Bone Marrow Stromal Cell Regeneration Profile in Treated B-Cell Precursor Acute Lymphoblastic Leukemia Patients: Association with MRD Status and Patient Outcome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
E26/110.105/2014; E26/102.191/2013
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro of Brazil
400194/2014-7
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPQ of Brazil
Actions to improve pediatric cancer assistance in RJ
Instituto Desiderata/Chevron, Rio de Janeiro, Brazil
DGPU 311/15
Bilateral Cooperation Program between Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Brasília/Brazil) and Dirección General de Políticas Universitárias - Ministério de Educación, Cultura y Deportes - DPGU (Madrid/Spain)
LSHB-CT-2006-018708
EuroFlow Consortium
CB16/12/00400, CB16/12/00233, CB16/12/00369, CB16/12/00489 and CB16/12/00480
Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC; Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain and FONDOS FEDER) and PI (Instituto de Salud Carlos III, Ministerio de Economia y Competitividad, Madrid,
PubMed
35804860
PubMed Central
PMC9265080
DOI
10.3390/cancers14133088
PII: cancers14133088
Knihovny.cz E-zdroje
- Klíčová slova
- B-cell precursor acute lymphoblastic leukemia, bone marrow microenvironment, disease free survival, endothelial cells, measurable residual disease, mesenchymal stem cells, multiparameter flow cytometry, stromal cells,
- Publikační typ
- časopisecké články MeSH
For the last two decades, measurable residual disease (MRD) has become one of the most powerful independent prognostic factors in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, the effect of therapy on the bone marrow (BM) microenvironment and its potential relationship with the MRD status and disease free survival (DFS) still remain to be investigated. Here we analyzed the distribution of mesenchymal stem cells (MSC) and endothelial cells (EC) in the BM of treated BCP-ALL patients, and its relationship with the BM MRD status and patient outcome. For this purpose, the BM MRD status and EC/MSC regeneration profile were analyzed by multiparameter flow cytometry (MFC) in 16 control BM (10 children; 6 adults) and 1204 BM samples from 347 children and 100 adult BCP-ALL patients studied at diagnosis (129 children; 100 adults) and follow-up (824 childhood samples; 151 adult samples). Patients were grouped into a discovery cohort (116 pediatric BCP-ALL patients; 338 samples) and two validation cohorts (74 pediatric BCP-ALL, 211 samples; and 74 adult BCP-ALL patients; 134 samples). Stromal cells (i.e., EC and MSC) were detected at relatively low frequencies in all control BM (16/16; 100%) and in most BCP-ALL follow-up samples (874/975; 90%), while they were undetected in BCP-ALL BM at diagnosis. In control BM samples, the overall percentage of EC plus MSC was higher in children than adults (p = 0.011), but with a similar EC/MSC ratio in both groups. According to the MRD status similar frequencies of both types of BM stromal cells were detected in BCP-ALL BM studied at different time points during the follow-up. Univariate analysis (including all relevant prognostic factors together with the percentage of stromal cells) performed in the discovery cohort was used to select covariates for a multivariate Cox regression model for predicting patient DFS. Of note, an increased percentage of EC (>32%) within the BCP-ALL BM stromal cell compartment at day +78 of therapy emerged as an independent unfavorable prognostic factor for DFS in childhood BCP-ALL in the discovery cohort—hazard ratio (95% confidence interval) of 2.50 (1−9.66); p = 0.05—together with the BM MRD status (p = 0.031). Further investigation of the predictive value of the combination of these two variables (%EC within stromal cells and MRD status at day +78) allowed classification of BCP-ALL into three risk groups with median DFS of: 3.9, 3.1 and 1.1 years, respectively (p = 0.001). These results were confirmed in two validation cohorts of childhood BCP-ALL (n = 74) (p = 0.001) and adult BCP-ALL (n = 40) (p = 0.004) treated at different centers. In summary, our findings suggest that an imbalanced EC/MSC ratio in BM at day +78 of therapy is associated with a shorter DFS of BCP-ALL patients, independently of their MRD status. Further prospective studies are needed to better understand the pathogenic mechanisms involved.
Zobrazit více v PubMed
Bhojwani D., Pui C.H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14:e205–e217. doi: 10.1016/S1470-2045(12)70580-6. PubMed DOI
Pierro J., Hogan L.E., Bhatla T., Carroll W.L. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Rev. Anticancer Ther. 2017;17:725–736. doi: 10.1080/14737140.2017.1347507. PubMed DOI PMC
Boullosa L.F., Savaliya P., Bonney S., Orchard L., Wickenden H., Lee C., Smits E., Banham A.H., Mills K.I., Orchard K., et al. Identification of survivin as a promising target for the immunotherapy of adult B-cell acute lymphoblastic leukemia. Oncotarget. 2018;9:3853–3866. doi: 10.18632/oncotarget.23380. PubMed DOI PMC
Pui C.H., Yang J.J., Hunger S.P., Pieters R., Schrappe M., Biondi A., Vora A., Baruchel A., Silverman L.B., Schmiegelow K., et al. Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. J. Clin. Oncol. 2015;33:2938–2948. doi: 10.1200/JCO.2014.59.1636. PubMed DOI PMC
Diaz de la Guardia R., Lopez-Millan B., Lavoie J.R., Bueno C., Castano J., Gomez-Casares M., Vives S., Palomo L., Juan M., Delgado J., et al. Detailed Characterization of Mesenchymal Stem/Stromal Cells from a Large Cohort of AML Patients Demonstrates a Definitive Link to Treatment Outcomes. Stem Cell Rep. 2017;8:1573–1586. doi: 10.1016/j.stemcr.2017.04.019. PubMed DOI PMC
Li Y., Schwab C., Ryan S., Papaemmanuil E., Robinson H.M., Jacobs P., Moorman A.V., Dyer S., Borrow J., Griffiths M., et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature. 2014;508:98–102. doi: 10.1038/nature13115. PubMed DOI PMC
Noetzli L., Lo R.W., Lee-Sherick A.B., Callaghan M., Noris P., Savoia A., Rajpurkar M., Jones K., Gowan K., Balduini C., et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat. Genet. 2015;47:535–538. doi: 10.1038/ng.3253. PubMed DOI PMC
Roberts I., Izraeli S. Haematopoietic development and leukaemia in Down syndrome. Br. J. Haematol. 2014;167:587–599. doi: 10.1111/bjh.13096. PubMed DOI
Shah S., Schrader K.A., Waanders E., Timms A.E., Vijai J., Miething C., Wechsler J., Yang J., Hayes J., Klein R.J., et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 2013;45:1226–1231. doi: 10.1038/ng.2754. PubMed DOI PMC
Stengel A., Schnittger S., Weissmann S., Kuznia S., Kern W., Kohlmann A., Haferlach T., Haferlach C. TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis. Blood. 2014;124:251–258. doi: 10.1182/blood-2014-02-558833. PubMed DOI
Stieglitz E., Loh M.L. Genetic predispositions to childhood leukemia. Ther. Adv. Hematol. 2013;4:270–290. doi: 10.1177/2040620713498161. PubMed DOI PMC
Blau O., Hofmann W.K., Baldus C.D., Thiel G., Serbent V., Schumann E., Thiel E., Blau I.W. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp. Hematol. 2007;35:221–229. doi: 10.1016/j.exphem.2006.10.012. PubMed DOI
Garcia-Montero A.C., Jara-Acevedo M., Alvarez-Twose I., Teodosio C., Sanchez-Munoz L., Muniz C., Munoz-Gonzalez J.I., Mayado A., Matito A., Caldas C., et al. KIT D816V-mutated bone marrow mesenchymal stem cells in indolent systemic mastocytosis are associated with disease progression. Blood. 2016;127:761–768. doi: 10.1182/blood-2015-07-655100. PubMed DOI
Gunsilius E., Duba H.C., Petzer A.L., Kahler C.M., Grunewald K., Stockhammer G., Gabl C., Dirnhofer S., Clausen J., Gastl G. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet. 2000;355:1688–1691. doi: 10.1016/S0140-6736(00)02241-8. PubMed DOI
Menendez P., Catalina P., Rodriguez R., Melen G.J., Bueno C., Arriero M., Garcia-Sanchez F., Lassaletta A., Garcia-Sanz R., Garcia-Castro J. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J. Exp. Med. 2009;206:3131–3141. doi: 10.1084/jem.20091050. PubMed DOI PMC
Shalapour S., Eckert C., Seeger K., Pfau M., Prada J., Henze G., Blankenstein T., Kammertoens T. Leukemia-associated genetic aberrations in mesenchymal stem cells of children with acute lymphoblastic leukemia. J. Mol. Med. 2010;88:249–265. doi: 10.1007/s00109-009-0583-8. PubMed DOI
Genovese G., Jaiswal S., Ebert B.L., McCarroll S.A. Clonal hematopoiesis and blood-cancer risk. N. Engl. J. Med. 2015;372:1071–1072. doi: 10.1056/NEJMc1500684. PubMed DOI
Steensma D.P., Bejar R., Jaiswal S., Lindsley R.C., Sekeres M.A., Hasserjian R.P., Ebert B.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16. doi: 10.1182/blood-2015-03-631747. PubMed DOI PMC
Oliveira E., Bacelar T.S., Ciudad J., Ribeiro M.C., Garcia D.R., Sedek L., Maia S.F., Aranha D.B., Machado I.C., Ikeda A., et al. Altered neutrophil immunophenotypes in childhood Bcell precursor acute lymphoblastic leukemia. Oncotarget. 2016;7:24664–24676. doi: 10.18632/oncotarget.8369. PubMed DOI PMC
Veiga J.P., Costa L.F., Sallan S.E., Nadler L.M., Cardoso A.A. Leukemia-stimulated bone marrow endothelium promotes leukemia cell survival. Exp. Hematol. 2006;34:610–621. doi: 10.1016/j.exphem.2006.01.013. PubMed DOI
El-Obeid A., Sunnuqrut N., Hussain A., Al-Hussein K., Gutierrez M.I., Bhatia K. Immature B cell malignancies synthesize VEGF, VEGFR-1 (Flt-1) and VEGFR-2 (KDR) Leuk. Res. 2004;28:133–137. doi: 10.1016/S0145-2126(03)00188-7. PubMed DOI
Schepers K., Campbell T.B., Passegue E. Normal and leukemic stem cell niches: Insights and therapeutic opportunities. Cell Stem Cell. 2015;16:254–267. doi: 10.1016/j.stem.2015.02.014. PubMed DOI PMC
Desbourdes L., Javary J., Charbonnier T., Ishac N., Bourgeais J., Iltis A., Chomel J.C., Turhan A., Guilloton F., Tarte K., et al. Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis. Stem Cells Dev. 2017;26:709–722. doi: 10.1089/scd.2016.0295. PubMed DOI
Konopleva M., Tabe Y., Zeng Z., Andreeff M. Therapeutic targeting of microenvironmental interactions in leukemia: Mechanisms and approaches. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2009;12:103–113. doi: 10.1016/j.drup.2009.06.001. PubMed DOI PMC
Van den Berk L.C., van der Veer A., Willemse M.E., Theeuwes M.J., Luijendijk M.W., Tong W.H., van der Sluis I.M., Pieters R., den Boer M.L. Disturbed CXCR4/CXCL12 axis in paediatric precursor B-cell acute lymphoblastic leukaemia. Br. J. Haematol. 2014;166:240–249. doi: 10.1111/bjh.12883. PubMed DOI
Zhang B., Li M., McDonald T., Holyoake T.L., Moon R.T., Campana D., Shultz L., Bhatia R. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood. 2013;121:1824–1838. doi: 10.1182/blood-2012-02-412890. PubMed DOI PMC
Chandia M., Sayagues J.M., Gutierrez M.L., Chillon M.L., Aristizabal J.A., Corrales A., Castellanos M., Melon A., Sanchez M.L., Barcena P., et al. Involvement of primary mesenchymal precursors and hematopoietic bone marrow cells from chronic myeloid leukemia patients by BCR-ABL1 fusion gene. Am. J. Hematol. 2014;89:288–294. doi: 10.1002/ajh.23626. PubMed DOI
Iwamoto S., Mihara K., Downing J.R., Pui C.H., Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J. Clin. Investig. 2007;117:1049–1057. doi: 10.1172/JCI30235. PubMed DOI PMC
Ribera J.M., Ortega J.J., Oriol A., Bastida P., Calvo C., Perez-Hurtado J.M., Gonzalez-Valentin M.E., Martin-Reina V., Molines A., Ortega-Rivas F., et al. Comparison of intensive chemotherapy, allogeneic, or autologous stem-cell transplantation as postremission treatment for children with very high risk acute lymphoblastic leukemia: PETHEMA ALL-93 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007;25:16–24. doi: 10.1200/JCO.2006.06.8312. PubMed DOI
Kalina T., Flores-Montero J., van der Velden V.H., Martin-Ayuso M., Bottcher S., Ritgen M., Almeida J., Lhermitte L., Asnafi V., Mendonca A., et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010. doi: 10.1038/leu.2012.122. PubMed DOI PMC
Theunissen P., Mejstrikova E., Sedek L., van der Sluijs-Gelling A.J., Gaipa G., Bartels M., Sobral da Costa E., Kotrova M., Novakova M., Sonneveld E., et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129:347–357. doi: 10.1182/blood-2016-07-726307. PubMed DOI PMC
Ribera J.M., Morgades M., Ciudad J., Montesinos P., Esteve J., Genesca E., Barba P., Ribera J., Garcia-Cadenas I., Moreno M.J., et al. Chemotherapy or allogeneic transplantation in high-risk Philadelphia chromosome-negative adult lymphoblastic leukemia. Blood. 2021;137:1879–1894. doi: 10.1182/blood.2020007311. PubMed DOI
Roberts K.G., Mullighan C.G. Genomics in acute lymphoblastic leukaemia: Insights and treatment implications. Nat. Rev. Clin. Oncol. 2015;12:344–357. doi: 10.1038/nrclinonc.2015.38. PubMed DOI
Downing J.R., Wilson R.K., Zhang J., Mardis E.R., Pui C.H., Ding L., Ley T.J., Evans W.E. The Pediatric Cancer Genome Project. Nat. Genet. 2012;44:619–622. doi: 10.1038/ng.2287. PubMed DOI PMC
Asada N., Takeishi S., Frenette P.S. Complexity of bone marrow hematopoietic stem cell niche. Int. J. Hematol. 2017;106:45–54. doi: 10.1007/s12185-017-2262-9. PubMed DOI PMC
Chiarini F., Lonetti A., Evangelisti C., Buontempo F., Orsini E., Evangelisti C., Cappellini A., Neri L.M., McCubrey J.A., Martelli A.M. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim. Et Biophys. Acta. 2016;1863:449–463. doi: 10.1016/j.bbamcr.2015.08.015. PubMed DOI
Churchman M.L., Mullighan C.G. Ikaros: Exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia. Exp. Hematol. 2017;46:1–8. doi: 10.1016/j.exphem.2016.11.002. PubMed DOI PMC
Vitanza N.A., Zaky W., Blum R., Meyer J.A., Wang J., Bhatla T., Morrison D.J., Raetz E.A., Carroll W.L. Ikaros deletions in BCR-ABL-negative childhood acute lymphoblastic leukemia are associated with a distinct gene expression signature but do not result in intrinsic chemoresistance. Pediatric Blood Cancer. 2014;61:1779–1785. doi: 10.1002/pbc.25119. PubMed DOI PMC
Conforti A., Biagini S., Del Bufalo F., Sirleto P., Angioni A., Starc N., Li Pira G., Moretta F., Proia A., Contoli B., et al. Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia. PLoS ONE. 2013;8:e76989. doi: 10.1371/journal.pone.0076989. PubMed DOI PMC
Dighe P.A., Viswanathan P., Mruthunjaya A.K., Seetharam R.N. Effect of bFGF on HLA-DR expression of human bone marrow-derived mesenchymal stem cells. J. Stem Cells. 2013;8:43–57. PubMed
Lopez-Villar O., Garcia J.L., Sanchez-Guijo F.M., Robledo C., Villaron E.M., Hernandez-Campo P., Lopez-Holgado N., Diez-Campelo M., Barbado M.V., Perez-Simon J.A., et al. Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia. 2009;23:664–672. doi: 10.1038/leu.2008.361. PubMed DOI
Zhao Z.G., Xu W., Yu H.P., Fang B.L., Wu S.H., Li F., Li W.M., Li Q.B., Chen Z.C., Zou P. Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes. Cancer Lett. 2012;317:136–143. doi: 10.1016/j.canlet.2011.08.030. PubMed DOI
Jones E.A., English A., Kinsey S.E., Straszynski L., Emery P., Ponchel F., McGonagle D. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry. Part B Clin. Cytom. 2006;70:391–399. doi: 10.1002/cyto.b.20118. PubMed DOI
Martins A.A., Paiva A., Morgado J.M., Gomes A., Pais M.L. Quantification and immunophenotypic characterization of bone marrow and umbilical cord blood mesenchymal stem cells by multicolor flow cytometry. Transplant. Proc. 2009;41:943–946. doi: 10.1016/j.transproceed.2009.01.059. PubMed DOI
Muniz C., Teodosio C., Mayado A., Amaral A.T., Matarraz S., Barcena P., Sanchez M.L., Alvarez-Twose I., Diez-Campelo M., Garcia-Montero A.C., et al. Ex vivo identification and characterization of a population of CD13(high) CD105(+) CD45(-) mesenchymal stem cells in human bone marrow. Stem Cell Res. Ther. 2015;6:169. doi: 10.1186/s13287-015-0152-8. PubMed DOI PMC
Airas L., Niemela J., Salmi M., Puurunen T., Smith D.J., Jalkanen S. Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J. Cell Biol. 1997;136:421–431. doi: 10.1083/jcb.136.2.421. PubMed DOI PMC
Amati E., Perbellini O., Rotta G., Bernardi M., Chieregato K., Sella S., Rodeghiero F., Ruggeri M., Astori G. High-throughput immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal cells reveals common and differentially expressed markers: Identification of angiotensin-converting enzyme (CD143) as a marker differentially expressed between adult and perinatal tissue sources. Stem Cell Res. Ther. 2018;9:10. doi: 10.1186/s13287-017-0755-3. PubMed DOI PMC
Baddoo M., Hill K., Wilkinson R., Gaupp D., Hughes C., Kopen G.C., Phinney D.G. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cell. Biochem. 2003;89:1235–1249. doi: 10.1002/jcb.10594. PubMed DOI
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Bailey R.L., Herbert J.M., Khan K., Heath V.L., Bicknell R., Tomlinson M.G. The emerging role of tetraspanin microdomains on endothelial cells. Biochem. Soc. Trans. 2011;39:1667–1673. doi: 10.1042/BST20110745. PubMed DOI
Hristov M., Erl W., Weber P.C. Endothelial progenitor cells: Mobilization, differentiation, and homing. Arterioscler. Thromb. Vasc. Biol. 2003;23:1185–1189. doi: 10.1161/01.ATV.0000073832.49290.B5. PubMed DOI
Mastrolia I., Foppiani E.M., Murgia A., Candini O., Samarelli A.V., Grisendi G., Veronesi E., Horwitz E.M., Dominici M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl. Med. 2019;8:1135–1148. doi: 10.1002/sctm.19-0044. PubMed DOI PMC
Cortelezzi A., Fracchiolla N.S., Mazzeo L.M., Silvestris I., Pomati M., Somalvico F., Bertolini F., Mancuso P., Pruneri G.C., Gianelli U., et al. Endothelial precursors and mature endothelial cells are increased in the peripheral blood of myelodysplastic syndromes. Leuk. Lymphoma. 2005;46:1345–1351. doi: 10.1080/10428190500144235. PubMed DOI
Kaur S., Sehgal R., Shastry S.M., McCaughan G., McGuire H.M., Fazekas St de Groth B., Sarin S., Trehanpati N., Seth D. Circulating Endothelial Progenitor Cells Present an Inflammatory Phenotype and Function in Patients With Alcoholic Liver Cirrhosis. Front. Physiol. 2018;9:556. doi: 10.3389/fphys.2018.00556. PubMed DOI PMC
Brooimans R.A., Kraan J., van Putten W., Cornelissen J.J., Lowenberg B., Gratama J.W. Flow cytometric differential of leukocyte populations in normal bone marrow: Influence of peripheral blood contamination. Cytometry. Part B Clin. Cytom. 2009;76:18–26. doi: 10.1002/cyto.b.20439. PubMed DOI
Delgado J.A., Guillen-Grima F., Moreno C., Panizo C., Perez-Robles C., Mata J.J., Moreno L., Arana P., Chocarro S., Merino J. A simple flow-cytometry method to evaluate peripheral blood contamination of bone marrow aspirates. J. Immunol. Methods. 2017;442:54–58. doi: 10.1016/j.jim.2016.12.006. PubMed DOI
Colmone A., Amorim M., Pontier A.L., Wang S., Jablonski E., Sipkins D.A. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–1865. doi: 10.1126/science.1164390. PubMed DOI
Bassan R., Spinelli O., Oldani E., Intermesoli T., Tosi M., Peruta B., Rossi G., Borlenghi E., Pogliani E.M., Terruzzi E., et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL) Blood. 2009;113:4153–4162. doi: 10.1182/blood-2008-11-185132. PubMed DOI
Borowitz M.J., Devidas M., Hunger S.P., Bowman W.P., Carroll A.J., Carroll W.L., Linda S., Martin P.L., Pullen D.J., Viswanatha D., et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: A Children’s Oncology Group study. Blood. 2008;111:5477–5485. doi: 10.1182/blood-2008-01-132837. PubMed DOI PMC
Cave H., van der Werff ten Bosch J., Suciu S., Guidal C., Waterkeyn C., Otten J., Bakkus M., Thielemans K., Grandchamp B., Vilmer E. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer--Childhood Leukemia Cooperative Group. N. Engl. J. Med. 1998;339:591–598. doi: 10.1056/NEJM199808273390904. PubMed DOI
Coustan-Smith E., Behm F.G., Sanchez J., Boyett J.M., Hancock M.L., Raimondi S.C., Rubnitz J.E., Rivera G.K., Sandlund J.T., Pui C.H., et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351:550–554. doi: 10.1016/S0140-6736(97)10295-1. PubMed DOI
Hunger S.P., Mullighan C.G. Acute Lymphoblastic Leukemia in Children. N. Engl. J. Med. 2015;373:1541–1552. doi: 10.1056/NEJMra1400972. PubMed DOI
Van der Velden V.H., Corral L., Valsecchi M.G., Jansen M.W., De Lorenzo P., Cazzaniga G., Panzer-Grumayer E.R., Schrappe M., Schrauder A., Meyer C., et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia. 2009;23:1073–1079. doi: 10.1038/leu.2009.17. PubMed DOI
Van Dongen J.J., Seriu T., Panzer-Grumayer E.R., Biondi A., Pongers-Willemse M.J., Corral L., Stolz F., Schrappe M., Masera G., Kamps W.A., et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352:1731–1738. doi: 10.1016/S0140-6736(98)04058-6. PubMed DOI
Borowitz M.J., Wood B.L., Devidas M., Loh M.L., Raetz E.A., Salzer W.L., Nachman J.B., Carroll A.J., Heerema N.A., Gastier-Foster J.M., et al. Prognostic significance of minimal residual disease in high risk B-ALL: A report from Children’s Oncology Group study AALL0232. Blood. 2015;126:964–971. doi: 10.1182/blood-2015-03-633685. PubMed DOI PMC
Ravandi F., Jorgensen J.L., O’Brien S.M., Jabbour E., Thomas D.A., Borthakur G., Garris R., Huang X., Garcia-Manero G., Burger J.A., et al. Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br. J. Haematol. 2016;172:392–400. doi: 10.1111/bjh.13834. PubMed DOI PMC
Weng X.Q., Shen Y., Sheng Y., Chen B., Wang J.H., Li J.M., Mi J.Q., Chen Q.S., Zhu Y.M., Jiang C.L., et al. Prognostic significance of monitoring leukemia-associated immunophenotypes by eight-color flow cytometry in adult B-acute lymphoblastic leukemia. Blood Cancer J. 2013;3:e133. doi: 10.1038/bcj.2013.31. PubMed DOI PMC
Modvig S., Hallbook H., Madsen H.O., Siitonen S., Rosthoj S., Tierens A., Juvonen V., Osnes L.T.N., Valerhaugen H., Hultdin M., et al. Value of flow cytometry for MRD-based relapse prediction in B-cell precursor ALL in a multicenter setting. Leukemia. 2021;35:1894–1906. doi: 10.1038/s41375-020-01100-5. PubMed DOI PMC
Pui C.H., Pei D., Coustan-Smith E., Jeha S., Cheng C., Bowman W.P., Sandlund J.T., Ribeiro R.C., Rubnitz J.E., Inaba H., et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: A prospective study. Lancet. Oncol. 2015;16:465–474. doi: 10.1016/S1470-2045(15)70082-3. PubMed DOI PMC
Jung M., Schieck M., Hofmann W., Tauscher M., Lentes J., Bergmann A., Stelter M., Moricke A., Alten J., Schlegelberger B., et al. Frequency and prognostic impact of PAX5 p.P80R in pediatric acute lymphoblastic leukemia patients treated on an AIEOP-BFM acute lymphoblastic leukemia protocol. Genes Chromosomes Cancer. 2020;59:667–671. doi: 10.1002/gcc.22882. PubMed DOI PMC
Olsson L., Ivanov Ofverholm I., Noren-Nystrom U., Zachariadis V., Nordlund J., Sjogren H., Golovleva I., Nordgren A., Paulsson K., Heyman M., et al. The clinical impact of IKZF1 deletions in paediatric B-cell precursor acute lymphoblastic leukaemia is independent of minimal residual disease stratification in Nordic Society for Paediatric Haematology and Oncology treatment protocols used between 1992 and 2013. Br. J. Haematol. 2015;170:847–858. doi: 10.1111/bjh.13514. PubMed DOI
Gronroos T., Makinen A., Laukkanen S., Mehtonen J., Nikkila A., Oksa L., Rounioja S., Marincevic-Zuniga Y., Nordlund J., Pohjolainen V., et al. Clinicopathological features and prognostic value of SOX11 in childhood acute lymphoblastic leukemia. Sci. Rep. 2020;10:2043. doi: 10.1038/s41598-020-58970-z. PubMed DOI PMC
Wu L., Jiang M., Yu P., Li J., Ouyang W., Feng C., Zhao W.L., Dai Y., Huang J. Single-Cell Transcriptome Analysis Identifies Ligand-Receptor Pairs Associated With BCP-ALL Prognosis. Front. Oncol. 2021;11:639013. doi: 10.3389/fonc.2021.639013. PubMed DOI PMC
Cui L., Gao C., Wang C.J., Zhao X.X., Li W.J., Li Z.G., Zheng H.Y., Wang T.Y., Zhang R.D. Combined analysis of IKZF1 deletions and CRLF2 expression on prognostic impact in pediatric B-cell precursor acute lymphoblastic leukemia. Leuk. Lymphoma. 2021;62:410–418. doi: 10.1080/10428194.2020.1832668. PubMed DOI
Conter V., Bartram C.R., Valsecchi M.G., Schrauder A., Panzer-Grumayer R., Moricke A., Arico M., Zimmermann M., Mann G., De Rossi G., et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: Results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–3214. doi: 10.1182/blood-2009-10-248146. PubMed DOI
Popov A., Buldini B., De Lorenzo P., Disaro S., Verzhbitskaya T., Movchan L., Giarin E., Shorikov E., Di Meglio A., Tsaur G., et al. Prognostic value of minimal residual disease measured by flow-cytometry in two cohorts of infants with acute lymphoblastic leukemia treated according to either MLL-Baby or Interfant protocols. Leukemia. 2020;34:3042–3046. doi: 10.1038/s41375-020-0912-z. PubMed DOI
Dias S., Choy M., Alitalo K., Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood. 2002;99:2179–2184. doi: 10.1182/blood.V99.6.2179. PubMed DOI
Poulos M.G., Gars E.J., Gutkin M.C., Kloss C.C., Ginsberg M., Scandura J.M., Rafii S., Butler J.M. Activation of the vascular niche supports leukemic progression and resistance to chemotherapy. Exp. Hematol. 2014;42:976–986.e3. doi: 10.1016/j.exphem.2014.08.003. PubMed DOI PMC
Hanoun M., Zhang D., Mizoguchi T., Pinho S., Pierce H., Kunisaki Y., Lacombe J., Armstrong S.A., Duhrsen U., Frenette P.S. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell. 2014;15:365–375. doi: 10.1016/j.stem.2014.06.020. PubMed DOI PMC
Arranz L., Sanchez-Aguilera A., Martin-Perez D., Isern J., Langa X., Tzankov A., Lundberg P., Muntion S., Tzeng Y.S., Lai D.M., et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512:78–81. doi: 10.1038/nature13383. PubMed DOI
Pezeshkian B., Donnelly C., Tamburo K., Geddes T., Madlambayan G.J. Leukemia Mediated Endothelial Cell Activation Modulates Leukemia Cell Susceptibility to Chemotherapy through a Positive Feedback Loop Mechanism. PLoS ONE. 2013;8:e60823. doi: 10.1371/journal.pone.0060823. PubMed DOI PMC