Fibrin Clot Formation under Oxidative Stress Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AIIHHP: CZ.02.1.01/0.0/0.0/16_025/0007428
European Regional Development Fund
00023736
Ministerstvo Zdravotnictví Ceské Republiky
NV18-08-00149
Ministerstvo Zdravotnictví Ceské Republiky
CZ.2.16/3.1.00/24001
European Regional Development Fund
PubMed
34200255
PubMed Central
PMC8228070
DOI
10.3390/antiox10060923
PII: antiox10060923
Knihovny.cz E-zdroje
- Klíčová slova
- acute coronary syndrome, artery stenosis, fibrinogen, oxidative stress, stroke,
- Publikační typ
- časopisecké články MeSH
During coagulation, the soluble fibrinogen is converted into insoluble fibrin. Fibrinogen is a multifunctional plasma protein, which is essential for hemostasis. Various oxidative posttranslational modifications influence fibrinogen structure as well as interactions between various partners in the coagulation process. The aim was to examine the effects of oxidative stress conditions on fibrin clot formation in arterial atherothrombotic disorders. We studied the changes in in vitro fibrin network formation in three groups of patients-with acute coronary syndrome (ACS), with significant carotid artery stenosis (SCAS), and with acute ischemic stroke (AIS), as well as a control group. The level of oxidative stress marker malondialdehyde measured by LC-MS/MS was higher in SCAS and AIS patients compared with controls. Turbidic methods revealed a higher final optical density and a prolonged lysis time in the clots of these patients. Electron microscopy was used to visualize changes in the in vitro-formed fibrin network. Fibers from patients with AIS were significantly thicker in comparison with control and ACS fibers. The number of fibrin fibers in patients with AIS was significantly lower in comparison with ACS and control groups. Thus, oxidative stress-mediated changes in fibrin clot formation, structure and dissolution may affect the effectiveness of thrombolytic therapy.
Zobrazit více v PubMed
Martinez M., Weisel J.W., Ischiropoulos H. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free Radic. Biol. Med. 2013;65:411–418. doi: 10.1016/j.freeradbiomed.2013.06.039. PubMed DOI PMC
Weisel J.W. The mechanical properties of fibrin for basic scientists and clinicians. Biophys. Chem. 2004;112:267–276. doi: 10.1016/j.bpc.2004.07.029. PubMed DOI
Bychkova A.V., Vasilyeva A.D., Bugrova A.E., Indeykina M.I., Kononikhin A.S., Nikolaev E.N., Konstantinova M.L., Rosenfeld M.A. Oxidation-induced modification of the fibrinogen polypeptide chains. Dokl. Biochem. Biophys. 2017;474:173–177. doi: 10.1134/S1607672917030115. PubMed DOI
Vadseth C., Souza J.M., Thomson L., Seagraves A., Nagaswami C., Scheiner T., Torbet J., Vilaire G., Bennett J.S., Murciano J.C., et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J. Biol. Chem. 2004;279:8820–8826. doi: 10.1074/jbc.M306101200. PubMed DOI
Stikarova J., Kotlin R., Riedel T., Suttnar J., Pimkova K., Chrastinova L., Dyr J.E. The effect of reagents mimicking oxidative stress on fibrinogen function. Sci. World J. 2013;2013:359621. doi: 10.1155/2013/359621. PubMed DOI PMC
Ząbczyk M., Undas A. Plasma fibrin clot structure and thromboembolism: Clinical implications. Pol. Arch. Intern. Med. 2017;127:873–881. doi: 10.20452/pamw.4165. PubMed DOI
Weisel J.W., Litvinov R.I. Fibrin Formation, Structure and Properties. Subcell. Biochem. 2017;82:405–456. doi: 10.1007/978-3-319-49674-0_13. PubMed DOI PMC
Scott E.M., Ariëns R.A.S., Grant P.J. Genetic and environmental determinants of fibrin structure and function: Relevance to clinical disease. Arterioscler. Thromb. Vasc. Biol. 2004;24:1558–1566. doi: 10.1161/01.ATV.0000136649.83297.bf. PubMed DOI
Undas A., Zawilska K., Ciesla-Dul M., Lehmann-Kopydlowska A., Skubiszak A., Ciepluch K., Tracz W. Altered fibrin clot structure/function in patients with idiopathic venous thromboembolism and in their relatives. Blood J. Am. Soc. Hematol. 2009;114:4272–4278. doi: 10.1182/blood-2009-05-222380. PubMed DOI
Tetik S., Kaya K., Demir M., Eksioglu-Demiralp E., Yardimci T. Oxidative modification of fibrinogen affects its binding activity to glycoprotein (GP) IIb/IIIa. Clin. Appl. Thromb. 2010;16:51–59. doi: 10.1177/1076029609339749. PubMed DOI
Nowak P., Zbikowska H.M., Ponczek M., Kolodziejczyk J., Wachowicz B. Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: Functional consequences. Thromb. Res. 2007;121:163–174. doi: 10.1016/j.thromres.2007.03.017. PubMed DOI
de Vries J.J., Snoek C.J.M., Rijken D.C., de Maat M.P.M. Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and fibrinolysis. Arterioscler. Thromb. Vasc. Biol. 2020;40:554–569. doi: 10.1161/ATVBAHA.119.313626. PubMed DOI PMC
Cervantes Gracia K., Llanas-Cornejo D., Husi H. CVD and oxidative stress. J. Clin. Med. 2017;6:22. doi: 10.3390/jcm6020022. PubMed DOI PMC
Griendling K.K., Touyz R.M., Zweier J.L., Dikalov S., Chilian W., Chen Y.-R., Harrison D.G., Bhatnagar A. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system. Circ. Res. 2016;119:e39–e75. doi: 10.1161/RES.0000000000000110. PubMed DOI PMC
Rosenfeld M.A., Vasilyeva A.D., Yurina L.V., Bychkova A.V. Oxidation of proteins: Is it a programmed process? Free Radic. Res. 2018;52:14–38. doi: 10.1080/10715762.2017.1402305. PubMed DOI
Yurina L.V., Vasilyeva A.D., Bugrova A.E., Indeykina M.I., Kononikhin A.S., Nikolaev E.N., Rosenfeld M.A. Hypochlorite-induced oxidative modification of fibrinogen. Dokl. Biochem. Biophys. 2019;484:37–41. doi: 10.1134/S1607672919010101. PubMed DOI
Bechynska K., Daskova N., Vrzackova N., Harant K., Heczková M., Podzimkova K., Bratova M., Dankova H., Berkova Z., Kosek V., et al. The effect of ω-3 polyunsaturated fatty acids on the liver lipidome, proteome and bile acid profile: Parenteral versus enteral administration. Sci. Rep. 2019;9:19097. doi: 10.1038/s41598-019-54225-8. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing 2020. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 13 May 2021)]. Available online: https://www.R-project.org/
Pretorius E., Swanepoel A.C., Oberholzer H.M., van der Spuy W.J., Duim W., Wessels P.F. A descriptive investigation of the ultrastructure of fibrin networks in thrombo-embolic ischemic stroke. J. Thromb. Thrombolysis. 2011;31:507–513. doi: 10.1007/s11239-010-0538-5. PubMed DOI
Sovová Ž., Štikarová J., Kaufmanová J., Májek P., Suttnar J., Šácha P., Malý M., Dyr J.E. Impact of posttranslational modifications on atomistic structure of fibrinogen. PLoS ONE. 2020;15:e0227543. doi: 10.1371/journal.pone.0227543. PubMed DOI PMC
Todd M., McDevitt E., McDowell F. Stroke and blood coagulation. Stroke. 1973;4:400–405. doi: 10.1161/01.STR.4.3.400. PubMed DOI
Gaston L.W., Brooks J.E., Blumenthal H.J., Miller C.E. A study of blood coagulation following an acute stroke. Stroke. 1971;2:81–87. doi: 10.1161/01.STR.2.1.81. PubMed DOI
Wolberg A.S., Campbell R.A. Thrombin generation, fibrin clot formation and hemostasis. Transfus. Apher. Sci. Off. J. World Apher. Assoc. Off. J. Eur. Soc. Haemapheresis. 2008;38:15–23. doi: 10.1016/j.transci.2007.12.005. PubMed DOI PMC
Undas A., Szułdrzynski K., Stepien E., Zalewski J., Godlewski J., Tracz W., Pasowicz M., Zmudka K. Reduced clot permeability and susceptibility to lysis in patients with acute coronary syndrome: Effects of inflammation and oxidative stress. Atherosclerosis. 2008;196:551–557. doi: 10.1016/j.atherosclerosis.2007.05.028. PubMed DOI
Belisario M.A., Di Domenico C., Pelagalli A., Della Morte R., Staiano N. Metal-ion catalyzed oxidation affects fibrinogen activity on platelet aggregation and adhesion. Biochimie. 1997;79:449–455. doi: 10.1016/S0300-9084(97)86155-X. PubMed DOI
Becatti M., Marcucci R., Bruschi G., Taddei N., Bani D., Gori A.M., Giusti B., Gensini G.F., Abbate R., Fiorillo C. Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2014;34:1355–1361. doi: 10.1161/ATVBAHA.114.303785. PubMed DOI
Shacter E., Williams J.A., Levine R.L. Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radic. Biol. Med. 1995;18:815–821. doi: 10.1016/0891-5849(95)93872-4. PubMed DOI
Gligorijević N., Križáková M., Penezic A., Katrlík J., Nedić O. Structural and functional changes of fibrinogen due to aging. Int. J. Biol. Macromol. 2017;108 doi: 10.1016/j.ijbiomac.2017.11.016. PubMed DOI
Cappelletti R.M. Statins therapy: Effects on plasma fibrinogen levels and fibrinolysis. J. Nutr. Disord. Ther. 2013;03 doi: 10.4172/2161-0509.S6-001. DOI
Undas A., Celinska-Löwenhoff M., Löwenhoff T., Szceklik A. Statins, fenofibrate, and quinapril increase clot permeability and enhance fibrinolysis in patients with coronary artery disease. J. Thromb. Haemost. 2006;4:1029–1036. doi: 10.1111/j.1538-7836.2006.01882.x. PubMed DOI
Wallace A., Albadawi H., Hoang P., Fleck A., Naidu S., Knuttinen G., Oklu R. Statins as a preventative therapy for venous thromboembolism. Cardiovasc. Diagn. Ther. 2017;7:S207–S218. doi: 10.21037/cdt.2017.09.12. PubMed DOI PMC
Ajjan R.A., Standeven K.F., Khanbhai M., Phoenix F., Gersh K.C., Weisel J.W., Kearney M.T., Ariëns R.A.S., Grant P.J. Effects of aspirin on clot structure and fibrinolysis using a novel in vitro cellular system. Arterioscler. Thromb. Vasc. Biol. 2009;29:712–717. doi: 10.1161/ATVBAHA.109.183707. PubMed DOI
Bjornsson T.D., Schneider D.E., Berger H.J. Aspirin acetylates fibrinogen and enhances fibrinolysis. Fibrinolytic effect is independent of changes in plasminogen activator levels. J. Pharmacol. Exp. Ther. 1989;250:154–161. PubMed
He S., Bark N., Wang H., Svensson J., Blombäck M. Effects of acetylsalicylic acid on increase of fibrin network porosity and the consequent upregulation of fibrinolysis. J. Cardiovasc. Pharmacol. 2009;53:24–29. doi: 10.1097/FJC.0b013e3181953e0f. PubMed DOI
Undas A., Brummel-Ziedins K., Mann K.G. Why does aspirin decrease the risk of venous thromboembolism? On old and novel antithrombotic effects of acetyl salicylic acid. J. Thromb. Haemost. 2014;12:1776–1787. doi: 10.1111/jth.12728. PubMed DOI
Markowicz-Piasecka M., Huttunen K.M., Broncel M., Sikora J. Sulfenamide and sulfonamide derivatives of Metformin—A new option to improve endothelial function and plasma haemostasis. Sci. Rep. 2019;9:6573. doi: 10.1038/s41598-019-43083-z. PubMed DOI PMC
Shinoda Y., Inoue I., Nakano T., Seo M., Sassa M., Goto S., Awata T., Komoda T., Katayama S. Acarbose improves fibrinolytic activity in patients with impaired glucose tolerance. Metabolism. 2006;55:935–939. doi: 10.1016/j.metabol.2006.02.023. PubMed DOI
Barua R.S., Sy F., Srikanth S., Huang G., Javed U., Buhari C., Margosan D., Ambrose J.A. Effects of cigarette smoke exposure on clot dynamics and fibrin structure. Arterioscler. Thromb. Vasc. Biol. 2010;30:75–79. doi: 10.1161/ATVBAHA.109.195024. PubMed DOI
Hoffman M. Alterations of fibrinogen structure in human disease. Cardiovasc. Hematol. Agents Med. Chem. 2008;6:206–211. doi: 10.2174/187152508784871981. PubMed DOI
Weigandt K.M., White N., Chung D., Ellingson E., Wang Y., Fu X., Pozzo D.C. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophys. J. 2012;103:2399–2407. doi: 10.1016/j.bpj.2012.10.036. PubMed DOI PMC
Mahreen R., Mohsin M., Nasreen Z., Siraj M., Ishaq M. Significantly increased levels of serum malonaldehyde in type 2 diabetics with myocardial infarction. Int. J. Diabetes Dev. Ctries. 2010;30:49–51. doi: 10.4103/0973-3930.60006. PubMed DOI PMC
Aznar J., Santos M.T., Valles J., Sala J. Serum malondialdehyde-like material (MDA-LM) in acute myocardial infarction. J. Clin. Pathol. 1983;36:712–715. doi: 10.1136/jcp.36.6.712. PubMed DOI PMC
Zhao Z.-Q., Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning. Cardiovasc. Res. 2002;55:438–455. doi: 10.1016/S0008-6363(02)00442-X. PubMed DOI
Marder V.J., Chute D.J., Starkman S., Abolian A.M., Kidwell C., Liebeskind D., Ovbiagele B., Vinuela F., Duckwiler G., Jahan R., et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke. 2006;37:2086–2093. doi: 10.1161/01.STR.0000230307.03438.94. PubMed DOI
Undas A., Podolec P., Zawilska K., Pieculewicz M., Jedliński I., Stepień E., Konarska-Kuszewska E., Weglarz P., Duszyńska M., Hanschke E., et al. Altered fibrin clot structure/function in patients with cryptogenic ischemic stroke. Stroke. 2009;40:1499–1501. doi: 10.1161/STROKEAHA.108.532812. PubMed DOI
Elsayed W.M., Abdel-Gawad E.-H.A., Mesallam D.I.A., El-Serafy T.S. The relationship between oxidative stress and acute ischemic stroke severity and functional outcome. Egypt. J. Neurol. Psychiatry Neurosurg. 2020;56:74. doi: 10.1186/s41983-020-00206-y. DOI
Polidori M.C., Cherubini A., Stahl W., Senin U., Sies H., Mecocci P. Plasma carotenoid and malondialdehyde levels in ischemic stroke patients: Relationship to early outcome. Free Radic. Res. 2002;36:265–268. doi: 10.1080/10715760290019273. PubMed DOI
Hajsl M., Hlavackova A., Broulikova K., Sramek M., Maly M., Dyr J.E., Suttnar J. Tryptophan metabolism, inflammation, and oxidative stress in patients with neurovascular disease. Metabolites. 2020;10:208. doi: 10.3390/metabo10050208. PubMed DOI PMC
Thompson J.L., Nielsen V.G., Castro A.R., Chen A. Heme oxygenase derived carbon monoxide and iron mediated plasmatic hypercoagulability in a patient with calcific mitral valve disease. J. Thromb. Thrombolysis. 2015;39:532–535. doi: 10.1007/s11239-014-1134-x. PubMed DOI
Nielsen V., Pretorius E., Bester J., Jacobsen W., Boyle P.K., Reinhard J.P. Carbon monoxide and iron modulate plasmatic coagulation in Alzheimer’s disease. Curr. Neurovasc. Res. 2015;12:31–39. doi: 10.2174/1567202612666150102150042. PubMed DOI
Kishimoto Y., Kondo K., Momiyama Y. The protective role of heme oxygenase-1 in atherosclerotic diseases. Int. J. Mol. Sci. 2019;20:3628. doi: 10.3390/ijms20153628. PubMed DOI PMC
Kishimoto Y., Ibe S., Saita E., Sasaki K., Niki H., Miura K., Ikegami Y., Ohmori R., Kondo K., Momiyama Y. Plasma heme oxygenase-1 levels in patients with coronary and peripheral artery diseases. Dis. Markers. 2018;2018:6138124. doi: 10.1155/2018/6138124. PubMed DOI PMC
Haines D.D., Tosaki A. Role of heme oxygenases in cardiovascular syndromes and co-morbidities. Curr. Pharm. Des. 2018;24:2322–2325. doi: 10.2174/1381612824666180727110353. PubMed DOI PMC
Cui H.-Y., Zhang X.-J., Yang Y., Zhang C., Zhu C.-H., Miao J.-Y., Chen R. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling. Neural Regen. Res. 2018;13:2119–2128. doi: 10.4103/1673-5374.241463. PubMed DOI PMC
Kaiser S., Frase S., Selzner L., Lieberum J.-L., Wollborn J., Niesen W.-D., Foit N.A., Heiland D.H., Schallner N. Neuroprotection after hemorrhagic stroke depends on cerebral heme oxygenase-1. Antioxidants. 2019;8:496. doi: 10.3390/antiox8100496. PubMed DOI PMC