Oxidative Stress as a Reliable Biomarker of Carotid Plaque Instability: A Pilot Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-08-00149
Czech Health Research Council
NU22-04-00389
Czech Health Research Council
MO1012
Ministry of Defence
PubMed
36830063
PubMed Central
PMC9952127
DOI
10.3390/antiox12020506
PII: antiox12020506
Knihovny.cz E-zdroje
- Klíčová slova
- atherosclerotic, carotid, carotid stenosis, endarterectomy, histology, oxidative stress, plaque,
- Publikační typ
- časopisecké články MeSH
Background: Predicting stroke risk in patients with carotid artery stenosis (CS) remains challenging. Circulating biomarkers seem to provide improvements with respect to risk stratification. Methods: Study patients who underwent carotid endarterectomy were categorized into four groups according to symptomatology and compared as follows: symptomatic with asymptomatic patients; and asymptomatic patients including amaurosis fugax (AF) (asymptomatic + AF group) with patients with a transient ischemic attack (TIA) or brain stroke (BS) (hemispheric brain stroke group). Carotid specimens were histologically analyzed and classified based on the American Heart Classification (AHA) standard. As a marker of OS, the plasma levels of malondialdehyde (MDA) were measured. Comparisons of MDA plasma levels between groups were analyzed. Results: In total, 35 patients were included in the study. There were 22 (63%) patients in the asymptomatic group and 13 (37%) in the symptomatic group. Atheromatous plaque (p = 0.03) and old hemorrhage (p = 0.05), fibrous plaque (p = 0.04), myxoid changes (p = 0.02), plaques without hemorrhage (p = 0.04), significant neovascularization (p = 0.04) and AHA classification (p = 0.006) had significant correlations with clinical presentation. There were 26 (74%) patients in the asymptomatic group and 9 (26%) in the hemispheric brain stroke group. Atheromatous plaque (p = 0.02), old hemorrhage (p = 0.05) and plaques without neovascularization (p = 0.02), fibrous plaque (p = 0.03), plaques without hemorrhage (p = 0.02) and AHA classification (p = 0.01) had significant correlations with clinical presentation. There was no significant difference between symptomatic and asymptomatic groups with respect to MDA plasma levels (p = 0.232). A significant difference was observed when MDA plasma levels were compared to asymptomatic + AF and the hemispheric stroke group (p = 0.002). Conclusions: MDA plasma level correlates with the risk of hemispheric stroke (TIA or BS) and is a reliable marker of plaque vulnerability in carotid artery stenosis.
1st Faculty of Medicine Charles University 169 02 Prague Czech Republic
3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Faculty of Military Health Sciences University of Defence 500 02 Hradec Kralove Czech Republic
Institute of Haematology and Blood Transfusion 120 00 Prague Czech Republic
University Military Hospital Prague 168 02 Prague Czech Republic
Zobrazit více v PubMed
Flaherty M.L., Kissela B., Khoury J.C., Alwell K., Moomaw C.J., Woo D., Khatri P., Ferioli S., Adeoye O., Broderick J.P., et al. Carotid Artery Stenosis as a Cause of Stroke. Neuroepidemiology. 2012;40:36–41. doi: 10.1159/000341410. PubMed DOI PMC
Brinjikji W., Huston J., 3rd, Rabinstein A.A., Kim G.-M., Lerman A., Lanzino G. Contemporary carotid imaging: From degree of stenosis to plaque vulnerability. J. Neurosurg. 2016;124:27–42. doi: 10.3171/2015.1.JNS142452. PubMed DOI
Andrews J.P., Fayad Z.A., Dweck M.R. New methods to image unstable atherosclerotic plaques. Atherosclerosis. 2018;272:118–128. doi: 10.1016/j.atherosclerosis.2018.03.021. PubMed DOI PMC
Hetterich H., Webber N., Willner M., Herzen J., Birnbacher L., Hipp A., Marschner M., Auweter S.D., Habbel C., Schüller U., et al. AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography. Eur. Radiol. 2015;26:3223–3233. doi: 10.1007/s00330-015-4143-z. PubMed DOI
Fisher M., Paganini-Hill A., Martin A., Cosgrove M., Toole J.F., Barnett H.J., Norris J. Carotid Plaque Pathology: Thrombosis, ulceration, and stroke pathogenesis. Stroke. 2005;36:253–257. doi: 10.1161/01.STR.0000152336.71224.21. PubMed DOI
Verhoeven B., Hellings W.E., Moll F.L., de Vries J.P., de Kleijn D.P., de Bruin P., Busser E., Schoneveld A.H., Pasterkamp G. Carotid atherosclerotic plaques in patients with transient ischemic attacks and stroke have unstable characteristics compared with plaques in asymptomatic and amaurosis fugax patients. J. Vasc. Surg. 2005;42:1075–1081. doi: 10.1016/j.jvs.2005.08.009. PubMed DOI
Howard D.P., van Lammeren G.W., Rothwell P.M., Redgrave J.N., Moll F.L., de Vries J.-P.P., de Kleijn D.P., Ruijter H.M.D., de Borst G.J., Pasterkamp G. Symptomatic Carotid Atherosclerotic Disease: Correlations between plaque composition and ipsilateral stroke risk. Stroke. 2015;46:182–189. doi: 10.1161/STROKEAHA.114.007221. PubMed DOI PMC
Stary H.C. Natural History and Histological Classification of Atherosclerotic Lesions: An update. Arter. Thromb. Vasc. Biol. 2000;20:1177–1178. doi: 10.1161/01.ATV.20.5.1177. PubMed DOI
Stary H.C., Chandler A.B., Dinsmore R.E., Fuster V., Glagov S., Insull W., Jr., Rosenfeld M.E., Schwartz C.J., Wagner W.D., Wissler R.W. A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arter. Thromb. Vasc. Biol. 1995;15:1512–1531. doi: 10.1161/01.ATV.15.9.1512. PubMed DOI
Strobel N.A., Fassett R.G., Marsh S.A., Coombes J.S. Oxidative stress biomarkers as predictors of cardiovascular disease. Int. J. Cardiol. 2011;147:191–201. doi: 10.1016/j.ijcard.2010.08.008. PubMed DOI
Wendorff C., Wendorff H., Pelisek J., Tsantilas P., Zimmermann A., Zernecke A., Kuehnl A., Eckstein H.-H. Carotid Plaque Morphology Is Significantly Associated with Sex, Age, and History of Neurological Symptoms. Stroke. 2015;46:3213–3219. doi: 10.1161/STROKEAHA.115.010558. PubMed DOI
Svoboda N., Bradac O., Mandys V., Netuka D., Benes V. Diagnostic accuracy of DSA in carotid artery stenosis: A comparison between stenosis measured on carotid endarterectomy specimens and DSA in 644 cases. Acta Neurochir. 2022;164:3197–3202. doi: 10.1007/s00701-022-05332-5. PubMed DOI
Svoboda N., Voldřich R., Mandys V., Hrbáč T., Kešnerová P., Roubec M., Školoudík D., Netuka D. Histological Analysis of Carotid Plaques: The Predictors of Stroke Risk. J. Stroke Cerebrovasc. Dis. 2021;31:106262. doi: 10.1016/j.jstrokecerebrovasdis.2021.106262. PubMed DOI
Puig N., Jiménez-Xarrié E., Camps-Renom P., Benitez S. Search for Reliable Circulating Biomarkers to Predict Carotid Plaque Vulnerability. Int. J. Mol. Sci. 2020;21:8236. doi: 10.3390/ijms21218236. PubMed DOI PMC
Kigka V.I., Potsika V., Mantzaris M., Tsakanikas V., Koncar I., Fotiadis D.I. Serum Biomarkers in Carotid Artery Disease. Diagnostics. 2021;11:2143. doi: 10.3390/diagnostics11112143. PubMed DOI PMC
Sigala F., Kotsinas A., Savari P., Filis K., Markantonis S., Iliodromitis E.K., Gorgoulis V.G., Andreadou I. Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J. Vasc. Surg. 2010;52:704–713. doi: 10.1016/j.jvs.2010.03.047. PubMed DOI
Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002. PubMed DOI PMC
Xie M., Tang Q., Nie J., Zhang C., Zhou X., Yu S., Sun J., Cheng X., Dong N., Hu Y., et al. BMAL1-Downregulation Aggravates Porphyromonas Gingivalis -Induced Atherosclerosis by Encouraging Oxidative Stress. Circ. Res. 2020;126:e15–e29. doi: 10.1161/CIRCRESAHA.119.315502. PubMed DOI
Wang Y., Wang G.Z., Rabinovitch P.S., Tabas I. Macrophage Mitochondrial Oxidative Stress Promotes Atherosclerosis and Nuclear Factor-κB–Mediated Inflammation in Macrophages. Circ. Res. 2014;114:421–433. doi: 10.1161/CIRCRESAHA.114.302153. PubMed DOI PMC
Liu P., Pan Q. Butein Inhibits Oxidative Stress Injury in Rats with Chronic Heart Failure via ERK/Nrf2 Signaling. Cardiovasc. Ther. 2022;2022:8684014. doi: 10.1155/2022/8684014. PubMed DOI PMC
Joseph L.C., Subramanyam P., Radlicz C., Trent C.M., Iyer V., Colecraft H.M., Morrow J.P. Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. Heart Rhythm. 2016;13:1699–1706. doi: 10.1016/j.hrthm.2016.05.002. PubMed DOI PMC
Hajsl M., Hlavackova A., Broulikova K., Sramek M., Maly M., Dyr J.E., Suttnar J. Tryptophan Metabolism, Inflammation, and Oxidative Stress in Patients with Neurovascular Disease. Metabolites. 2020;10:208. doi: 10.3390/metabo10050208. PubMed DOI PMC
Pietraforte D., Vona R., Marchesi A., de Jacobis I.T., Villani A., Del Principe D., Straface E. Redox Control of Platelet Functions in Physiology and Pathophysiology. Antioxidants Redox Signal. 2014;21:177–193. doi: 10.1089/ars.2013.5532. PubMed DOI
Aboyans V., Ricco J.-B., Bartelink M.-L.E., Bjorck M., Brodmann M., Cohnert T., Collet J.-P., Czerny M., De Carlo M., Debusa S., et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS) Rev. Esp. Cardiol. (Engl. Ed.) 2018;71:111. doi: 10.1016/j.rec.2017.12.014. PubMed DOI
Ferguson G.G., Eliasziw M., Barr H.W.K., Clagett G.P., Barnes R.W., Wallace M.C., Taylor D.W., Haynes R.B., Finan J.W., Hachinski V.C., et al. The North American Symptomatic Carotid Endarterectomy Trial: Surgical results in 1415 patients. Stroke. 1999;30:1751–1758. doi: 10.1161/01.STR.30.9.1751. PubMed DOI
European Carotid Surgery Trialists’ Collaborative Group MRC European Carotid Surgery Trial: Interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet. 1991;337:1235–1243. doi: 10.1016/0140-6736(91)92916-P. PubMed DOI
Bechynska K., Daskova N., Vrzackova N., Harant K., Heczková M., Podzimkova K., Bratova M., Dankova H., Berkova Z., Kosek V., et al. The effect of ω-3 polyunsaturated fatty acids on the liver lipidome, proteome and bile acid profile: Parenteral versus enteral administration. Sci. Rep. 2019;9:19097. doi: 10.1038/s41598-019-54225-8. PubMed DOI PMC
Saba L., Anzidei M., Marincola B.C., Piga M., Raz E., Bassareo P.P., Napoli A., Mannelli L., Catalano C., Wintermark M. Imaging of the Carotid Artery Vulnerable Plaque. Cardiovasc. Interv. Radiol. 2013;37:572–585. doi: 10.1007/s00270-013-0711-2. PubMed DOI
Ohara T., Toyoda K., Otsubo R., Nagatsuka K., Kubota Y., Yasaka M., Naritomi H., Minematsu K. Eccentric Stenosis of the Carotid Artery Associated with Ipsilateral Cerebrovascular Events. Am. J. Neuroradiol. 2008;29:1200–1203. doi: 10.3174/ajnr.A0997. PubMed DOI PMC
Shaalan W.E., Cheng H., Gewertz B., McKinsey J.F., Schwartz L.B., Katz D., Cao D., Desai T., Glagov S., Bassiouny H.S. Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. J. Vasc. Surg. 2004;40:262–269. doi: 10.1016/j.jvs.2004.04.025. PubMed DOI
Takaya N., Yuan C., Chu B., Saam T., Underhill H., Cai J., Tran N., Polissar N.L., Isaac C., Ferguson M.S., et al. Association between Carotid Plaque Characteristics and Subsequent Ischemic Cerebrovascular Events: A prospective assessment with MRI--initial results. Stroke. 2006;37:818–823. doi: 10.1161/01.STR.0000204638.91099.91. PubMed DOI
Turc G., Oppenheim C., Naggara O., Eker O.F., Calvet D., Lacour J.-C., Crozier S., Guegan-Massardier E., Hénon H., Neau J.-P., et al. Relationships Between Recent Intraplaque Hemorrhage and Stroke Risk Factors in Patients With Carotid Stenosis: The HIRISC study. Arter. Thromb. Vasc. Biol. 2012;32:492–499. doi: 10.1161/ATVBAHA.111.239335. PubMed DOI
Golledge J., Greenhalgh R.M., Davies A.H. The Symptomatic Carotid Plaque. Stroke. 2000;31:774–781. doi: 10.1161/01.STR.31.3.774. PubMed DOI
Kim K., Li J., Tseng A., Andrews R.K., Cho J. NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood. 2015;126:1952–1964. doi: 10.1182/blood-2014-10-605261. PubMed DOI PMC
Incalza M.A., D’Oria R., Natalicchio A., Perrini S., Laviola L., Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc. Pharmacol. 2018;100:1–19. doi: 10.1016/j.vph.2017.05.005. PubMed DOI
Riley P.A. Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation. Int. J. Radiat. Biol. 1994;65:27–33. doi: 10.1080/09553009414550041. PubMed DOI
Ni H.-Y., Song Y.-X., Lin Y.-H., Cao B., Wang D.-L., Zhang Y., Dong J., Liang H.-Y., Xu K., Li T.-Y., et al. Dissociating nNOS (Neuronal NO Synthase)-CAPON (Carboxy-Terminal Postsynaptic Density-95/Discs Large/Zona Occludens-1 Ligand of nNOS) Interaction Promotes Functional Recovery After Stroke via Enhanced Structural Neuroplasticity. Stroke. 2019;50:728–737. doi: 10.1161/STROKEAHA.118.022647. PubMed DOI
Marrocco I., Altieri F., Peluso I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Med. Cell. Longev. 2017;2017:6501046. doi: 10.1155/2017/6501046. PubMed DOI PMC
Li Z., Bi R., Sun S., Chen S., Chen J., Hu B., Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. Oxidative Med. Cell. Longev. 2022;2022:8418820. doi: 10.1155/2022/8418820. PubMed DOI PMC
Cano C.P., Bermúdez V.P., Atencio H.E., Medina M.T., Anilsa A., Souki A., Molina O.M., Restrepo H., Vargas M.E., Núñez M., et al. Increased Serum Malondialdehyde and Decreased Nitric Oxide within 24 Hours of Thrombotic Stroke Onset. Am. J. Ther. 2003;10:473–476. doi: 10.1097/00045391-200311000-00018. PubMed DOI
Re G., Azzimondi G., Lanzarini C., Bassein L., Vaona I., Guarnieri C. Plasma lipoperoxidative markers in ischaemic stroke suggest brain embolism. Eur. J. Emerg. Med. 1997;4:5–9. PubMed
Malý M., Hajšl M., Bechyňská K., Kučerka O., Šrámek M., Suttnar J., Hlaváčková A., Hajšlová J., Kosek V. Lipidomic Analysis to Assess Oxidative Stress in Acute Coronary Syndrome and Acute Stroke Patients. Metabolites. 2021;11:412. doi: 10.3390/metabo11070412. PubMed DOI PMC
Kosek V., Hajšl M., Bechyňská K., Kučerka O., Suttnar J., Hlaváčková A., Hajšlová J., Malý M. Long-Term Effects on the Lipidome of Acute Coronary Syndrome Patients. Metabolites. 2022;12:124. doi: 10.3390/metabo12020124. PubMed DOI PMC
Rašić S., Rebić D., Hasić S., Rašić I., Šarac M.D. Influence of Malondialdehyde and Matrix Metalloproteinase-9 on Progression of Carotid Atherosclerosis in Chronic Renal Disease with Cardiometabolic Syndrome. Mediat. Inflamm. 2015;2015:1–8. doi: 10.1155/2015/614357. PubMed DOI PMC
Lankin V.Z., Tikhaze A.K., Melkumyants A.M. Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. Int. J. Mol. Sci. 2022;24:128. doi: 10.3390/ijms24010128. PubMed DOI PMC
Suttnar J., Otáhalová E., Čermák J., Dyr J.E. Effects of malondialdehyde content in low density lipoproteins on platelet adhesion. Platelets. 2006;17:92–99. doi: 10.1080/09537100500261590. PubMed DOI
Johnston J.W., Horne S., Harding K., Benson E.E. Evaluation of the 1-methyl-2-phenylindole colorimetric assay for aldehydic lipid peroxidation products in plants: Malondialdehyde and 4-hydroxynonenal. Plant Physiol. Biochem. 2007;45:108–112. doi: 10.1016/j.plaphy.2007.01.011. PubMed DOI
Ichikawa K., Miyoshi T., Osawa K., Miki T., Ito H. Increased Circulating Malondialdehyde-Modified Low-Density Lipoprotein Level Is Associated with High-Risk Plaque in Coronary Computed Tomography Angiography in Patients Receiving Statin Therapy. J. Clin. Med. 2021;10:1480. doi: 10.3390/jcm10071480. PubMed DOI PMC