Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: results from a phase II trial

. 2022 Jun ; 36 (6) : 1516-1524. [epub] 20220425

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu klinické zkoušky, fáze II, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35468945
Odkazy

PubMed 35468945
PubMed Central PMC9162924
DOI 10.1038/s41375-022-01576-3
PII: 10.1038/s41375-022-01576-3
Knihovny.cz E-zdroje

Inotuzumab Ozogamicin is a CD22-directed antibody conjugated to calicheamicin, approved in adults with relapsed or refractory (R/R) B cell acute lymphoblastic leukemia (BCP-ALL). Patients aged 1-18 years, with R/R CD22 + BCP-ALL were treated at the RP2D of 1.8 mg/m2. Using a single-stage design, with an overall response rate (ORR) ≤ 30% defined as not promissing and ORR > 55% as expected, 25 patients needed to be recruited to achieve 80% power at 0.05 significance level. Thirty-two patients were enrolled, 28 were treated, 27 were evaluable for response. The estimated ORR was 81.5% (95%CI: 61.9-93.7%), and 81.8% (18/22) of the responding subjects were minimal residual disease (MRD) negative. The study met its primary endpoint. Median follow up of survivors was 16 months (IQR: 14.49-20.07). One year Event Free Survival was 36.7% (95% CI: 22.2-60.4%), and Overall Survival was 55.1% (95% CI: 39.1-77.7%). Eighteen patients received consolidation (with HSCT and/or CAR T-cells therapy). Sinusoidal obstructive syndrome (SOS) occurred in seven patients. MRD negativity seemed correlated to calicheamicin sensitivity in vitro, but not to CD22 surface expression, saturation, or internalization. InO was effective in this population. The most relevant risk was the occurrence of SOS, particularly when InO treatment was followed by HSCT.

Department of Clinical Genetics Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands

Department of Hematology Oncology and of Cell and Gene Therapy IRCCS Ospedale Pediatrico Bambino Gesú Sapienza University of Rome Rome Italy

Department of Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands

Department of pediatric Hematology and Oncology Hopital Armand Trousseau APHP Sorbonne Université Paris France

Department of Pediatric Hematology and Oncology University Hospital Motol Prague Czech Republic

Department of Pediatric Oncology and Hematology Hospital Niño Jesús Madrid Spain

Department of Pediatric Oncology Erasmus MC Sophia Children's Hospital Rotterdam the Netherlands

Department of Pediatric Oncology Essen University Hospital Essen Germany

Department of Pediatrics Division of Oncology and Hematology Charité Universitätsmedizin Berlin Berlin Germany

Department of Pediatrics Rostock University Medical Centre Rostock Germany

Division of Pediatric Hematology and Oncology Sheba Medical Center Ramat Gan Israel

Institut de Recerca Sant Joan de Déu Barcelona Spain

Institute of Pediatric Hematology and Oncology Civil Hospital of Lyon Claude Bernard University Lyon France

IntReALL study group Berlin Germany

Oncode Institute Utrecht the Netherlands

Pediatric Hematology and Oncology University Children's Hospital Muenster Münster Germany

Pediatric Hematology Hôpital Jeanne de Flandre CHRU de Lille Lille France

Pediatric Hematology Oncology Unit Department of Pediatrics MBBM Foundation ASST Monza University of Milano Bicocca Monza Italy

Pediatric Oncology and Hematology Department Hospital Sant Joan de Déu de Barcelona Barcelona Spain

Pfizer Inc Groton CT USA

Princess Máxima Center for Pediatric Oncology Utrecht the Netherlands

Service d'Hématologie Immunologie Oncologie Hôpital des Enfants CHU Toulouse Toulouse France

Service Onco Hématologie Pédiatrique Hôpital Mère Enfant Nantes University Hospital Nantes France

St Anna Children's Hospital Medical University of Vienna Vienna Austria

Zobrazit více v PubMed

Henze G, Stackelberg A V, Eckert C ALL-REZ BFM–The consecutive trials for children with relapsed acute lymphoblastic leukemia. Klin Padiatr. 2013;225:S73–8 (Supplement 1). PubMed

Möricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24:265–84. doi: 10.1038/leu.2009.257. PubMed DOI

Oskarsson T, Söderhäll S, Arvidson J, Forestier E, Montgomery S, Bottai M, et al. Relapsed childhood acute lymphoblastic leukemia in the Nordic countries: prognostic factors, treatment and outcome. Haematologica. 2016;101:68–76. doi: 10.3324/haematol.2015.131680. PubMed DOI PMC

Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet. 2010;376:2009–17. doi: 10.1016/S0140-6736(10)62002-8. PubMed DOI PMC

Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol. 2010;28:648–54. doi: 10.1200/JCO.2009.22.2950. PubMed DOI PMC

Mejstríková E, Hrusak O, Borowitz MJ, Whitlock JA, Brethon B, Trippett TM, et al. CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment. Blood Cancer J. 2017;7:659. PubMed PMC

Dourthe ME, Rabian F, Yakouben K, Chevillon F, Cabannes-Hamy A, Méchinaud F, et al. Determinants of CD19-positive vs CD19-negative relapse after tisagenlecleucel for B-cell acute lymphoblastic leukemia. Leukemia. 2021;35:3383–93. PubMed

DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, et al. Antibody-targeted chemotherapy with CMC-544: A CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103:1807–14. doi: 10.1182/blood-2003-07-2466. PubMed DOI

De Vries JF, Zwaan CM, De Bie M, Voerman JSA, Den Boer ML, Van, et al. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia. 2012;26:255–64. doi: 10.1038/leu.2011.206. PubMed DOI

Kantarjian HM, DeAngelo DJ, Stelljes M, Liedtke M, Stock W, Gökbuget N, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125:2474–87. doi: 10.1002/cncr.32116. PubMed DOI PMC

Lanza F, Maffini E, Rondoni M, Massari E, Faini AC, Malavasi F. CD22 expression in b-cell acute lymphoblastic leukemia: Biological significance and implications for inotuzumab therapy in adults. 12, Cancers. MDPI AG; 2020;12:303. PubMed PMC

Iwamoto S, Deguchi T, Ohta H, Kiyokawa N, Tsurusawa M, Yamada T, et al. Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: Report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol. 2011;94:185–92. doi: 10.1007/s12185-011-0900-1. PubMed DOI

Shah NN, Stevenson MS, Yuan CM, Richards K, Delbrook C, Kreitman RJ, et al. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62:964–9. doi: 10.1002/pbc.25410. PubMed DOI PMC

Bhojwani D, Sposto R, Shah NN, Rodriguez V, Yuan C, Stetler-Stevenson M, et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia. 2019;33:884–92. doi: 10.1038/s41375-018-0265-z. PubMed DOI PMC

Calvo C, Cabannes-Hamy A, Adjaoud D, Bruno B, Blanc L, Boissel N, et al. Inotuzumab ozogamicin compassionate use for French paediatric patients with relapsed or refractory CD22-positive B-cell acute lymphoblastic leukaemia. 190, British Journal of Haematology. Blackwell Publishing Ltd; 2020. p. e53–6. PubMed

Brivio E, Locatelli F, Lopez-Yurda M, Malone A, Diaz de Heredia C, Bielorai B, et al. A Phase I study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood. 2020;137:1582–90. PubMed PMC

O’Brien MM, Ji L, Shah NN, Rheingold SR, Bhojwani D, Yuan CM, et al. Phase II Trial of Inotuzumab Ozogamicin in Children and Adolescents With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia: Children’s Oncology Group Protocol AALL1621. J Clin Oncol. 2022;40:956–67. PubMed PMC

Lamba JK, Chauhan L, Shin M, Loken MR, Pollard JA, Wang YC, et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: Report from randomized phase III children’s oncology group trial AAML0531. J Clin Oncol. 2017;35:674–2682. doi: 10.1200/JCO.2016.71.2513. PubMed DOI PMC

Zhao Y, Aldoss I, Qu C, Crawford JC, Gu Z, Allen EK, et al. Tumor-intrinsic and -extrinsic determinants of response to blinatumomab in adults with B-ALL. Blood. 2021;137:471–84. doi: 10.1182/blood.2020006287. PubMed DOI PMC

Rafei H, Kantarjian HM, Sasaki K, Short NG, Ravandi F, Huang X, et al. CD22 Expression Level As a Predictor of Survival in Patients (Pts) with Relapsed/Refractory (R-R) Acute Lymphoblastic Leukemia (ALL) Treated with Inotuzumab Ozogamicin (INO) in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) with or without Blinatumomab: Results from a Phase 2 Study. ASH; 2020;136:23–5 (Supplement 1, 5).

Theunissen P, Mejstrikova E, Sedek L, van der Sluijs-Gelling AJ, Gaipa G, Bartels M, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129:347–57. doi: 10.1182/blood-2016-07-726307. PubMed DOI PMC

van der Velden VH, Panzer-Grümayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A, et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia. 2007;21:706–13. doi: 10.1038/sj.leu.2404535. PubMed DOI

Zwaan CM, Kaspers GJL, Pieters R, Ramakers-Van Woerden NL, Den Boer ML, Wunsche R, et al. Cellular drug resistance profiles in childhood acute myeloid leukemia: differences between FAB types and comparison with acute lymphoblastic leukemia. Blood. 2000;96:2879–86. PubMed

Corbacioglu S, Carreras E, Ansari M, Balduzzi A, Cesaro S, Dalle JH, et al. Diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in pediatric patients: a new classification from the European society for blood and marrow transplantation. Bone Marrow Transpl. 2018;53:138–45. doi: 10.1038/bmt.2017.161. PubMed DOI PMC

Uckun FM, Goodman P, Ma H, Dibirdik I, Qazi S. CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia. Proc Natl Acad Sci USA. 2010;107:16852–7. doi: 10.1073/pnas.1007896107. PubMed DOI PMC

Garrett M, Ruiz-Garcia A, Parivar K, Hee B, Boni J. Population pharmacokinetics of inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin lymphoma. J Pharmacokinet Pharmacodyn. 2019;46:211–22. doi: 10.1007/s10928-018-9614-9. PubMed DOI PMC

Zwaan CM, Reinhardt D, Jürgens H, Huismans DR, Hählen K, Smith OP, et al. Gemtuzumab ozogamicin in pediatric CD33-positive acute lymphoblastic leukemia: First clinical experiences and relation with cellular sensitivity to single agent calicheamicin [5] Leuk Nat Publ Group. 2003;17:468–70. PubMed

Walter RB, Gooley TA, van der Velden VH, Loken MR, van Dongen JJ, Flowers DA, et al. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007;109:4168–70. doi: 10.1182/blood-2006-09-047399. PubMed DOI PMC

Shah NN, Highfill SL, Shalabi H, Yates B, Jin J, Wolters PL, et al. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and toxicity: updated results from a phase I Anti-CD22 CAR T-Cell Trial. J Clin Oncol. 2020;38:1938–50. doi: 10.1200/JCO.19.03279. PubMed DOI PMC

Zheng S, Gillespie E, Naqvi AS, Hayer KE, Ang Z, Torres-Diz M, et al. Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: implications for CD22-directed immunotherapies. Blood Cancer Discov. 2021;3:103–15. PubMed PMC

Prokop A, Wrasidlo W, Lode H, Herold R, Lang F, Henze G, et al. Induction of apoptosis by enediyne antibiotic calicheamicin ϑII proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner. Oncogene. 2003;22:9107–20. doi: 10.1038/sj.onc.1207196. PubMed DOI

Godwin CD, Bates OM, Jean SR, Laszlo GS, Garling EE, Beddoe ME, et al. Anti-apoptotic BCL-2 family proteins confer resistance to calicheamicin-based antibody-drug conjugate therapy of acute leukemia. 2020;61:2990–4. 10.1080/1042819420201786553. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...