Tryptophan Metabolism, Inflammation, and Oxidative Stress in Patients with Neurovascular Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-08-00149
Czech health research council
CZ.02.1.01/0.0/0.0/16_025/0007428, OP RDE
European Regional Development Fund and the state budget of the Czech Republic
00023736
Project of the Ministry of Health, Czech Republic
1011
Long-term organization development plan, Faculty of Military Health Sciences, Hradec Kralove
PubMed
32438592
PubMed Central
PMC7281607
DOI
10.3390/metabo10050208
PII: metabo10050208
Knihovny.cz E-zdroje
- Klíčová slova
- acute ischemic stroke, atherosclerosis, carotid artery stenosis, inflammation, oxidative stress, tryptophan metabolism,
- Publikační typ
- časopisecké články MeSH
Atherosclerosis is a leading cause of major vascular events, myocardial infarction, and ischemic stroke. Tryptophan (TRP) catabolism was recognized as an important player in inflammation and immune response having together with oxidative stress (OS) significant effects on each phase of atherosclerosis. The aim of the study is to analyze the relationship of plasma levels of TRP metabolites, inflammation, and OS in patients with neurovascular diseases (acute ischemic stroke (AIS), significant carotid artery stenosis (SCAS)) and in healthy controls. Blood samples were collected from 43 patients (25 with SCAS, 18 with AIS) and from 25 healthy controls. The concentrations of twelve TRP metabolites, riboflavin, neopterin (NEO, marker of inflammation), and malondialdehyde (MDA, marker of OS) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Concentrations of seven TRP metabolites (TRP, kynurenine (KYN), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), anthranilic acid (AA), melatonin (MEL), tryptamine (TA)), NEO, and MDA were significantly different in the studied groups. Significantly lower concentrations of TRP, KYN, 3-HAA, MEL, TA, and higher MDA concentrations were found in AIS compared to SCAS patients. MDA concentration was higher in both AIS and SCAS group (p < 0.001, p = 0.004, respectively) compared to controls, NEO concentration was enhanced (p < 0.003) in AIS. MDA did not directly correlate with TRP metabolites in the study groups, except for 1) a negative correlation with kynurenine acid and 2) the activity of kynurenine aminotransferase in AIS patients (r = -0.552, p = 0.018; r = -0.504, p = 0.033, respectively). In summary, TRP metabolism is clearly more deregulated in AIS compared to SCAS patients; the effect of TRP metabolites on OS should be further elucidated.
Department of Biochemistry Institute of Hematology and Blood Transfusion 12820 Prague Czech Republic
Zobrazit více v PubMed
Wolf D., Ley K. Immunity and inflammation in atherosclerosis. Circ. Res. 2019;124:315–327. doi: 10.1161/CIRCRESAHA.118.313591. PubMed DOI PMC
Fatkhullina A.R., Peshkova I.O., Koltsova E.K. The Role of Cytokines in the Development of Atherosclerosis. Biochemistry. 2016;81:1358–1370. doi: 10.1134/S0006297916110134. PubMed DOI PMC
Forrester S.J., Kikuchi D.S., Hernandes M.S., Xu Q., Griendling K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018;122:877–902. doi: 10.1161/CIRCRESAHA.117.311401. PubMed DOI PMC
Miteva K., Madonna R., De Caterina R., Van Linthout S. Innate and adaptive immunity in atherosclerosis. Vascul. Pharmacol. 2018;107:67–77. doi: 10.1016/j.vph.2018.04.006. PubMed DOI
Kattoor A.J., Pothineni N.V.K., Palagiri D., Mehta J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017;19:42. doi: 10.1007/s11883-017-0678-6. PubMed DOI
Capuron L., Geisler S., Kurz K., Leblhuber F., Sperner-Unterweger B., Fuchs D. Activated immune system and inflammation in healthy ageing: Relevance for tryptophan and neopterin metabolism. Curr. Pharm. Des. 2014;20:6048–6057. doi: 10.2174/1381612820666140317110217. PubMed DOI
Cervenka I., Agudelo L.Z., Ruas J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794. doi: 10.1126/science.aaf9794. PubMed DOI
Platten M., Nollen E.A.A., Röhrig U.F., Fallarino F., Opitz C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019;18:379–401. doi: 10.1038/s41573-019-0016-5. PubMed DOI
Baumgartner R., Forteza M.J., Ketelhuth D.F.J. The interplay between cytokines and the kynurenine pathway in inflammation and atherosclerosis. Cytokine. 2019;122:154148. doi: 10.1016/j.cyto.2017.09.004. PubMed DOI
Wu H., Gong J., Liu Y. Indoleamine 2, 3-dioxygenase regulation of immune response (Review) Mol. Med. Rep. 2018;17:4867–4873. doi: 10.3892/mmr.2018.8537. PubMed DOI
Coletti A., Greco F.A., Dolciami D., Camaioni E., Sardella R., Pallotta M.T., Volpi C., Orabona C., Grohmann U., Macchiarulo A. Advances in indoleamine 2,3-dioxygenase 1 medicinal chemistry. MedChemComm. 2017;8:1378–1392. doi: 10.1039/C7MD00109F. PubMed DOI PMC
Badawy A.A. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int. J. Tryptophan Res. 2017;10:1178646917691938. doi: 10.1177/1178646917691938. PubMed DOI PMC
Larkin P.B., Sathyasaikumar K.V., Notarangelo F.M., Funakoshi H., Nakamura T., Schwarcz R., Muchowski P.J. Tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase 1 make separate, tissue-specific contributions to basal and inflammation-induced kynurenine pathway metabolism in mice. Biochim. Biophys. Acta. 2016;1860:2345–2354. doi: 10.1016/j.bbagen.2016.07.002. PubMed DOI PMC
Murr C., Widner B., Wirleitner B., Fuchs D. Neopterin as a marker for immune system activation. Curr. Drug Metab. 2002;3:175–187. doi: 10.2174/1389200024605082. PubMed DOI
Zuo H., Ueland P.M., Ulvik A., Eussen S.J., Vollset S.E., Nygård O., Midttun Ø., Theofylaktopoulou D., Meyer K., Tell G.S. Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: The Hordaland Health Study. Am. J. Epidemiol. 2016;183:249–258. doi: 10.1093/aje/kwv242. PubMed DOI PMC
Badawy A.A., Guillemin G. The plasma [kynurenine]/[tryptophan] ratio and indoleamine 2,3-dioxygenase: Time for appraisal. Int. J. Tryptophan Res. 2019;12:1178646919868978. doi: 10.1177/1178646919868978. PubMed DOI PMC
Badawy A.A., Dougherty D.M. Assessment of the human kynurenine pathway: Comparisons and clinical implications of ethnic and gender differences in plasma tryptophan, kynurenine metabolites, and enzyme expressions at baseline and after acute tryptophan loading and depletion. Int. J. Tryptophan Res. 2016;9:31–49. doi: 10.4137/IJTR.S38189. PubMed DOI PMC
Theofylaktopoulou D., Ulvik A., Midttun O., Ueland P.M., Vollset S.E., Nygard O., Hustad S., Tell G.S., Eussen S.J. Vitamins B2 and B6 as determinants of kynurenines and related markers of interferon-gamma-mediated immune activation in the community-based Hordaland Health Study. Br. J. Nutr. 2014;112:1065–1072. doi: 10.1017/S0007114514001858. PubMed DOI
Majewski M., Kozlowska A., Thoene M., Lepiarczyk E., Grzegorzewski W.J. Overview of the role of vitamins and minerals on the kynurenine pathway in health and disease. J. Physiol. Pharmacol. 2016;67:3–19. PubMed
Jadavji N.M., Emmerson J.T., MacFarlane A.J., Willmore W.G., Smith P.D. B-vitamin and choline supplementation increases neuroplasticity and recovery after stroke. Neurobiol. Dis. 2017;103:89–100. doi: 10.1016/j.nbd.2017.04.001. PubMed DOI
Spence J.D. Nutrition and risk of stroke. Nutrients. 2019;11:647. doi: 10.3390/nu11030647. PubMed DOI PMC
Lovelace M.D., Varney B., Sundaram G., Lennon M.J., Lim C.K., Jacobs K., Guillemin G.J., Brew B.J. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology. 2017;112:373–388. doi: 10.1016/j.neuropharm.2016.03.024. PubMed DOI
Song P., Ramprasath T., Wang H., Zou M.H. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell Mol. Life Sci. 2017;74:2899–2916. doi: 10.1007/s00018-017-2504-2. PubMed DOI PMC
Colpo G.D., Venna V.R., McCullough L.D., Teixeira A.L. Systematic review on the involvement of the kynurenine pathway in stroke: Pre-clinical and clinical evidence. Front. Neurol. 2019;10:778. doi: 10.3389/fneur.2019.00778. PubMed DOI PMC
Flaherty M.L., Kissela B., Khoury J.C., Alwell K., Moomaw C.J., Woo D., Khatri P., Ferioli S., Adeoye O., Broderick J.P., et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology. 2013;40:36–41. doi: 10.1159/000341410. PubMed DOI PMC
Elhfnawy A.M., Volkmann J., Schliesser M., Fluri F. Symptomatic vs. asymptomatic 20-40% internal carotid artery stenosis: Does the plaque size matter. Front. Neurol. 2019;10:960. doi: 10.3389/fneur.2019.00960. PubMed DOI PMC
Wang Q., Liu D., Song P., Zou M.H. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front. Biosci. 2015;20:1116–1143. PubMed PMC
Sallée M., Dou L., Cerini C., Poitevin S., Brunet P., Burtey S. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: A new concept to understand cardiovascular complications of chronic kidney disease. Toxins. 2014;6:934–949. PubMed PMC
Shinde R., McGaha T.L. The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends Immunol. 2018;39:1005–1020. doi: 10.1016/j.it.2018.10.010. PubMed DOI PMC
Cuartero M.I., Ballesteros I., de la Parra J., Harkin A.L., Abautret-Daly A., Sherwin E., Fernández-Salguero P., Corbí A.L., Lizasoain I., Moro M.A. L-kynurenine/aryl hydrocarbon receptor pathway mediates brain damage after experimental stroke. Circulation. 2014;130:2040–2051. doi: 10.1161/CIRCULATIONAHA.114.011394. PubMed DOI
Hertelendy P., Toldi J., Fülöp F., Vécsei L. Ischemic stroke and kynurenines: Medicinal chemistry aspects. Curr. Med. Chem. 2018;25:5945–5957. doi: 10.2174/0929867325666180313113411. PubMed DOI
Savitz J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry. 2020;25:131–147. doi: 10.1038/s41380-019-0414-4. PubMed DOI PMC
González-Esquivel D., Ramírez-Ortega D., Pineda B., Castro N., Ríos C., Pérez de la Cruz V. Kynurenine pathway metabolites and enzymes involved in redox reactions. Neuropharmacology. 2017;112:331–345. doi: 10.1016/j.neuropharm.2016.03.013. PubMed DOI
Forrest C.M., Mackay G.M., Stoy N., Egerton M., Christofides J., Stone T.W., Darlington L.G. Tryptophan loading induces oxidative stress. Free Radic. Res. 2004;38:1167–1171. doi: 10.1080/10715760400011437. PubMed DOI
Réus G.Z., Becker I.R.T., Scaini G., Petronilho F., Oses J.P., Kaddurah-Daouk R., Ceretta L.B., Zugno A.I., Dal-Pizzol F., Quevedo J., et al. The inhibition of the kynurenine pathway prevents behavioral disturbances and oxidative stress in the brain of adult rats subjected to an animal model of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2018;81:55–63. doi: 10.1016/j.pnpbp.2017.10.009. PubMed DOI
Marrocco I., Altieri F., Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid. Med. Cell Longev. 2017;2017:6501046. doi: 10.1155/2017/6501046. PubMed DOI PMC
Shajib M.S., Khan W.I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015;213:561–574. doi: 10.1111/apha.12430. PubMed DOI
Wan M., Ding L., Wang D., Han J., Gao P. Serotonin: A potent immune cell modulator in autoimmune diseases. Front. Immunol. 2020;11:186. doi: 10.3389/fimmu.2020.00186. PubMed DOI PMC
Berger M., Gray J.A., Roth B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009;60:355–366. doi: 10.1146/annurev.med.60.042307.110802. PubMed DOI PMC
Amaral F.G.D., Cipolla-Neto J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab. 2018;62:472–479. doi: 10.20945/2359-3997000000066. PubMed DOI PMC
Meng X., Li Y., Li S., Zhou Y., Gan R.Y., Xu D.P., Li H.B. Dietary sources and bioactivities of melatonin. Nutrients. 2017;9:E367. doi: 10.3390/nu9040367. PubMed DOI PMC
Tamtaji O.R., Mobini M., Reiter R.J., Azami A., Gholami M.S., Asemi Z. Melatonin, a toll-like receptor inhibitor: Current status and future perspectives. J. Cell. Physiol. 2019;234:7788–7795. doi: 10.1002/jcp.27698. PubMed DOI
Pawlak K., Brzosko S., Mysliwiec M., Pawlak D. Kynurenine, quinolinic acid—The new factors linked to carotid atherosclerosis in patients with end-stage renal disease. Atherosclerosis. 2009;204:561–566. doi: 10.1016/j.atherosclerosis.2008.10.002. PubMed DOI
Ormstad H., Verkerk R., Aass H.C., Amthor K.F., Sandvik L. Inflammation-induced catabolism of tryptophan and tyrosine in acute ischemic stroke. J. Mol. Neurosci. 2013;51:893–902. doi: 10.1007/s12031-013-0097-2. PubMed DOI
Mo X., Pi L., Yang J., Xiang Z., Tang A. Serum indoleamine 2,3-dioxygenase and kynurenine aminotransferase enzyme activity in patients with ischemic stroke. J. Clin. Neurosci. 2014;21:482–486. doi: 10.1016/j.jocn.2013.08.020. PubMed DOI
Chen Y., Xie Z., Xiao C., Zhang M., Li Z., Xie J., Zhang Y., Zhao X., Zeng P., Mo L., et al. Peripheral kynurenine/tryptophan ratio is not a reliable marker of systemic indoleamine 2,3-dioxygenase: A lesson drawn from patients on hemodialysis. Oncotarget. 2017;8:25261–25269. doi: 10.18632/oncotarget.15705. PubMed DOI PMC
Lin H.S., Tsai T.H., Liu C.F., Lu C.H., Chang W.N., Chen S.F., Huang C.W., Huang C.R., Tsai N.W., Huang C.C., et al. Serum level and prognostic value of neopterin in patients after ischemic stroke. Clin. Biochem. 2012;45:1596–1601. doi: 10.1016/j.clinbiochem.2012.07.113. PubMed DOI
Baran H., Schwarcz R. Presence of 3-hydroxyanthranilic acid in rat tissues and evidence for its production from anthranilic acid in the brain. J. Neurochem. 1990;55:738–744. doi: 10.1111/j.1471-4159.1990.tb04553.x. PubMed DOI
Badawy A.A. Hypothesis kynurenic and quinolinic acids: The main players of the kynurenine pathway and opponents in inflammatory disease. Med. Hypotheses. 2018;118:129–138. doi: 10.1016/j.mehy.2018.06.021. PubMed DOI
Krause D., Suh H.S., Tarassishin L., Cui Q.L., Durafourt B.A., Choi N., Bauman A., Cosenza-Nashat M., Antel J.P., Zhao M.L., et al. The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation. Role of hemeoxygenase-1. Am. J. Pathol. 2011;179:1360–1372. doi: 10.1016/j.ajpath.2011.05.048. PubMed DOI PMC
Leipnitz G., Schumacher C., Dalcin K.B., Scussiato K., Solano A., Funchal C., Dutra-Filho C.S., Wyse A.T., Wannmacher C.M., Latini A., et al. In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem. Int. 2007;50:83–94. doi: 10.1016/j.neuint.2006.04.017. PubMed DOI
Thomas S.R., Witting P.K., Stocker R. 3-Hydroxyanthranilic acid is an efficient, cell-derived co-antioxidant for alpha-tocopherol, inhibiting human low density lipoprotein and plasma lipid peroxidation. J. Biol. Chem. 1996;271:32714–32721. doi: 10.1074/jbc.271.51.32714. PubMed DOI
Pérez-González A., Alvarez-Idaboy J.R., Galano A. Dual antioxidant/pro-oxidant behavior of the tryptophan metabolite 3-hydroxyanthranilic acid: A theoretical investigation of reaction mechanisms and kinetics. New J. Chem. 2017;41:3829–3845. doi: 10.1039/C6NJ03980D. DOI
Darlington L.G., Mackay G.M., Forrest C.M., Stoy N., George C., Stone T.W. Altered kynurenine metabolism correlates with infarct volume in stroke. Eur. J. Neurosci. 2007;26:2211–2221. doi: 10.1111/j.1460-9568.2007.05838.x. PubMed DOI
Darlington L.G., Forrest C.M., Mackay G.M., Smith R.A., Smith A.J., Stoy N., Stone T.W. On the biological importance of the 3-hydroxyanthranilic acid: Anthranilic acid ratio. Int. J. Tryptophan Res. 2010;3:51–59. doi: 10.4137/IJTR.S4282. PubMed DOI PMC
Fukui S., Schwarcz R., Rapoport S.I., Takada Y., Smith Q.R. Blood-brain barrier transport of kynurenines: Implications for brain synthesis and metabolism. J. Neurochem. 1991;56:2007–2017. doi: 10.1111/j.1471-4159.1991.tb03460.x. PubMed DOI
Sakotnik A., Liebmann P.M., Stoschitzky K., Lercher P., Schauenstein K., Klein W., Eber B. Decreased melatonin synthesis in patients with coronary artery disease. Eur. Heart J. 1999;20:1314–1317. doi: 10.1053/euhj.1999.1527. PubMed DOI
Tan D.X., Manchester L.C., Sainz R.M., Mayo J.C., León J., Reiter R.J. Physiological ischemia/reperfusion phenomena and their relation to endogenous melatonin production: A hypothesis. Endocrine. 2005;27:149–158. doi: 10.1385/ENDO:27:2:149. PubMed DOI
Young S.N., Gauthier S. Tryptophan availability and the control of 5-hydroxytryptamine and tryptamine synthesis in human CNS. Adv. Exp. Med. Biol. 1981;133:221–230. PubMed
Sim A.S., Salonikas C., Naidoo D., Wilcken D.E. Improved method for plasma malondialdehyde measurement by high-performance liquid chromatography using methyl malondialdehyde as an internal standard. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003;785:337–344. doi: 10.1016/S1570-0232(02)00956-X. PubMed DOI
Mendonça R., Gning O., Di Cesaré C., Lachat L., Bennett N.C., Helfenstein F., Glauser G. Sensitive and selective quantification of free and total malondialdehyde in plasma using UHPLC-HRMS. J. Lipid Res. 2017;58:1924–1931. doi: 10.1194/jlr.D076661. PubMed DOI PMC
Suttnar J., Cermák J., Dyr J.E. Solid-phase extraction in malondialdehyde analysis. Anal. Biochem. 1997;249:20–23. doi: 10.1006/abio.1997.2157. PubMed DOI
Zhu W., Stevens A.P., Dettmer K., Gottfried E., Hoves S., Kreutz M., Holler E., Canelas A.B., Kema I., Oefner P.J. Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2011;401:3249–3261. doi: 10.1007/s00216-011-5436-y. PubMed DOI
LC–MS Method Validation. [(accessed on 7 April 2020)]; Available online: https://sisu.ut.ee/lcms_method_validation/course-introduction.
The R Project for Statistical Computing. [(accessed on 15 January 2020)]; Available online: https://www.r-project.org/
Pathological shifts in tryptophan metabolism in human term placenta exposed to LPS or poly I:C†
Oxidative Stress as a Reliable Biomarker of Carotid Plaque Instability: A Pilot Study
Lipidomic Analysis to Assess Oxidative Stress in Acute Coronary Syndrome and Acute Stroke Patients
Fibrin Clot Formation under Oxidative Stress Conditions