to childhood leukemia. Ther. Adv. Hematol. 2013;4:270–290. doi: 10.1177/2040620713498161. PubMed DOI PMC

Blau O., Hofmann W.K., Baldus C.D., Thiel G., Serbent V., Schumann E., Thiel E., Blau I.W. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp. Hematol. 2007;35:221–229. doi: 10.1016/j.exphem.2006.10.012. PubMed DOI

Garcia-Montero A.C., Jara-Acevedo M., Alvarez-Twose I., Teodosio C., Sanchez-Munoz L., Muniz C., Munoz-Gonzalez J.I., Mayado A., Matito A., Caldas C., et al. KIT D816V-mutated bone marrow mesenchymal stem cells in indolent systemic mastocytosis are associated with disease progression. Blood. 2016;127:761–768. doi: 10.1182/blood-2015-07-655100. PubMed DOI

Gunsilius E., Duba H.C., Petzer A.L., Kahler C.M., Grunewald K., Stockhammer G., Gabl C., Dirnhofer S., Clausen J., Gastl G. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet. 2000;355:1688–1691. doi: 10.1016/S0140-6736(00)02241-8. PubMed DOI

Menendez P., Catalina P., Rodriguez R., Melen G.J., Bueno C., Arriero M., Garcia-Sanchez F., Lassaletta A., Garcia-Sanz R., Garcia-Castro J. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J. Exp. Med. 2009;206:3131–3141. doi: 10.1084/jem.20091050. PubMed DOI PMC

Shalapour S., Eckert C., Seeger K., Pfau M., Prada J., Henze G., Blankenstein T., Kammertoens T. Leukemia-associated genetic aberrations in mesenchymal stem cells of children with acute lymphoblastic leukemia. J. Mol. Med. 2010;88:249–265. doi: 10.1007/s00109-009-0583-8. PubMed DOI

Genovese G., Jaiswal S., Ebert B.L., McCarroll S.A. Clonal hematopoiesis and blood-cancer risk. N. Engl. J. Med. 2015;372:1071–1072. doi: 10.1056/NEJMc1500684. PubMed DOI

Steensma D.P., Bejar R., Jaiswal S., Lindsley R.C., Sekeres M.A., Hasserjian R.P., Ebert B.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16. doi: 10.1182/blood-2015-03-631747. PubMed DOI PMC

Oliveira E., Bacelar T.S., Ciudad J., Ribeiro M.C., Garcia D.R., Sedek L., Maia S.F., Aranha D.B., Machado I.C., Ikeda A., et al. Altered neutrophil immunophenotypes in childhood Bcell precursor acute lymphoblastic leukemia. Oncotarget. 2016;7:24664–24676. doi: 10.18632/oncotarget.8369. PubMed DOI PMC

Veiga J.P., Costa L.F., Sallan S.E., Nadler L.M., Cardoso A.A. Leukemia-stimulated bone marrow endothelium promotes leukemia cell survival. Exp. Hematol. 2006;34:610–621. doi: 10.1016/j.exphem.2006.01.013. PubMed DOI

El-Obeid A., Sunnuqrut N., Hussain A., Al-Hussein K., Gutierrez M.I., Bhatia K. Immature B cell malignancies synthesize VEGF, VEGFR-1 (Flt-1) and VEGFR-2 (KDR) Leuk. Res. 2004;28:133–137. doi: 10.1016/S0145-2126(03)00188-7. PubMed DOI

Schepers K., Campbell T.B., Passegue E. Normal and leukemic stem cell niches: Insights and therapeutic opportunities. Cell Stem Cell. 2015;16:254–267. doi: 10.1016/j.stem.2015.02.014. PubMed DOI PMC

Desbourdes L., Javary J., Charbonnier T., Ishac N., Bourgeais J., Iltis A., Chomel J.C., Turhan A., Guilloton F., Tarte K., et al. Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis. Stem Cells Dev. 2017;26:709–722. doi: 10.1089/scd.2016.0295. PubMed DOI

Konopleva M., Tabe Y., Zeng Z., Andreeff M. Therapeutic targeting of microenvironmental interactions in leukemia: Mechanisms and approaches. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2009;12:103–113. doi: 10.1016/j.drup.2009.06.001. PubMed DOI PMC

Van den Berk L.C., van der Veer A., Willemse M.E., Theeuwes M.J., Luijendijk M.W., Tong W.H., van der Sluis I.M., Pieters R., den Boer M.L. Disturbed CXCR4/CXCL12 axis in paediatric precursor B-cell acute lymphoblastic leukaemia. Br. J. Haematol. 2014;166:240–249. doi: 10.1111/bjh.12883. PubMed DOI

Zhang B., Li M., McDonald T., Holyoake T.L., Moon R.T., Campana D., Shultz L., Bhatia R. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood. 2013;121:1824–1838. doi: 10.1182/blood-2012-02-412890. PubMed DOI PMC

Chandia M., Sayagues J.M., Gutierrez M.L., Chillon M.L., Aristizabal J.A., Corrales A., Castellanos M., Melon A., Sanchez M.L., Barcena P., et al. Involvement of primary mesenchymal precursors and hematopoietic bone marrow cells from chronic myeloid leukemia patients by BCR-ABL1 fusion gene. Am. J. Hematol. 2014;89:288–294. doi: 10.1002/ajh.23626. PubMed DOI

Iwamoto S., Mihara K., Downing J.R., Pui C.H., Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J. Clin. Investig. 2007;117:1049–1057. doi: 10.1172/JCI30235. PubMed DOI PMC

Ribera J.M., Ortega J.J., Oriol A., Bastida P., Calvo C., Perez-Hurtado J.M., Gonzalez-Valentin M.E., Martin-Reina V., Molines A., Ortega-Rivas F., et al. Comparison of intensive chemotherapy, allogeneic, or autologous stem-cell transplantation as postremission treatment for children with very high risk acute lymphoblastic leukemia: PETHEMA ALL-93 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007;25:16–24. doi: 10.1200/JCO.2006.06.8312. PubMed DOI

Kalina T., Flores-Montero J., van der Velden V.H., Martin-Ayuso M., Bottcher S., Ritgen M., Almeida J., Lhermitte L., Asnafi V., Mendonca A., et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010. doi: 10.1038/leu.2012.122. PubMed DOI PMC

Theunissen P., Mejstrikova E., Sedek L., van der Sluijs-Gelling A.J., Gaipa G., Bartels M., Sobral da Costa E., Kotrova M., Novakova M., Sonneveld E., et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129:347–357. doi: 10.1182/blood-2016-07-726307. PubMed DOI PMC

Ribera J.M., Morgades M., Ciudad J., Montesinos P., Esteve J., Genesca E., Barba P., Ribera J., Garcia-Cadenas I., Moreno M.J., et al. Chemotherapy or allogeneic transplantation in high-risk Philadelphia chromosome-negative adult lymphoblastic leukemia. Blood. 2021;137:1879–1894. doi: 10.1182/blood.2020007311. PubMed DOI

Roberts K.G., Mullighan C.G. Genomics in acute lymphoblastic leukaemia: Insights and treatment implications. Nat. Rev. Clin. Oncol. 2015;12:344–357. doi: 10.1038/nrclinonc.2015.38. PubMed DOI

Downing J.R., Wilson R.K., Zhang J., Mardis E.R., Pui C.H., Ding L., Ley T.J., Evans W.E. The Pediatric Cancer Genome Project. Nat. Genet. 2012;44:619–622. doi: 10.1038/ng.2287. PubMed DOI PMC

Asada N., Takeishi S., Frenette P.S. Complexity of bone marrow hematopoietic stem cell niche. Int. J. Hematol. 2017;106:45–54. doi: 10.1007/s12185-017-2262-9. PubMed DOI PMC

Chiarini F., Lonetti A., Evangelisti C., Buontempo F., Orsini E., Evangelisti C., Cappellini A., Neri L.M., McCubrey J.A., Martelli A.M. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim. Et Biophys. Acta. 2016;1863:449–463. doi: 10.1016/j.bbamcr.2015.08.015. PubMed DOI

Churchman M.L., Mullighan C.G. Ikaros: Exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia. Exp. Hematol. 2017;46:1–8. doi: 10.1016/j.exphem.2016.11.002. PubMed DOI PMC

Vitanza N.A., Zaky W., Blum R., Meyer J.A., Wang J., Bhatla T., Morrison D.J., Raetz E.A., Carroll W.L. Ikaros deletions in BCR-ABL-negative childhood acute lymphoblastic leukemia are associated with a distinct gene expression signature but do not result in intrinsic chemoresistance. Pediatric Blood Cancer. 2014;61:1779–1785. doi: 10.1002/pbc.25119. PubMed DOI PMC

Conforti A., Biagini S., Del Bufalo F., Sirleto P., Angioni A., Starc N., Li Pira G., Moretta F., Proia A., Contoli B., et al. Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia. PLoS ONE. 2013;8:e76989. doi: 10.1371/journal.pone.0076989. PubMed DOI PMC

Dighe P.A., Viswanathan P., Mruthunjaya A.K., Seetharam R.N. Effect of bFGF on HLA-DR expression of human bone marrow-derived mesenchymal stem cells. J. Stem Cells. 2013;8:43–57. PubMed

Lopez-Villar O., Garcia J.L., Sanchez-Guijo F.M., Robledo C., Villaron E.M., Hernandez-Campo P., Lopez-Holgado N., Diez-Campelo M., Barbado M.V., Perez-Simon J.A., et al. Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia. 2009;23:664–672. doi: 10.1038/leu.2008.361. PubMed DOI

Zhao Z.G., Xu W., Yu H.P., Fang B.L., Wu S.H., Li F., Li W.M., Li Q.B., Chen Z.C., Zou P. Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes. Cancer Lett. 2012;317:136–143. doi: 10.1016/j.canlet.2011.08.030. PubMed DOI

Jones E.A., English A., Kinsey S.E., Straszynski L., Emery P., Ponchel F., McGonagle D. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry. Part B Clin. Cytom. 2006;70:391–399. doi: 10.1002/cyto.b.20118. PubMed DOI

Martins A.A., Paiva A., Morgado J.M., Gomes A., Pais M.L. Quantification and immunophenotypic characterization of bone marrow and umbilical cord blood mesenchymal stem cells by multicolor flow cytometry. Transplant. Proc. 2009;41:943–946. doi: 10.1016/j.transproceed.2009.01.059. PubMed DOI

Muniz C., Teodosio C., Mayado A., Amaral A.T., Matarraz S., Barcena P., Sanchez M.L., Alvarez-Twose I., Diez-Campelo M., Garcia-Montero A.C., et al. Ex vivo identification and characterization of a population of CD13(high) CD105(+) CD45(-) mesenchymal stem cells in human bone marrow. Stem Cell Res. Ther. 2015;6:169. doi: 10.1186/s13287-015-0152-8. PubMed DOI PMC

Airas L., Niemela J., Salmi M., Puurunen T., Smith D.J., Jalkanen S. Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J. Cell Biol. 1997;136:421–431. doi: 10.1083/jcb.136.2.421. PubMed DOI PMC

Amati E., Perbellini O., Rotta G., Bernardi M., Chieregato K., Sella S., Rodeghiero F., Ruggeri M., Astori G. High-throughput immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal cells reveals common and differentially expressed markers: Identification of angiotensin-converting enzyme (CD143) as a marker differentially expressed between adult and perinatal tissue sources. Stem Cell Res. Ther. 2018;9:10. doi: 10.1186/s13287-017-0755-3. PubMed DOI PMC

Baddoo M., Hill K., Wilkinson R., Gaupp D., Hughes C., Kopen G.C., Phinney D.G. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cell. Biochem. 2003;89:1235–1249. doi: 10.1002/jcb.10594. PubMed DOI

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Bailey R.L., Herbert J.M., Khan K., Heath V.L., Bicknell R., Tomlinson M.G. The emerging role of tetraspanin microdomains on endothelial cells. Biochem. Soc. Trans. 2011;39:1667–1673. doi: 10.1042/BST20110745. PubMed DOI

Hristov M., Erl W., Weber P.C. Endothelial progenitor cells: Mobilization, differentiation, and homing. Arterioscler. Thromb. Vasc. Biol. 2003;23:1185–1189. doi: 10.1161/01.ATV.0000073832.49290.B5. PubMed DOI

Mastrolia I., Foppiani E.M., Murgia A., Candini O., Samarelli A.V., Grisendi G., Veronesi E., Horwitz E.M., Dominici M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl. Med. 2019;8:1135–1148. doi: 10.1002/sctm.19-0044. PubMed DOI PMC

Cortelezzi A., Fracchiolla N.S., Mazzeo L.M., Silvestris I., Pomati M., Somalvico F., Bertolini F., Mancuso P., Pruneri G.C., Gianelli U., et al. Endothelial precursors and mature endothelial cells are increased in the peripheral blood of myelodysplastic syndromes. Leuk. Lymphoma. 2005;46:1345–1351. doi: 10.1080/10428190500144235. PubMed DOI

Kaur S., Sehgal R., Shastry S.M., McCaughan G., McGuire H.M., Fazekas St de Groth B., Sarin S., Trehanpati N., Seth D. Circulating Endothelial Progenitor Cells Present an Inflammatory Phenotype and Function in Patients With Alcoholic Liver Cirrhosis. Front. Physiol. 2018;9:556. doi: 10.3389/fphys.2018.00556. PubMed DOI PMC

Brooimans R.A., Kraan J., van Putten W., Cornelissen J.J., Lowenberg B., Gratama J.W. Flow cytometric differential of leukocyte populations in normal bone marrow: Influence of peripheral blood contamination. Cytometry. Part B Clin. Cytom. 2009;76:18–26. doi: 10.1002/cyto.b.20439. PubMed DOI

Delgado J.A., Guillen-Grima F., Moreno C., Panizo C., Perez-Robles C., Mata J.J., Moreno L., Arana P., Chocarro S., Merino J. A simple flow-cytometry method to evaluate peripheral blood contamination of bone marrow aspirates. J. Immunol. Methods. 2017;442:54–58. doi: 10.1016/j.jim.2016.12.006. PubMed DOI

Colmone A., Amorim M., Pontier A.L., Wang S., Jablonski E., Sipkins D.A. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–1865. doi: 10.1126/science.1164390. PubMed DOI

Bassan R., Spinelli O., Oldani E., Intermesoli T., Tosi M., Peruta B., Rossi G., Borlenghi E., Pogliani E.M., Terruzzi E., et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL) Blood. 2009;113:4153–4162. doi: 10.1182/blood-2008-11-185132. PubMed DOI

Borowitz M.J., Devidas M., Hunger S.P., Bowman W.P., Carroll A.J., Carroll W.L., Linda S., Martin P.L., Pullen D.J., Viswanatha D., et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: A Children’s Oncology Group study. Blood. 2008;111:5477–5485. doi: 10.1182/blood-2008-01-132837. PubMed DOI PMC

Cave H., van der Werff ten Bosch J., Suciu S., Guidal C., Waterkeyn C., Otten J., Bakkus M., Thielemans K., Grandchamp B., Vilmer E. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer--Childhood Leukemia Cooperative Group. N. Engl. J. Med. 1998;339:591–598. doi: 10.1056/NEJM199808273390904. PubMed DOI

Coustan-Smith E., Behm F.G., Sanchez J., Boyett J.M., Hancock M.L., Raimondi S.C., Rubnitz J.E., Rivera G.K., Sandlund J.T., Pui C.H., et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351:550–554. doi: 10.1016/S0140-6736(97)10295-1. PubMed DOI

Hunger S.P., Mullighan C.G. Acute Lymphoblastic Leukemia in Children. N. Engl. J. Med. 2015;373:1541–1552. doi: 10.1056/NEJMra1400972. PubMed DOI

Van der Velden V.H., Corral L., Valsecchi M.G., Jansen M.W., De Lorenzo P., Cazzaniga G., Panzer-Grumayer E.R., Schrappe M., Schrauder A., Meyer C., et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia. 2009;23:1073–1079. doi: 10.1038/leu.2009.17. PubMed DOI

Van Dongen J.J., Seriu T., Panzer-Grumayer E.R., Biondi A., Pongers-Willemse M.J., Corral L., Stolz F., Schrappe M., Masera G., Kamps W.A., et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352:1731–1738. doi: 10.1016/S0140-6736(98)04058-6. PubMed DOI

Borowitz M.J., Wood B.L., Devidas M., Loh M.L., Raetz E.A., Salzer W.L., Nachman J.B., Carroll A.J., Heerema N.A., Gastier-Foster J.M., et al. Prognostic significance of minimal residual disease in high risk B-ALL: A report from Children’s Oncology Group study AALL0232. Blood. 2015;126:964–971. doi: 10.1182/blood-2015-03-633685. PubMed DOI PMC

Ravandi F., Jorgensen J.L., O’Brien S.M., Jabbour E., Thomas D.A., Borthakur G., Garris R., Huang X., Garcia-Manero G., Burger J.A., et al. Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br. J. Haematol. 2016;172:392–400. doi: 10.1111/bjh.13834. PubMed DOI PMC

Weng X.Q., Shen Y., Sheng Y., Chen B., Wang J.H., Li J.M., Mi J.Q., Chen Q.S., Zhu Y.M., Jiang C.L., et al. Prognostic significance of monitoring leukemia-associated immunophenotypes by eight-color flow cytometry in adult B-acute lymphoblastic leukemia. Blood Cancer J. 2013;3:e133. doi: 10.1038/bcj.2013.31. PubMed DOI PMC

Modvig S., Hallbook H., Madsen H.O., Siitonen S., Rosthoj S., Tierens A., Juvonen V., Osnes L.T.N., Valerhaugen H., Hultdin M., et al. Value of flow cytometry for MRD-based relapse prediction in B-cell precursor ALL in a multicenter setting. Leukemia. 2021;35:1894–1906. doi: 10.1038/s41375-020-01100-5. PubMed DOI PMC

Pui C.H., Pei D., Coustan-Smith E., Jeha S., Cheng C., Bowman W.P., Sandlund J.T., Ribeiro R.C., Rubnitz J.E., Inaba H., et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: A prospective study. Lancet. Oncol. 2015;16:465–474. doi: 10.1016/S1470-2045(15)70082-3. PubMed DOI PMC

Jung M., Schieck M., Hofmann W., Tauscher M., Lentes J., Bergmann A., Stelter M., Moricke A., Alten J., Schlegelberger B., et al. Frequency and prognostic impact of PAX5 p.P80R in pediatric acute lymphoblastic leukemia patients treated on an AIEOP-BFM acute lymphoblastic leukemia protocol. Genes Chromosomes Cancer. 2020;59:667–671. doi: 10.1002/gcc.22882. PubMed DOI PMC

Olsson L., Ivanov Ofverholm I., Noren-Nystrom U., Zachariadis V., Nordlund J., Sjogren H., Golovleva I., Nordgren A., Paulsson K., Heyman M., et al. The clinical impact of IKZF1 deletions in paediatric B-cell precursor acute lymphoblastic leukaemia is independent of minimal residual disease stratification in Nordic Society for Paediatric Haematology and Oncology treatment protocols used between 1992 and 2013. Br. J. Haematol. 2015;170:847–858. doi: 10.1111/bjh.13514. PubMed DOI

Gronroos T., Makinen A., Laukkanen S., Mehtonen J., Nikkila A., Oksa L., Rounioja S., Marincevic-Zuniga Y., Nordlund J., Pohjolainen V., et al. Clinicopathological features and prognostic value of SOX11 in childhood acute lymphoblastic leukemia. Sci. Rep. 2020;10:2043. doi: 10.1038/s41598-020-58970-z. PubMed DOI PMC

Wu L., Jiang M., Yu P., Li J., Ouyang W., Feng C., Zhao W.L., Dai Y., Huang J. Single-Cell Transcriptome Analysis Identifies Ligand-Receptor Pairs Associated With BCP-ALL Prognosis. Front. Oncol. 2021;11:639013. doi: 10.3389/fonc.2021.639013. PubMed DOI PMC

Cui L., Gao C., Wang C.J., Zhao X.X., Li W.J., Li Z.G., Zheng H.Y., Wang T.Y., Zhang R.D. Combined analysis of IKZF1 deletions and CRLF2 expression on prognostic impact in pediatric B-cell precursor acute lymphoblastic leukemia. Leuk. Lymphoma. 2021;62:410–418. doi: 10.1080/10428194.2020.1832668. PubMed DOI

Conter V., Bartram C.R., Valsecchi M.G., Schrauder A., Panzer-Grumayer R., Moricke A., Arico M., Zimmermann M., Mann G., De Rossi G., et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: Results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–3214. doi: 10.1182/blood-2009-10-248146. PubMed DOI

Popov A., Buldini B., De Lorenzo P., Disaro S., Verzhbitskaya T., Movchan L., Giarin E., Shorikov E., Di Meglio A., Tsaur G., et al. Prognostic value of minimal residual disease measured by flow-cytometry in two cohorts of infants with acute lymphoblastic leukemia treated according to either MLL-Baby or Interfant protocols. Leukemia. 2020;34:3042–3046. doi: 10.1038/s41375-020-0912-z. PubMed DOI

Dias S., Choy M., Alitalo K., Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood. 2002;99:2179–2184. doi: 10.1182/blood.V99.6.2179. PubMed DOI

Poulos M.G., Gars E.J., Gutkin M.C., Kloss C.C., Ginsberg M., Scandura J.M., Rafii S., Butler J.M. Activation of the vascular niche supports leukemic progression and resistance to chemotherapy. Exp. Hematol. 2014;42:976–986.e3. doi: 10.1016/j.exphem.2014.08.003. PubMed DOI PMC

Hanoun M., Zhang D., Mizoguchi T., Pinho S., Pierce H., Kunisaki Y., Lacombe J., Armstrong S.A., Duhrsen U., Frenette P.S. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell. 2014;15:365–375. doi: 10.1016/j.stem.2014.06.020. PubMed DOI PMC

Arranz L., Sanchez-Aguilera A., Martin-Perez D., Isern J., Langa X., Tzankov A., Lundberg P., Muntion S., Tzeng Y.S., Lai D.M., et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512:78–81. doi: 10.1038/nature13383. PubMed DOI

Pezeshkian B., Donnelly C., Tamburo K., Geddes T., Madlambayan G.J. Leukemia Mediated Endothelial Cell Activation Modulates Leukemia Cell Susceptibility to Chemotherapy through a Positive Feedback Loop Mechanism. PLoS ONE. 2013;8:e60823. doi: 10.1371/journal.pone.0060823. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...