Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: results from a phase II trial
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu klinické zkoušky, fáze II, časopisecké články, práce podpořená grantem
PubMed
35468945
PubMed Central
PMC9162924
DOI
10.1038/s41375-022-01576-3
PII: 10.1038/s41375-022-01576-3
Knihovny.cz E-zdroje
- MeSH
- akutní lymfatická leukemie * farmakoterapie MeSH
- akutní nemoc MeSH
- dítě MeSH
- doba přežití bez progrese choroby MeSH
- inotuzumab ozogamicin MeSH
- kalicheamiciny * MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze II MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inotuzumab ozogamicin MeSH
- kalicheamiciny * MeSH
Inotuzumab Ozogamicin is a CD22-directed antibody conjugated to calicheamicin, approved in adults with relapsed or refractory (R/R) B cell acute lymphoblastic leukemia (BCP-ALL). Patients aged 1-18 years, with R/R CD22 + BCP-ALL were treated at the RP2D of 1.8 mg/m2. Using a single-stage design, with an overall response rate (ORR) ≤ 30% defined as not promissing and ORR > 55% as expected, 25 patients needed to be recruited to achieve 80% power at 0.05 significance level. Thirty-two patients were enrolled, 28 were treated, 27 were evaluable for response. The estimated ORR was 81.5% (95%CI: 61.9-93.7%), and 81.8% (18/22) of the responding subjects were minimal residual disease (MRD) negative. The study met its primary endpoint. Median follow up of survivors was 16 months (IQR: 14.49-20.07). One year Event Free Survival was 36.7% (95% CI: 22.2-60.4%), and Overall Survival was 55.1% (95% CI: 39.1-77.7%). Eighteen patients received consolidation (with HSCT and/or CAR T-cells therapy). Sinusoidal obstructive syndrome (SOS) occurred in seven patients. MRD negativity seemed correlated to calicheamicin sensitivity in vitro, but not to CD22 surface expression, saturation, or internalization. InO was effective in this population. The most relevant risk was the occurrence of SOS, particularly when InO treatment was followed by HSCT.
Department of Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
Department of Pediatric Hematology and Oncology University Hospital Motol Prague Czech Republic
Department of Pediatric Oncology and Hematology Hospital Niño Jesús Madrid Spain
Department of Pediatric Oncology Erasmus MC Sophia Children's Hospital Rotterdam the Netherlands
Department of Pediatric Oncology Essen University Hospital Essen Germany
Department of Pediatrics Rostock University Medical Centre Rostock Germany
Division of Pediatric Hematology and Oncology Sheba Medical Center Ramat Gan Israel
Institut de Recerca Sant Joan de Déu Barcelona Spain
IntReALL study group Berlin Germany
Oncode Institute Utrecht the Netherlands
Pediatric Hematology and Oncology University Children's Hospital Muenster Münster Germany
Pediatric Hematology Hôpital Jeanne de Flandre CHRU de Lille Lille France
Pediatric Oncology and Hematology Department Hospital Sant Joan de Déu de Barcelona Barcelona Spain
Princess Máxima Center for Pediatric Oncology Utrecht the Netherlands
Service d'Hématologie Immunologie Oncologie Hôpital des Enfants CHU Toulouse Toulouse France
Service Onco Hématologie Pédiatrique Hôpital Mère Enfant Nantes University Hospital Nantes France
St Anna Children's Hospital Medical University of Vienna Vienna Austria
Zobrazit více v PubMed
Henze G, Stackelberg A V, Eckert C ALL-REZ BFM–The consecutive trials for children with relapsed acute lymphoblastic leukemia. Klin Padiatr. 2013;225:S73–8 (Supplement 1). PubMed
Möricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24:265–84. doi: 10.1038/leu.2009.257. PubMed DOI
Oskarsson T, Söderhäll S, Arvidson J, Forestier E, Montgomery S, Bottai M, et al. Relapsed childhood acute lymphoblastic leukemia in the Nordic countries: prognostic factors, treatment and outcome. Haematologica. 2016;101:68–76. doi: 10.3324/haematol.2015.131680. PubMed DOI PMC
Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet. 2010;376:2009–17. doi: 10.1016/S0140-6736(10)62002-8. PubMed DOI PMC
Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol. 2010;28:648–54. doi: 10.1200/JCO.2009.22.2950. PubMed DOI PMC
Mejstríková E, Hrusak O, Borowitz MJ, Whitlock JA, Brethon B, Trippett TM, et al. CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment. Blood Cancer J. 2017;7:659. PubMed PMC
Dourthe ME, Rabian F, Yakouben K, Chevillon F, Cabannes-Hamy A, Méchinaud F, et al. Determinants of CD19-positive vs CD19-negative relapse after tisagenlecleucel for B-cell acute lymphoblastic leukemia. Leukemia. 2021;35:3383–93. PubMed
DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, et al. Antibody-targeted chemotherapy with CMC-544: A CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103:1807–14. doi: 10.1182/blood-2003-07-2466. PubMed DOI
De Vries JF, Zwaan CM, De Bie M, Voerman JSA, Den Boer ML, Van, et al. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia. 2012;26:255–64. doi: 10.1038/leu.2011.206. PubMed DOI
Kantarjian HM, DeAngelo DJ, Stelljes M, Liedtke M, Stock W, Gökbuget N, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125:2474–87. doi: 10.1002/cncr.32116. PubMed DOI PMC
Lanza F, Maffini E, Rondoni M, Massari E, Faini AC, Malavasi F. CD22 expression in b-cell acute lymphoblastic leukemia: Biological significance and implications for inotuzumab therapy in adults. 12, Cancers. MDPI AG; 2020;12:303. PubMed PMC
Iwamoto S, Deguchi T, Ohta H, Kiyokawa N, Tsurusawa M, Yamada T, et al. Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: Report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol. 2011;94:185–92. doi: 10.1007/s12185-011-0900-1. PubMed DOI
Shah NN, Stevenson MS, Yuan CM, Richards K, Delbrook C, Kreitman RJ, et al. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62:964–9. doi: 10.1002/pbc.25410. PubMed DOI PMC
Bhojwani D, Sposto R, Shah NN, Rodriguez V, Yuan C, Stetler-Stevenson M, et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia. 2019;33:884–92. doi: 10.1038/s41375-018-0265-z. PubMed DOI PMC
Calvo C, Cabannes-Hamy A, Adjaoud D, Bruno B, Blanc L, Boissel N, et al. Inotuzumab ozogamicin compassionate use for French paediatric patients with relapsed or refractory CD22-positive B-cell acute lymphoblastic leukaemia. 190, British Journal of Haematology. Blackwell Publishing Ltd; 2020. p. e53–6. PubMed
Brivio E, Locatelli F, Lopez-Yurda M, Malone A, Diaz de Heredia C, Bielorai B, et al. A Phase I study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood. 2020;137:1582–90. PubMed PMC
O’Brien MM, Ji L, Shah NN, Rheingold SR, Bhojwani D, Yuan CM, et al. Phase II Trial of Inotuzumab Ozogamicin in Children and Adolescents With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia: Children’s Oncology Group Protocol AALL1621. J Clin Oncol. 2022;40:956–67. PubMed PMC
Lamba JK, Chauhan L, Shin M, Loken MR, Pollard JA, Wang YC, et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: Report from randomized phase III children’s oncology group trial AAML0531. J Clin Oncol. 2017;35:674–2682. doi: 10.1200/JCO.2016.71.2513. PubMed DOI PMC
Zhao Y, Aldoss I, Qu C, Crawford JC, Gu Z, Allen EK, et al. Tumor-intrinsic and -extrinsic determinants of response to blinatumomab in adults with B-ALL. Blood. 2021;137:471–84. doi: 10.1182/blood.2020006287. PubMed DOI PMC
Rafei H, Kantarjian HM, Sasaki K, Short NG, Ravandi F, Huang X, et al. CD22 Expression Level As a Predictor of Survival in Patients (Pts) with Relapsed/Refractory (R-R) Acute Lymphoblastic Leukemia (ALL) Treated with Inotuzumab Ozogamicin (INO) in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) with or without Blinatumomab: Results from a Phase 2 Study. ASH; 2020;136:23–5 (Supplement 1, 5).
Theunissen P, Mejstrikova E, Sedek L, van der Sluijs-Gelling AJ, Gaipa G, Bartels M, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129:347–57. doi: 10.1182/blood-2016-07-726307. PubMed DOI PMC
van der Velden VH, Panzer-Grümayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A, et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia. 2007;21:706–13. doi: 10.1038/sj.leu.2404535. PubMed DOI
Zwaan CM, Kaspers GJL, Pieters R, Ramakers-Van Woerden NL, Den Boer ML, Wunsche R, et al. Cellular drug resistance profiles in childhood acute myeloid leukemia: differences between FAB types and comparison with acute lymphoblastic leukemia. Blood. 2000;96:2879–86. PubMed
Corbacioglu S, Carreras E, Ansari M, Balduzzi A, Cesaro S, Dalle JH, et al. Diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in pediatric patients: a new classification from the European society for blood and marrow transplantation. Bone Marrow Transpl. 2018;53:138–45. doi: 10.1038/bmt.2017.161. PubMed DOI PMC
Uckun FM, Goodman P, Ma H, Dibirdik I, Qazi S. CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia. Proc Natl Acad Sci USA. 2010;107:16852–7. doi: 10.1073/pnas.1007896107. PubMed DOI PMC
Garrett M, Ruiz-Garcia A, Parivar K, Hee B, Boni J. Population pharmacokinetics of inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin lymphoma. J Pharmacokinet Pharmacodyn. 2019;46:211–22. doi: 10.1007/s10928-018-9614-9. PubMed DOI PMC
Zwaan CM, Reinhardt D, Jürgens H, Huismans DR, Hählen K, Smith OP, et al. Gemtuzumab ozogamicin in pediatric CD33-positive acute lymphoblastic leukemia: First clinical experiences and relation with cellular sensitivity to single agent calicheamicin [5] Leuk Nat Publ Group. 2003;17:468–70. PubMed
Walter RB, Gooley TA, van der Velden VH, Loken MR, van Dongen JJ, Flowers DA, et al. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007;109:4168–70. doi: 10.1182/blood-2006-09-047399. PubMed DOI PMC
Shah NN, Highfill SL, Shalabi H, Yates B, Jin J, Wolters PL, et al. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and toxicity: updated results from a phase I Anti-CD22 CAR T-Cell Trial. J Clin Oncol. 2020;38:1938–50. doi: 10.1200/JCO.19.03279. PubMed DOI PMC
Zheng S, Gillespie E, Naqvi AS, Hayer KE, Ang Z, Torres-Diz M, et al. Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: implications for CD22-directed immunotherapies. Blood Cancer Discov. 2021;3:103–15. PubMed PMC
Prokop A, Wrasidlo W, Lode H, Herold R, Lang F, Henze G, et al. Induction of apoptosis by enediyne antibiotic calicheamicin ϑII proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner. Oncogene. 2003;22:9107–20. doi: 10.1038/sj.onc.1207196. PubMed DOI
Godwin CD, Bates OM, Jean SR, Laszlo GS, Garling EE, Beddoe ME, et al. Anti-apoptotic BCL-2 family proteins confer resistance to calicheamicin-based antibody-drug conjugate therapy of acute leukemia. 2020;61:2990–4. 10.1080/1042819420201786553. PubMed PMC