Fibrin Clot Formation under Oxidative Stress Conditions

. 2021 Jun 07 ; 10 (6) : . [epub] 20210607

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34200255

Grantová podpora
AIIHHP: CZ.02.1.01/0.0/0.0/16_025/0007428 European Regional Development Fund
00023736 Ministerstvo Zdravotnictví Ceské Republiky
NV18-08-00149 Ministerstvo Zdravotnictví Ceské Republiky
CZ.2.16/3.1.00/24001 European Regional Development Fund

During coagulation, the soluble fibrinogen is converted into insoluble fibrin. Fibrinogen is a multifunctional plasma protein, which is essential for hemostasis. Various oxidative posttranslational modifications influence fibrinogen structure as well as interactions between various partners in the coagulation process. The aim was to examine the effects of oxidative stress conditions on fibrin clot formation in arterial atherothrombotic disorders. We studied the changes in in vitro fibrin network formation in three groups of patients-with acute coronary syndrome (ACS), with significant carotid artery stenosis (SCAS), and with acute ischemic stroke (AIS), as well as a control group. The level of oxidative stress marker malondialdehyde measured by LC-MS/MS was higher in SCAS and AIS patients compared with controls. Turbidic methods revealed a higher final optical density and a prolonged lysis time in the clots of these patients. Electron microscopy was used to visualize changes in the in vitro-formed fibrin network. Fibers from patients with AIS were significantly thicker in comparison with control and ACS fibers. The number of fibrin fibers in patients with AIS was significantly lower in comparison with ACS and control groups. Thus, oxidative stress-mediated changes in fibrin clot formation, structure and dissolution may affect the effectiveness of thrombolytic therapy.

Zobrazit více v PubMed

Martinez M., Weisel J.W., Ischiropoulos H. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free Radic. Biol. Med. 2013;65:411–418. doi: 10.1016/j.freeradbiomed.2013.06.039. PubMed DOI PMC

Weisel J.W. The mechanical properties of fibrin for basic scientists and clinicians. Biophys. Chem. 2004;112:267–276. doi: 10.1016/j.bpc.2004.07.029. PubMed DOI

Bychkova A.V., Vasilyeva A.D., Bugrova A.E., Indeykina M.I., Kononikhin A.S., Nikolaev E.N., Konstantinova M.L., Rosenfeld M.A. Oxidation-induced modification of the fibrinogen polypeptide chains. Dokl. Biochem. Biophys. 2017;474:173–177. doi: 10.1134/S1607672917030115. PubMed DOI

Vadseth C., Souza J.M., Thomson L., Seagraves A., Nagaswami C., Scheiner T., Torbet J., Vilaire G., Bennett J.S., Murciano J.C., et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J. Biol. Chem. 2004;279:8820–8826. doi: 10.1074/jbc.M306101200. PubMed DOI

Stikarova J., Kotlin R., Riedel T., Suttnar J., Pimkova K., Chrastinova L., Dyr J.E. The effect of reagents mimicking oxidative stress on fibrinogen function. Sci. World J. 2013;2013:359621. doi: 10.1155/2013/359621. PubMed DOI PMC

Ząbczyk M., Undas A. Plasma fibrin clot structure and thromboembolism: Clinical implications. Pol. Arch. Intern. Med. 2017;127:873–881. doi: 10.20452/pamw.4165. PubMed DOI

Weisel J.W., Litvinov R.I. Fibrin Formation, Structure and Properties. Subcell. Biochem. 2017;82:405–456. doi: 10.1007/978-3-319-49674-0_13. PubMed DOI PMC

Scott E.M., Ariëns R.A.S., Grant P.J. Genetic and environmental determinants of fibrin structure and function: Relevance to clinical disease. Arterioscler. Thromb. Vasc. Biol. 2004;24:1558–1566. doi: 10.1161/01.ATV.0000136649.83297.bf. PubMed DOI

Undas A., Zawilska K., Ciesla-Dul M., Lehmann-Kopydlowska A., Skubiszak A., Ciepluch K., Tracz W. Altered fibrin clot structure/function in patients with idiopathic venous thromboembolism and in their relatives. Blood J. Am. Soc. Hematol. 2009;114:4272–4278. doi: 10.1182/blood-2009-05-222380. PubMed DOI

Tetik S., Kaya K., Demir M., Eksioglu-Demiralp E., Yardimci T. Oxidative modification of fibrinogen affects its binding activity to glycoprotein (GP) IIb/IIIa. Clin. Appl. Thromb. 2010;16:51–59. doi: 10.1177/1076029609339749. PubMed DOI

Nowak P., Zbikowska H.M., Ponczek M., Kolodziejczyk J., Wachowicz B. Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: Functional consequences. Thromb. Res. 2007;121:163–174. doi: 10.1016/j.thromres.2007.03.017. PubMed DOI

de Vries J.J., Snoek C.J.M., Rijken D.C., de Maat M.P.M. Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and fibrinolysis. Arterioscler. Thromb. Vasc. Biol. 2020;40:554–569. doi: 10.1161/ATVBAHA.119.313626. PubMed DOI PMC

Cervantes Gracia K., Llanas-Cornejo D., Husi H. CVD and oxidative stress. J. Clin. Med. 2017;6:22. doi: 10.3390/jcm6020022. PubMed DOI PMC

Griendling K.K., Touyz R.M., Zweier J.L., Dikalov S., Chilian W., Chen Y.-R., Harrison D.G., Bhatnagar A. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system. Circ. Res. 2016;119:e39–e75. doi: 10.1161/RES.0000000000000110. PubMed DOI PMC

Rosenfeld M.A., Vasilyeva A.D., Yurina L.V., Bychkova A.V. Oxidation of proteins: Is it a programmed process? Free Radic. Res. 2018;52:14–38. doi: 10.1080/10715762.2017.1402305. PubMed DOI

Yurina L.V., Vasilyeva A.D., Bugrova A.E., Indeykina M.I., Kononikhin A.S., Nikolaev E.N., Rosenfeld M.A. Hypochlorite-induced oxidative modification of fibrinogen. Dokl. Biochem. Biophys. 2019;484:37–41. doi: 10.1134/S1607672919010101. PubMed DOI

Bechynska K., Daskova N., Vrzackova N., Harant K., Heczková M., Podzimkova K., Bratova M., Dankova H., Berkova Z., Kosek V., et al. The effect of ω-3 polyunsaturated fatty acids on the liver lipidome, proteome and bile acid profile: Parenteral versus enteral administration. Sci. Rep. 2019;9:19097. doi: 10.1038/s41598-019-54225-8. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing 2020. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 13 May 2021)]. Available online: https://www.R-project.org/

Pretorius E., Swanepoel A.C., Oberholzer H.M., van der Spuy W.J., Duim W., Wessels P.F. A descriptive investigation of the ultrastructure of fibrin networks in thrombo-embolic ischemic stroke. J. Thromb. Thrombolysis. 2011;31:507–513. doi: 10.1007/s11239-010-0538-5. PubMed DOI

Sovová Ž., Štikarová J., Kaufmanová J., Májek P., Suttnar J., Šácha P., Malý M., Dyr J.E. Impact of posttranslational modifications on atomistic structure of fibrinogen. PLoS ONE. 2020;15:e0227543. doi: 10.1371/journal.pone.0227543. PubMed DOI PMC

Todd M., McDevitt E., McDowell F. Stroke and blood coagulation. Stroke. 1973;4:400–405. doi: 10.1161/01.STR.4.3.400. PubMed DOI

Gaston L.W., Brooks J.E., Blumenthal H.J., Miller C.E. A study of blood coagulation following an acute stroke. Stroke. 1971;2:81–87. doi: 10.1161/01.STR.2.1.81. PubMed DOI

Wolberg A.S., Campbell R.A. Thrombin generation, fibrin clot formation and hemostasis. Transfus. Apher. Sci. Off. J. World Apher. Assoc. Off. J. Eur. Soc. Haemapheresis. 2008;38:15–23. doi: 10.1016/j.transci.2007.12.005. PubMed DOI PMC

Undas A., Szułdrzynski K., Stepien E., Zalewski J., Godlewski J., Tracz W., Pasowicz M., Zmudka K. Reduced clot permeability and susceptibility to lysis in patients with acute coronary syndrome: Effects of inflammation and oxidative stress. Atherosclerosis. 2008;196:551–557. doi: 10.1016/j.atherosclerosis.2007.05.028. PubMed DOI

Belisario M.A., Di Domenico C., Pelagalli A., Della Morte R., Staiano N. Metal-ion catalyzed oxidation affects fibrinogen activity on platelet aggregation and adhesion. Biochimie. 1997;79:449–455. doi: 10.1016/S0300-9084(97)86155-X. PubMed DOI

Becatti M., Marcucci R., Bruschi G., Taddei N., Bani D., Gori A.M., Giusti B., Gensini G.F., Abbate R., Fiorillo C. Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2014;34:1355–1361. doi: 10.1161/ATVBAHA.114.303785. PubMed DOI

Shacter E., Williams J.A., Levine R.L. Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radic. Biol. Med. 1995;18:815–821. doi: 10.1016/0891-5849(95)93872-4. PubMed DOI

Gligorijević N., Križáková M., Penezic A., Katrlík J., Nedić O. Structural and functional changes of fibrinogen due to aging. Int. J. Biol. Macromol. 2017;108 doi: 10.1016/j.ijbiomac.2017.11.016. PubMed DOI

Cappelletti R.M. Statins therapy: Effects on plasma fibrinogen levels and fibrinolysis. J. Nutr. Disord. Ther. 2013;03 doi: 10.4172/2161-0509.S6-001. DOI

Undas A., Celinska-Löwenhoff M., Löwenhoff T., Szceklik A. Statins, fenofibrate, and quinapril increase clot permeability and enhance fibrinolysis in patients with coronary artery disease. J. Thromb. Haemost. 2006;4:1029–1036. doi: 10.1111/j.1538-7836.2006.01882.x. PubMed DOI

Wallace A., Albadawi H., Hoang P., Fleck A., Naidu S., Knuttinen G., Oklu R. Statins as a preventative therapy for venous thromboembolism. Cardiovasc. Diagn. Ther. 2017;7:S207–S218. doi: 10.21037/cdt.2017.09.12. PubMed DOI PMC

Ajjan R.A., Standeven K.F., Khanbhai M., Phoenix F., Gersh K.C., Weisel J.W., Kearney M.T., Ariëns R.A.S., Grant P.J. Effects of aspirin on clot structure and fibrinolysis using a novel in vitro cellular system. Arterioscler. Thromb. Vasc. Biol. 2009;29:712–717. doi: 10.1161/ATVBAHA.109.183707. PubMed DOI

Bjornsson T.D., Schneider D.E., Berger H.J. Aspirin acetylates fibrinogen and enhances fibrinolysis. Fibrinolytic effect is independent of changes in plasminogen activator levels. J. Pharmacol. Exp. Ther. 1989;250:154–161. PubMed

He S., Bark N., Wang H., Svensson J., Blombäck M. Effects of acetylsalicylic acid on increase of fibrin network porosity and the consequent upregulation of fibrinolysis. J. Cardiovasc. Pharmacol. 2009;53:24–29. doi: 10.1097/FJC.0b013e3181953e0f. PubMed DOI

Undas A., Brummel-Ziedins K., Mann K.G. Why does aspirin decrease the risk of venous thromboembolism? On old and novel antithrombotic effects of acetyl salicylic acid. J. Thromb. Haemost. 2014;12:1776–1787. doi: 10.1111/jth.12728. PubMed DOI

Markowicz-Piasecka M., Huttunen K.M., Broncel M., Sikora J. Sulfenamide and sulfonamide derivatives of Metformin—A new option to improve endothelial function and plasma haemostasis. Sci. Rep. 2019;9:6573. doi: 10.1038/s41598-019-43083-z. PubMed DOI PMC

Shinoda Y., Inoue I., Nakano T., Seo M., Sassa M., Goto S., Awata T., Komoda T., Katayama S. Acarbose improves fibrinolytic activity in patients with impaired glucose tolerance. Metabolism. 2006;55:935–939. doi: 10.1016/j.metabol.2006.02.023. PubMed DOI

Barua R.S., Sy F., Srikanth S., Huang G., Javed U., Buhari C., Margosan D., Ambrose J.A. Effects of cigarette smoke exposure on clot dynamics and fibrin structure. Arterioscler. Thromb. Vasc. Biol. 2010;30:75–79. doi: 10.1161/ATVBAHA.109.195024. PubMed DOI

Hoffman M. Alterations of fibrinogen structure in human disease. Cardiovasc. Hematol. Agents Med. Chem. 2008;6:206–211. doi: 10.2174/187152508784871981. PubMed DOI

Weigandt K.M., White N., Chung D., Ellingson E., Wang Y., Fu X., Pozzo D.C. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophys. J. 2012;103:2399–2407. doi: 10.1016/j.bpj.2012.10.036. PubMed DOI PMC

Mahreen R., Mohsin M., Nasreen Z., Siraj M., Ishaq M. Significantly increased levels of serum malonaldehyde in type 2 diabetics with myocardial infarction. Int. J. Diabetes Dev. Ctries. 2010;30:49–51. doi: 10.4103/0973-3930.60006. PubMed DOI PMC

Aznar J., Santos M.T., Valles J., Sala J. Serum malondialdehyde-like material (MDA-LM) in acute myocardial infarction. J. Clin. Pathol. 1983;36:712–715. doi: 10.1136/jcp.36.6.712. PubMed DOI PMC

Zhao Z.-Q., Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning. Cardiovasc. Res. 2002;55:438–455. doi: 10.1016/S0008-6363(02)00442-X. PubMed DOI

Marder V.J., Chute D.J., Starkman S., Abolian A.M., Kidwell C., Liebeskind D., Ovbiagele B., Vinuela F., Duckwiler G., Jahan R., et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke. 2006;37:2086–2093. doi: 10.1161/01.STR.0000230307.03438.94. PubMed DOI

Undas A., Podolec P., Zawilska K., Pieculewicz M., Jedliński I., Stepień E., Konarska-Kuszewska E., Weglarz P., Duszyńska M., Hanschke E., et al. Altered fibrin clot structure/function in patients with cryptogenic ischemic stroke. Stroke. 2009;40:1499–1501. doi: 10.1161/STROKEAHA.108.532812. PubMed DOI

Elsayed W.M., Abdel-Gawad E.-H.A., Mesallam D.I.A., El-Serafy T.S. The relationship between oxidative stress and acute ischemic stroke severity and functional outcome. Egypt. J. Neurol. Psychiatry Neurosurg. 2020;56:74. doi: 10.1186/s41983-020-00206-y. DOI

Polidori M.C., Cherubini A., Stahl W., Senin U., Sies H., Mecocci P. Plasma carotenoid and malondialdehyde levels in ischemic stroke patients: Relationship to early outcome. Free Radic. Res. 2002;36:265–268. doi: 10.1080/10715760290019273. PubMed DOI

Hajsl M., Hlavackova A., Broulikova K., Sramek M., Maly M., Dyr J.E., Suttnar J. Tryptophan metabolism, inflammation, and oxidative stress in patients with neurovascular disease. Metabolites. 2020;10:208. doi: 10.3390/metabo10050208. PubMed DOI PMC

Thompson J.L., Nielsen V.G., Castro A.R., Chen A. Heme oxygenase derived carbon monoxide and iron mediated plasmatic hypercoagulability in a patient with calcific mitral valve disease. J. Thromb. Thrombolysis. 2015;39:532–535. doi: 10.1007/s11239-014-1134-x. PubMed DOI

Nielsen V., Pretorius E., Bester J., Jacobsen W., Boyle P.K., Reinhard J.P. Carbon monoxide and iron modulate plasmatic coagulation in Alzheimer’s disease. Curr. Neurovasc. Res. 2015;12:31–39. doi: 10.2174/1567202612666150102150042. PubMed DOI

Kishimoto Y., Kondo K., Momiyama Y. The protective role of heme oxygenase-1 in atherosclerotic diseases. Int. J. Mol. Sci. 2019;20:3628. doi: 10.3390/ijms20153628. PubMed DOI PMC

Kishimoto Y., Ibe S., Saita E., Sasaki K., Niki H., Miura K., Ikegami Y., Ohmori R., Kondo K., Momiyama Y. Plasma heme oxygenase-1 levels in patients with coronary and peripheral artery diseases. Dis. Markers. 2018;2018:6138124. doi: 10.1155/2018/6138124. PubMed DOI PMC

Haines D.D., Tosaki A. Role of heme oxygenases in cardiovascular syndromes and co-morbidities. Curr. Pharm. Des. 2018;24:2322–2325. doi: 10.2174/1381612824666180727110353. PubMed DOI PMC

Cui H.-Y., Zhang X.-J., Yang Y., Zhang C., Zhu C.-H., Miao J.-Y., Chen R. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling. Neural Regen. Res. 2018;13:2119–2128. doi: 10.4103/1673-5374.241463. PubMed DOI PMC

Kaiser S., Frase S., Selzner L., Lieberum J.-L., Wollborn J., Niesen W.-D., Foit N.A., Heiland D.H., Schallner N. Neuroprotection after hemorrhagic stroke depends on cerebral heme oxygenase-1. Antioxidants. 2019;8:496. doi: 10.3390/antiox8100496. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...