Oxidative Stress as a Reliable Biomarker of Carotid Plaque Instability: A Pilot Study

. 2023 Feb 17 ; 12 (2) : . [epub] 20230217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36830063

Grantová podpora
NV18-08-00149 Czech Health Research Council
NU22-04-00389 Czech Health Research Council
MO1012 Ministry of Defence

Background: Predicting stroke risk in patients with carotid artery stenosis (CS) remains challenging. Circulating biomarkers seem to provide improvements with respect to risk stratification. Methods: Study patients who underwent carotid endarterectomy were categorized into four groups according to symptomatology and compared as follows: symptomatic with asymptomatic patients; and asymptomatic patients including amaurosis fugax (AF) (asymptomatic + AF group) with patients with a transient ischemic attack (TIA) or brain stroke (BS) (hemispheric brain stroke group). Carotid specimens were histologically analyzed and classified based on the American Heart Classification (AHA) standard. As a marker of OS, the plasma levels of malondialdehyde (MDA) were measured. Comparisons of MDA plasma levels between groups were analyzed. Results: In total, 35 patients were included in the study. There were 22 (63%) patients in the asymptomatic group and 13 (37%) in the symptomatic group. Atheromatous plaque (p = 0.03) and old hemorrhage (p = 0.05), fibrous plaque (p = 0.04), myxoid changes (p = 0.02), plaques without hemorrhage (p = 0.04), significant neovascularization (p = 0.04) and AHA classification (p = 0.006) had significant correlations with clinical presentation. There were 26 (74%) patients in the asymptomatic group and 9 (26%) in the hemispheric brain stroke group. Atheromatous plaque (p = 0.02), old hemorrhage (p = 0.05) and plaques without neovascularization (p = 0.02), fibrous plaque (p = 0.03), plaques without hemorrhage (p = 0.02) and AHA classification (p = 0.01) had significant correlations with clinical presentation. There was no significant difference between symptomatic and asymptomatic groups with respect to MDA plasma levels (p = 0.232). A significant difference was observed when MDA plasma levels were compared to asymptomatic + AF and the hemispheric stroke group (p = 0.002). Conclusions: MDA plasma level correlates with the risk of hemispheric stroke (TIA or BS) and is a reliable marker of plaque vulnerability in carotid artery stenosis.

Zobrazit více v PubMed

Flaherty M.L., Kissela B., Khoury J.C., Alwell K., Moomaw C.J., Woo D., Khatri P., Ferioli S., Adeoye O., Broderick J.P., et al. Carotid Artery Stenosis as a Cause of Stroke. Neuroepidemiology. 2012;40:36–41. doi: 10.1159/000341410. PubMed DOI PMC

Brinjikji W., Huston J., 3rd, Rabinstein A.A., Kim G.-M., Lerman A., Lanzino G. Contemporary carotid imaging: From degree of stenosis to plaque vulnerability. J. Neurosurg. 2016;124:27–42. doi: 10.3171/2015.1.JNS142452. PubMed DOI

Andrews J.P., Fayad Z.A., Dweck M.R. New methods to image unstable atherosclerotic plaques. Atherosclerosis. 2018;272:118–128. doi: 10.1016/j.atherosclerosis.2018.03.021. PubMed DOI PMC

Hetterich H., Webber N., Willner M., Herzen J., Birnbacher L., Hipp A., Marschner M., Auweter S.D., Habbel C., Schüller U., et al. AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography. Eur. Radiol. 2015;26:3223–3233. doi: 10.1007/s00330-015-4143-z. PubMed DOI

Fisher M., Paganini-Hill A., Martin A., Cosgrove M., Toole J.F., Barnett H.J., Norris J. Carotid Plaque Pathology: Thrombosis, ulceration, and stroke pathogenesis. Stroke. 2005;36:253–257. doi: 10.1161/01.STR.0000152336.71224.21. PubMed DOI

Verhoeven B., Hellings W.E., Moll F.L., de Vries J.P., de Kleijn D.P., de Bruin P., Busser E., Schoneveld A.H., Pasterkamp G. Carotid atherosclerotic plaques in patients with transient ischemic attacks and stroke have unstable characteristics compared with plaques in asymptomatic and amaurosis fugax patients. J. Vasc. Surg. 2005;42:1075–1081. doi: 10.1016/j.jvs.2005.08.009. PubMed DOI

Howard D.P., van Lammeren G.W., Rothwell P.M., Redgrave J.N., Moll F.L., de Vries J.-P.P., de Kleijn D.P., Ruijter H.M.D., de Borst G.J., Pasterkamp G. Symptomatic Carotid Atherosclerotic Disease: Correlations between plaque composition and ipsilateral stroke risk. Stroke. 2015;46:182–189. doi: 10.1161/STROKEAHA.114.007221. PubMed DOI PMC

Stary H.C. Natural History and Histological Classification of Atherosclerotic Lesions: An update. Arter. Thromb. Vasc. Biol. 2000;20:1177–1178. doi: 10.1161/01.ATV.20.5.1177. PubMed DOI

Stary H.C., Chandler A.B., Dinsmore R.E., Fuster V., Glagov S., Insull W., Jr., Rosenfeld M.E., Schwartz C.J., Wagner W.D., Wissler R.W. A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arter. Thromb. Vasc. Biol. 1995;15:1512–1531. doi: 10.1161/01.ATV.15.9.1512. PubMed DOI

Strobel N.A., Fassett R.G., Marsh S.A., Coombes J.S. Oxidative stress biomarkers as predictors of cardiovascular disease. Int. J. Cardiol. 2011;147:191–201. doi: 10.1016/j.ijcard.2010.08.008. PubMed DOI

Wendorff C., Wendorff H., Pelisek J., Tsantilas P., Zimmermann A., Zernecke A., Kuehnl A., Eckstein H.-H. Carotid Plaque Morphology Is Significantly Associated with Sex, Age, and History of Neurological Symptoms. Stroke. 2015;46:3213–3219. doi: 10.1161/STROKEAHA.115.010558. PubMed DOI

Svoboda N., Bradac O., Mandys V., Netuka D., Benes V. Diagnostic accuracy of DSA in carotid artery stenosis: A comparison between stenosis measured on carotid endarterectomy specimens and DSA in 644 cases. Acta Neurochir. 2022;164:3197–3202. doi: 10.1007/s00701-022-05332-5. PubMed DOI

Svoboda N., Voldřich R., Mandys V., Hrbáč T., Kešnerová P., Roubec M., Školoudík D., Netuka D. Histological Analysis of Carotid Plaques: The Predictors of Stroke Risk. J. Stroke Cerebrovasc. Dis. 2021;31:106262. doi: 10.1016/j.jstrokecerebrovasdis.2021.106262. PubMed DOI

Puig N., Jiménez-Xarrié E., Camps-Renom P., Benitez S. Search for Reliable Circulating Biomarkers to Predict Carotid Plaque Vulnerability. Int. J. Mol. Sci. 2020;21:8236. doi: 10.3390/ijms21218236. PubMed DOI PMC

Kigka V.I., Potsika V., Mantzaris M., Tsakanikas V., Koncar I., Fotiadis D.I. Serum Biomarkers in Carotid Artery Disease. Diagnostics. 2021;11:2143. doi: 10.3390/diagnostics11112143. PubMed DOI PMC

Sigala F., Kotsinas A., Savari P., Filis K., Markantonis S., Iliodromitis E.K., Gorgoulis V.G., Andreadou I. Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J. Vasc. Surg. 2010;52:704–713. doi: 10.1016/j.jvs.2010.03.047. PubMed DOI

Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002. PubMed DOI PMC

Xie M., Tang Q., Nie J., Zhang C., Zhou X., Yu S., Sun J., Cheng X., Dong N., Hu Y., et al. BMAL1-Downregulation Aggravates Porphyromonas Gingivalis -Induced Atherosclerosis by Encouraging Oxidative Stress. Circ. Res. 2020;126:e15–e29. doi: 10.1161/CIRCRESAHA.119.315502. PubMed DOI

Wang Y., Wang G.Z., Rabinovitch P.S., Tabas I. Macrophage Mitochondrial Oxidative Stress Promotes Atherosclerosis and Nuclear Factor-κB–Mediated Inflammation in Macrophages. Circ. Res. 2014;114:421–433. doi: 10.1161/CIRCRESAHA.114.302153. PubMed DOI PMC

Liu P., Pan Q. Butein Inhibits Oxidative Stress Injury in Rats with Chronic Heart Failure via ERK/Nrf2 Signaling. Cardiovasc. Ther. 2022;2022:8684014. doi: 10.1155/2022/8684014. PubMed DOI PMC

Joseph L.C., Subramanyam P., Radlicz C., Trent C.M., Iyer V., Colecraft H.M., Morrow J.P. Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. Heart Rhythm. 2016;13:1699–1706. doi: 10.1016/j.hrthm.2016.05.002. PubMed DOI PMC

Hajsl M., Hlavackova A., Broulikova K., Sramek M., Maly M., Dyr J.E., Suttnar J. Tryptophan Metabolism, Inflammation, and Oxidative Stress in Patients with Neurovascular Disease. Metabolites. 2020;10:208. doi: 10.3390/metabo10050208. PubMed DOI PMC

Pietraforte D., Vona R., Marchesi A., de Jacobis I.T., Villani A., Del Principe D., Straface E. Redox Control of Platelet Functions in Physiology and Pathophysiology. Antioxidants Redox Signal. 2014;21:177–193. doi: 10.1089/ars.2013.5532. PubMed DOI

Aboyans V., Ricco J.-B., Bartelink M.-L.E., Bjorck M., Brodmann M., Cohnert T., Collet J.-P., Czerny M., De Carlo M., Debusa S., et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS) Rev. Esp. Cardiol. (Engl. Ed.) 2018;71:111. doi: 10.1016/j.rec.2017.12.014. PubMed DOI

Ferguson G.G., Eliasziw M., Barr H.W.K., Clagett G.P., Barnes R.W., Wallace M.C., Taylor D.W., Haynes R.B., Finan J.W., Hachinski V.C., et al. The North American Symptomatic Carotid Endarterectomy Trial: Surgical results in 1415 patients. Stroke. 1999;30:1751–1758. doi: 10.1161/01.STR.30.9.1751. PubMed DOI

European Carotid Surgery Trialists’ Collaborative Group MRC European Carotid Surgery Trial: Interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet. 1991;337:1235–1243. doi: 10.1016/0140-6736(91)92916-P. PubMed DOI

Bechynska K., Daskova N., Vrzackova N., Harant K., Heczková M., Podzimkova K., Bratova M., Dankova H., Berkova Z., Kosek V., et al. The effect of ω-3 polyunsaturated fatty acids on the liver lipidome, proteome and bile acid profile: Parenteral versus enteral administration. Sci. Rep. 2019;9:19097. doi: 10.1038/s41598-019-54225-8. PubMed DOI PMC

Saba L., Anzidei M., Marincola B.C., Piga M., Raz E., Bassareo P.P., Napoli A., Mannelli L., Catalano C., Wintermark M. Imaging of the Carotid Artery Vulnerable Plaque. Cardiovasc. Interv. Radiol. 2013;37:572–585. doi: 10.1007/s00270-013-0711-2. PubMed DOI

Ohara T., Toyoda K., Otsubo R., Nagatsuka K., Kubota Y., Yasaka M., Naritomi H., Minematsu K. Eccentric Stenosis of the Carotid Artery Associated with Ipsilateral Cerebrovascular Events. Am. J. Neuroradiol. 2008;29:1200–1203. doi: 10.3174/ajnr.A0997. PubMed DOI PMC

Shaalan W.E., Cheng H., Gewertz B., McKinsey J.F., Schwartz L.B., Katz D., Cao D., Desai T., Glagov S., Bassiouny H.S. Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. J. Vasc. Surg. 2004;40:262–269. doi: 10.1016/j.jvs.2004.04.025. PubMed DOI

Takaya N., Yuan C., Chu B., Saam T., Underhill H., Cai J., Tran N., Polissar N.L., Isaac C., Ferguson M.S., et al. Association between Carotid Plaque Characteristics and Subsequent Ischemic Cerebrovascular Events: A prospective assessment with MRI--initial results. Stroke. 2006;37:818–823. doi: 10.1161/01.STR.0000204638.91099.91. PubMed DOI

Turc G., Oppenheim C., Naggara O., Eker O.F., Calvet D., Lacour J.-C., Crozier S., Guegan-Massardier E., Hénon H., Neau J.-P., et al. Relationships Between Recent Intraplaque Hemorrhage and Stroke Risk Factors in Patients With Carotid Stenosis: The HIRISC study. Arter. Thromb. Vasc. Biol. 2012;32:492–499. doi: 10.1161/ATVBAHA.111.239335. PubMed DOI

Golledge J., Greenhalgh R.M., Davies A.H. The Symptomatic Carotid Plaque. Stroke. 2000;31:774–781. doi: 10.1161/01.STR.31.3.774. PubMed DOI

Kim K., Li J., Tseng A., Andrews R.K., Cho J. NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood. 2015;126:1952–1964. doi: 10.1182/blood-2014-10-605261. PubMed DOI PMC

Incalza M.A., D’Oria R., Natalicchio A., Perrini S., Laviola L., Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc. Pharmacol. 2018;100:1–19. doi: 10.1016/j.vph.2017.05.005. PubMed DOI

Riley P.A. Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation. Int. J. Radiat. Biol. 1994;65:27–33. doi: 10.1080/09553009414550041. PubMed DOI

Ni H.-Y., Song Y.-X., Lin Y.-H., Cao B., Wang D.-L., Zhang Y., Dong J., Liang H.-Y., Xu K., Li T.-Y., et al. Dissociating nNOS (Neuronal NO Synthase)-CAPON (Carboxy-Terminal Postsynaptic Density-95/Discs Large/Zona Occludens-1 Ligand of nNOS) Interaction Promotes Functional Recovery After Stroke via Enhanced Structural Neuroplasticity. Stroke. 2019;50:728–737. doi: 10.1161/STROKEAHA.118.022647. PubMed DOI

Marrocco I., Altieri F., Peluso I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Med. Cell. Longev. 2017;2017:6501046. doi: 10.1155/2017/6501046. PubMed DOI PMC

Li Z., Bi R., Sun S., Chen S., Chen J., Hu B., Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. Oxidative Med. Cell. Longev. 2022;2022:8418820. doi: 10.1155/2022/8418820. PubMed DOI PMC

Cano C.P., Bermúdez V.P., Atencio H.E., Medina M.T., Anilsa A., Souki A., Molina O.M., Restrepo H., Vargas M.E., Núñez M., et al. Increased Serum Malondialdehyde and Decreased Nitric Oxide within 24 Hours of Thrombotic Stroke Onset. Am. J. Ther. 2003;10:473–476. doi: 10.1097/00045391-200311000-00018. PubMed DOI

Re G., Azzimondi G., Lanzarini C., Bassein L., Vaona I., Guarnieri C. Plasma lipoperoxidative markers in ischaemic stroke suggest brain embolism. Eur. J. Emerg. Med. 1997;4:5–9. PubMed

Malý M., Hajšl M., Bechyňská K., Kučerka O., Šrámek M., Suttnar J., Hlaváčková A., Hajšlová J., Kosek V. Lipidomic Analysis to Assess Oxidative Stress in Acute Coronary Syndrome and Acute Stroke Patients. Metabolites. 2021;11:412. doi: 10.3390/metabo11070412. PubMed DOI PMC

Kosek V., Hajšl M., Bechyňská K., Kučerka O., Suttnar J., Hlaváčková A., Hajšlová J., Malý M. Long-Term Effects on the Lipidome of Acute Coronary Syndrome Patients. Metabolites. 2022;12:124. doi: 10.3390/metabo12020124. PubMed DOI PMC

Rašić S., Rebić D., Hasić S., Rašić I., Šarac M.D. Influence of Malondialdehyde and Matrix Metalloproteinase-9 on Progression of Carotid Atherosclerosis in Chronic Renal Disease with Cardiometabolic Syndrome. Mediat. Inflamm. 2015;2015:1–8. doi: 10.1155/2015/614357. PubMed DOI PMC

Lankin V.Z., Tikhaze A.K., Melkumyants A.M. Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. Int. J. Mol. Sci. 2022;24:128. doi: 10.3390/ijms24010128. PubMed DOI PMC

Suttnar J., Otáhalová E., Čermák J., Dyr J.E. Effects of malondialdehyde content in low density lipoproteins on platelet adhesion. Platelets. 2006;17:92–99. doi: 10.1080/09537100500261590. PubMed DOI

Johnston J.W., Horne S., Harding K., Benson E.E. Evaluation of the 1-methyl-2-phenylindole colorimetric assay for aldehydic lipid peroxidation products in plants: Malondialdehyde and 4-hydroxynonenal. Plant Physiol. Biochem. 2007;45:108–112. doi: 10.1016/j.plaphy.2007.01.011. PubMed DOI

Ichikawa K., Miyoshi T., Osawa K., Miki T., Ito H. Increased Circulating Malondialdehyde-Modified Low-Density Lipoprotein Level Is Associated with High-Risk Plaque in Coronary Computed Tomography Angiography in Patients Receiving Statin Therapy. J. Clin. Med. 2021;10:1480. doi: 10.3390/jcm10071480. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...