Lipidomic Analysis to Assess Oxidative Stress in Acute Coronary Syndrome and Acute Stroke Patients
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-08-00149
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
34201850
PubMed Central
PMC8304850
DOI
10.3390/metabo11070412
PII: metabo11070412
Knihovny.cz E-zdroje
- Klíčová slova
- acute coronary syndrome, high-resolution mass spectrometry, lipidomics, plasma, stroke,
- Publikační typ
- časopisecké články MeSH
Alterations in lipid metabolism mediated by oxidative stress play a key role in the process of atherosclerosis and superimposed thrombosis; these can lead to acute coronary syndrome (ACS) and acute ischemic stroke (AIS). Multiple studies have shown that the formation of atheromatous lesions is initiated by oxidation of low-density lipoproteins incorporated into the intima of the vessel wall. Here, we studied lipids in plasma samples from three cohorts: 61 patients with ACS (group A), 49 patients with AIS (group D), and 82 controls (group K). Untargeted lipidomics based on high-performance liquid chromatography coupled to mass spectrometry (UHPLC-HRMS) was employed to obtain comprehensive information on whether relationships exist between these patient categories based on lipid patterns. In addition, malondialdehyde (MDA) as a standard marker of oxidative stress was monitored. The most characteristic lipids in group K were fatty acyls of hydroxyfatty acids (FAHFAs). As expected, MDA concentrations were the lowest in group K. Our findings can better explain ongoing pathologies, both acute and chronic, with the potential for future diagnosis and treatment.
Zobrazit více v PubMed
Quehenberger O., Dennis E.A. The human plasma lipidome. N. Engl. J. Med. 2011;365:1812–1823. doi: 10.1056/NEJMra1104901. PubMed DOI PMC
Kostner G.M. Apolipoproteins and lipoproteins of human plasma: Significance in health and in disease. Adv. Lipid Res. 1983;20:1–43. PubMed
Bucher H.C., Griffith L.E., Guyatt G.H. Systematic review on the risk and benefit of different cholesterol-lowering interventions. Arterioscler. Thromb. Vasc. Biol. 1999;19:187–195. doi: 10.1161/01.ATV.19.2.187. PubMed DOI
Thompson G.R., Packard C.J., Stone N.J. Goals of statin therapy: Three viewpoints. Atheroscler. Supp. 2004;5:107–114. doi: 10.1016/j.atherosclerosissup.2004.08.031. PubMed DOI
Tyroler H.A. Review of lipid-lowering clinical trials in relation to observational epidemiologic studies. Circulation. 1987;76:515–522. doi: 10.1161/01.CIR.76.3.515. PubMed DOI
Libby P., Buring J.E., Badimon L., Hansson G.K., Deanfield J., Bittencourt M.S., Tokgözoğlu L., Lewis E.F. Atherosclerosis. Nat. Rev. Dis. Primers. 2019;5:1–18. doi: 10.1038/s41572-019-0106-z. PubMed DOI
Ding M., Rexrode K.M. A review of lipidomics of cardiovascular disease highlights the importance of isolating lipoproteins. Metabolites. 2020;10:163. doi: 10.3390/metabo10040163. PubMed DOI PMC
Fahy E., Subramaniam S., Brown H.A., Glass C.K., Merrill A.H., Murphy R.C., Raetz C.R.H., Russell D.W., Seyama Y., Shaw W., et al. A comprehensive classification system for lipids. J. Lipid Res. 2005;46:839–861. doi: 10.1194/jlr.E400004-JLR200. PubMed DOI
Ali S.E., Farag M.A., Holvoet P., Hanafi R.S., Gad M.Z. a comparative metabolomics approach reveals early biomarkers for metabolic response to acute myocardial infarction. Sci. Rep. 2016;6:36359. doi: 10.1038/srep36359. PubMed DOI PMC
Wang J., Li Z., Chen J., Zhao H., Luo L., Chen C., Xu X., Zhang W., Gao K., Li B., et al. Metabolomic identification of diagnostic plasma biomarkers in humans with chronic heart Failure. Mol. BioSyst. 2013;9:2618–2626. doi: 10.1039/c3mb70227h. PubMed DOI
Laborde C.M., Mourino-Alvarez L., Posada-Ayala M., Alvarez-Llamas G., Serranillos-Reus M.G., Moreu J., Vivanco F., Padial L.R., Barderas M.G. Plasma metabolomics reveals a potential panel of biomarkers for early diagnosis in acute coronary syndrome. Metabolomics. 2014;10:414–424. doi: 10.1007/s11306-013-0595-9. PubMed DOI PMC
Teul J., Garcia A., Tuñón J., Martin-Ventura J.L., Tarín N., Bescós L.L., Egido J., Barbas C., Rupérez F.J. Targeted and non-targeted metabolic time trajectory in plasma of patients after acute coronary syndrome. J. Pharmaceut. Biomed. 2011;56:343–351. doi: 10.1016/j.jpba.2011.05.020. PubMed DOI
Vallejo M., García A., Tuñón J., García-Martínez D., Angulo S., Martin-Ventura J.L., Blanco-Colio L.M., Almeida P., Egido J., Barbas C. Plasma fingerprinting with gc-ms in acute coronary syndrome. Anal. Bioanal. Chem. 2009;394:1517–1524. doi: 10.1007/s00216-009-2610-6. PubMed DOI
Lam S.M., Wang Y., Li B., Du J., Shui G. Metabolomics through the lens of precision cardiovascular medicine. J. Genet. Genom. 2017;44:127–138. doi: 10.1016/j.jgg.2017.02.004. PubMed DOI
Yin X., de Carvalho L.P., Chan M.Y., Li S.F.Y. Integrated metabolomics and metallomics analyses in acute coronary syndrome patients. Metallomics. 2017;9:734–743. doi: 10.1039/C7MT00071E. PubMed DOI
Taqueti V.R. Sex Differences in the Coronary System. Adv. Exp. Med. Biol. 2018;1065:257–278. PubMed PMC
Hajsl M., Hlavackova A., Broulikova K., Sramek M., Maly M., Dyr J.E., Suttnar J. tryptophan metabolism, inflammation, and oxidative stress in patients with neurovascular disease. Metabolites. 2020;10:208. doi: 10.3390/metabo10050208. PubMed DOI PMC
Nasstrom B., Stegmayr B.G., Olivecrona G., Olivecrona T. Lower plasma levels of lipoprotein lipase after infusion of low molecular weight heparin than after administration of conventional heparin indicate more rapid catabolism of the enzyme. J. Lab. Clin. Med. 2003;142:90–99. doi: 10.1016/S0022-2143(03)00059-3. PubMed DOI
Lee J., Moraes-Vieira P.M., Castoldi A., Aryal P., Yee E.U., Vickers C., Parnas O., Donaldson C.J., Saghatelian A., Kahn B.B. Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses. J. Biol. Chem. 2016;291:22207–22217. doi: 10.1074/jbc.M115.703835. PubMed DOI PMC
Yore M.M., Syed I., Moraes-Vieira P.M., Zhang T., Herman M.A., Homan E.A., Patel R.T., Lee J., Chen S., Peroni O.D., et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159:318–332. doi: 10.1016/j.cell.2014.09.035. PubMed DOI PMC
Wilson D.B., Neufeld E.J., Majerus P.W. Phosphoinositide interconversion in thrombin-stimulated human platelets. J. Biol. Chem. 1985;260:1046–1051. doi: 10.1016/S0021-9258(20)71206-8. PubMed DOI
Jackson R.L., Demel R.A. Lipoprotein lipase-catalyzed hydrolysis of phospholipid monolayers: Effect of fatty acyl composition on enzyme activity. Biochem. Biophys. Res. Commun. 1985;128:670–675. doi: 10.1016/0006-291X(85)90098-1. PubMed DOI
McCoy M.G., Sun G.-S., Marchadier D., Maugeais C., Glick J.M., Rader D.J. Characterization of the lipolytic activity of endothelial lipase. J. Lipid Res. 2002;43:921–929. doi: 10.1016/S0022-2275(20)30466-1. PubMed DOI
Lee J.H., Yang J.S., Lee S.-H., Moon M.H. Analysis of lipoprotein-specific lipids in patients with acute coronary syndrome by asymmetrical flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018;1099:56–63. doi: 10.1016/j.jchromb.2018.09.016. PubMed DOI
Meikle P.J., Formosa M.F., Mellett N.A., Jayawardana K.S., Giles C., Bertovic D.A., Jennings G.L., Childs W., Reddy M., Carey A.L., et al. HDL phospholipids, but not cholesterol distinguish acute coronary syndrome from stable coronary artery disease. J. Am. Heart Assoc. 2019;8:e011792. doi: 10.1161/JAHA.118.011792. PubMed DOI PMC
Koelmel J.P., Kroeger N.M., Ulmer C.Z., Bowden J.A., Patterson R.E., Cochran J.A., Beecher C.W.W., Garrett T.J., Yost R.A. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinform. 2017;18:331. doi: 10.1186/s12859-017-1744-3. PubMed DOI PMC