Lipidomic Analysis to Assess Oxidative Stress in Acute Coronary Syndrome and Acute Stroke Patients

. 2021 Jun 23 ; 11 (7) : . [epub] 20210623

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34201850

Grantová podpora
NV18-08-00149 Agentura Pro Zdravotnický Výzkum České Republiky

Alterations in lipid metabolism mediated by oxidative stress play a key role in the process of atherosclerosis and superimposed thrombosis; these can lead to acute coronary syndrome (ACS) and acute ischemic stroke (AIS). Multiple studies have shown that the formation of atheromatous lesions is initiated by oxidation of low-density lipoproteins incorporated into the intima of the vessel wall. Here, we studied lipids in plasma samples from three cohorts: 61 patients with ACS (group A), 49 patients with AIS (group D), and 82 controls (group K). Untargeted lipidomics based on high-performance liquid chromatography coupled to mass spectrometry (UHPLC-HRMS) was employed to obtain comprehensive information on whether relationships exist between these patient categories based on lipid patterns. In addition, malondialdehyde (MDA) as a standard marker of oxidative stress was monitored. The most characteristic lipids in group K were fatty acyls of hydroxyfatty acids (FAHFAs). As expected, MDA concentrations were the lowest in group K. Our findings can better explain ongoing pathologies, both acute and chronic, with the potential for future diagnosis and treatment.

Zobrazit více v PubMed

Quehenberger O., Dennis E.A. The human plasma lipidome. N. Engl. J. Med. 2011;365:1812–1823. doi: 10.1056/NEJMra1104901. PubMed DOI PMC

Kostner G.M. Apolipoproteins and lipoproteins of human plasma: Significance in health and in disease. Adv. Lipid Res. 1983;20:1–43. PubMed

Bucher H.C., Griffith L.E., Guyatt G.H. Systematic review on the risk and benefit of different cholesterol-lowering interventions. Arterioscler. Thromb. Vasc. Biol. 1999;19:187–195. doi: 10.1161/01.ATV.19.2.187. PubMed DOI

Thompson G.R., Packard C.J., Stone N.J. Goals of statin therapy: Three viewpoints. Atheroscler. Supp. 2004;5:107–114. doi: 10.1016/j.atherosclerosissup.2004.08.031. PubMed DOI

Tyroler H.A. Review of lipid-lowering clinical trials in relation to observational epidemiologic studies. Circulation. 1987;76:515–522. doi: 10.1161/01.CIR.76.3.515. PubMed DOI

Libby P., Buring J.E., Badimon L., Hansson G.K., Deanfield J., Bittencourt M.S., Tokgözoğlu L., Lewis E.F. Atherosclerosis. Nat. Rev. Dis. Primers. 2019;5:1–18. doi: 10.1038/s41572-019-0106-z. PubMed DOI

Ding M., Rexrode K.M. A review of lipidomics of cardiovascular disease highlights the importance of isolating lipoproteins. Metabolites. 2020;10:163. doi: 10.3390/metabo10040163. PubMed DOI PMC

Fahy E., Subramaniam S., Brown H.A., Glass C.K., Merrill A.H., Murphy R.C., Raetz C.R.H., Russell D.W., Seyama Y., Shaw W., et al. A comprehensive classification system for lipids. J. Lipid Res. 2005;46:839–861. doi: 10.1194/jlr.E400004-JLR200. PubMed DOI

Ali S.E., Farag M.A., Holvoet P., Hanafi R.S., Gad M.Z. a comparative metabolomics approach reveals early biomarkers for metabolic response to acute myocardial infarction. Sci. Rep. 2016;6:36359. doi: 10.1038/srep36359. PubMed DOI PMC

Wang J., Li Z., Chen J., Zhao H., Luo L., Chen C., Xu X., Zhang W., Gao K., Li B., et al. Metabolomic identification of diagnostic plasma biomarkers in humans with chronic heart Failure. Mol. BioSyst. 2013;9:2618–2626. doi: 10.1039/c3mb70227h. PubMed DOI

Laborde C.M., Mourino-Alvarez L., Posada-Ayala M., Alvarez-Llamas G., Serranillos-Reus M.G., Moreu J., Vivanco F., Padial L.R., Barderas M.G. Plasma metabolomics reveals a potential panel of biomarkers for early diagnosis in acute coronary syndrome. Metabolomics. 2014;10:414–424. doi: 10.1007/s11306-013-0595-9. PubMed DOI PMC

Teul J., Garcia A., Tuñón J., Martin-Ventura J.L., Tarín N., Bescós L.L., Egido J., Barbas C., Rupérez F.J. Targeted and non-targeted metabolic time trajectory in plasma of patients after acute coronary syndrome. J. Pharmaceut. Biomed. 2011;56:343–351. doi: 10.1016/j.jpba.2011.05.020. PubMed DOI

Vallejo M., García A., Tuñón J., García-Martínez D., Angulo S., Martin-Ventura J.L., Blanco-Colio L.M., Almeida P., Egido J., Barbas C. Plasma fingerprinting with gc-ms in acute coronary syndrome. Anal. Bioanal. Chem. 2009;394:1517–1524. doi: 10.1007/s00216-009-2610-6. PubMed DOI

Lam S.M., Wang Y., Li B., Du J., Shui G. Metabolomics through the lens of precision cardiovascular medicine. J. Genet. Genom. 2017;44:127–138. doi: 10.1016/j.jgg.2017.02.004. PubMed DOI

Yin X., de Carvalho L.P., Chan M.Y., Li S.F.Y. Integrated metabolomics and metallomics analyses in acute coronary syndrome patients. Metallomics. 2017;9:734–743. doi: 10.1039/C7MT00071E. PubMed DOI

Taqueti V.R. Sex Differences in the Coronary System. Adv. Exp. Med. Biol. 2018;1065:257–278. PubMed PMC

Hajsl M., Hlavackova A., Broulikova K., Sramek M., Maly M., Dyr J.E., Suttnar J. tryptophan metabolism, inflammation, and oxidative stress in patients with neurovascular disease. Metabolites. 2020;10:208. doi: 10.3390/metabo10050208. PubMed DOI PMC

Nasstrom B., Stegmayr B.G., Olivecrona G., Olivecrona T. Lower plasma levels of lipoprotein lipase after infusion of low molecular weight heparin than after administration of conventional heparin indicate more rapid catabolism of the enzyme. J. Lab. Clin. Med. 2003;142:90–99. doi: 10.1016/S0022-2143(03)00059-3. PubMed DOI

Lee J., Moraes-Vieira P.M., Castoldi A., Aryal P., Yee E.U., Vickers C., Parnas O., Donaldson C.J., Saghatelian A., Kahn B.B. Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses. J. Biol. Chem. 2016;291:22207–22217. doi: 10.1074/jbc.M115.703835. PubMed DOI PMC

Yore M.M., Syed I., Moraes-Vieira P.M., Zhang T., Herman M.A., Homan E.A., Patel R.T., Lee J., Chen S., Peroni O.D., et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159:318–332. doi: 10.1016/j.cell.2014.09.035. PubMed DOI PMC

Wilson D.B., Neufeld E.J., Majerus P.W. Phosphoinositide interconversion in thrombin-stimulated human platelets. J. Biol. Chem. 1985;260:1046–1051. doi: 10.1016/S0021-9258(20)71206-8. PubMed DOI

Jackson R.L., Demel R.A. Lipoprotein lipase-catalyzed hydrolysis of phospholipid monolayers: Effect of fatty acyl composition on enzyme activity. Biochem. Biophys. Res. Commun. 1985;128:670–675. doi: 10.1016/0006-291X(85)90098-1. PubMed DOI

McCoy M.G., Sun G.-S., Marchadier D., Maugeais C., Glick J.M., Rader D.J. Characterization of the lipolytic activity of endothelial lipase. J. Lipid Res. 2002;43:921–929. doi: 10.1016/S0022-2275(20)30466-1. PubMed DOI

Lee J.H., Yang J.S., Lee S.-H., Moon M.H. Analysis of lipoprotein-specific lipids in patients with acute coronary syndrome by asymmetrical flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018;1099:56–63. doi: 10.1016/j.jchromb.2018.09.016. PubMed DOI

Meikle P.J., Formosa M.F., Mellett N.A., Jayawardana K.S., Giles C., Bertovic D.A., Jennings G.L., Childs W., Reddy M., Carey A.L., et al. HDL phospholipids, but not cholesterol distinguish acute coronary syndrome from stable coronary artery disease. J. Am. Heart Assoc. 2019;8:e011792. doi: 10.1161/JAHA.118.011792. PubMed DOI PMC

Koelmel J.P., Kroeger N.M., Ulmer C.Z., Bowden J.A., Patterson R.E., Cochran J.A., Beecher C.W.W., Garrett T.J., Yost R.A. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinform. 2017;18:331. doi: 10.1186/s12859-017-1744-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...