Impact of posttranslational modifications on atomistic structure of fibrinogen

. 2020 ; 15 (1) : e0227543. [epub] 20200129

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31995579

Oxidative stress in humans is related to various pathophysiological processes, which can manifest in numerous diseases including cancer, cardiovascular diseases, and Alzheimer's disease. On the atomistic level, oxidative stress causes posttranslational modifications, thus inducing structural and functional changes into the proteins structure. This study focuses on fibrinogen, a blood plasma protein that is frequently targeted by reagents causing posttranslational modifications in proteins. Fibrinogen was in vitro modified by three reagents, namely sodium hypochlorite, malondialdehyde, and 3-morpholinosydnonimine that mimic the oxidative stress in diseases. Newly induced posttranslational modifications were detected via mass spectrometry. Electron microscopy was used to visualize changes in the fibrin networks, which highlight the extent of disturbances in fibrinogen behavior after exposure to reagents. We used molecular dynamics simulations to observe the impact of selected posttranslational modifications on the fibrinogen structure at the atomistic level. In total, 154 posttranslational modifications were identified, 84 of them were in fibrinogen treated with hypochlorite, 51 resulted from a reaction of fibrinogen with malondialdehyde, and 19 were caused by 3-morpholinosydnonimine. Our data reveal that the stronger reagents induce more posttranslational modifications in the fibrinogen structure than the weaker ones, and they extensively alter the architecture of the fibrin network. Molecular dynamics simulations revealed that the effect of posttranslational modifications on fibrinogen secondary structure varies from negligible alternations to serious disruptions. Among the serious disruptions is the oxidation of γR375 resulting in the release of Ca2+ ion that is necessary for appropriate fibrin fiber formation. Folding of amino acids γE72-γN77 into a short α-helix is a result of oxidation of γP76 to glutamic acid. The study describes behaviour of fibrinogen coiled-coil connecter in the vicinity of plasmin and hementin cleavage sites.

Zobrazit více v PubMed

Wang L, Li L, Wang H, Liu J. Study on the influence of oxidative stress on the fibrillization of fibrinogen. Biochem J 2016;473:4373–84. 10.1042/BCJ20160702 PubMed DOI

Becatti M, Marcucci R, Bruschi G, Taddei N, Bani D, Gori AM et al. Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler Thromb Vasc Biol 2014;34:1355–61. 10.1161/ATVBAHA.114.303785 PubMed DOI

Martinez M, Cuker A, Mills A, Lightfoot R, Fan Y, Tang WW et al. Nitrated fibrinogen is a biomarker of oxidative stress in venous thromboembolism. Free radical biology and medicine 2012;53:230–6. 10.1016/j.freeradbiomed.2012.05.004 PubMed DOI PMC

Vadseth C, Souza JM, Thomson L, Seagraves A, Nagaswami C, Scheiner T et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J Biol Chem 2004;279:8820–6. 10.1074/jbc.M306101200 PubMed DOI

Mitchell AM, Nordenholz KE, Kline JA. Tandem measurement of D-dimer and myeloperoxidase or C-reactive protein to effectively screen for pulmonary embolism in the emergency department. Acad Emerg Med 2008;15:800–5. 10.1111/j.1553-2712.2008.00204.x PubMed DOI

Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J 2007;401:1–11. 10.1042/BJ20061131 PubMed DOI

Pignatelli B, Li C, Boffetta P, Chen Q, Ahrens W, Nyberg F et al. Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Res 2001;61:778–84. PubMed

Martinez M, Weisel JW, Ischiropoulos H. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free Radical Biology and Medicine 2013;65:411–8. 10.1016/j.freeradbiomed.2013.06.039 PubMed DOI PMC

Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 2017;86:715–48. 10.1146/annurev-biochem-061516-045037 PubMed DOI

Shacter E, Williams JA, Lim M, Levine RL. Differential susceptibility of plasma proteins to oxidative modification: examination by western blot immunoassay. Free Radical Biology and Medicine 1994;17:429–37. 10.1016/0891-5849(94)90169-4 PubMed DOI

Bailey K, Bettelheim FR, Lorand L, Middlebrook WR. Action of thrombin in the clotting of fibrinogen. Nature 1951;167:233–4. 10.1038/167233a0 PubMed DOI

Lorand L. ‘Fibrino-peptide’: new aspects of the fibrinogen–fibrin transformation. Nature 1951;167:992–3. 10.1038/167992a0 PubMed DOI

Weisel JW, Litvinov RI. Fibrin formation, structure and properties In: Anonymous Fibrous Proteins: Structures and Mechanisms: Springer; 2017, p. 405–456. PubMed PMC

Swenson S, Markland FS Jr. Snake venom fibrin (ogen) olytic enzymes. Toxicon 2005;45:1021–39. 10.1016/j.toxicon.2005.02.027 PubMed DOI

Silvain J, Collet J, Nagaswami C, Beygui F, Edmondson KE, Bellemain-Appaix A et al. Composition of coronary thrombus in acute myocardial infarction. J Am Coll Cardiol 2011;57:1359–67. 10.1016/j.jacc.2010.09.077 PubMed DOI PMC

Sadowski M, Ząbczyk M, Undas A. Coronary thrombus composition: links with inflammation, platelet and endothelial markers. Atherosclerosis 2014;237:555–61. 10.1016/j.atherosclerosis.2014.10.020 PubMed DOI

Ząbczyk M, Undas A. Plasma fibrin clot structure and thromboembolism: clinical implications. Pol Arch Intern Med 2017;127:873–81. 10.20452/pamw.4165 PubMed DOI

Undas A, Ariëns RA. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 2011;31:e88–99. 10.1161/ATVBAHA.111.230631 PubMed DOI

Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol 2005;129:307–21. 10.1111/j.1365-2141.2005.05444.x PubMed DOI

Budzynski AZ. Interaction of hementin with fibrinogen and fibrin. Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis 1991;2:149–52. PubMed

Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry 2009;48:3877–86. 10.1021/bi802205g PubMed DOI

Zhmurov A, Protopopova AD, Litvinov RI, Zhukov P, Weisel JW, Barsegov V. Atomic structural models of fibrin oligomers. Structure 2018;26:857–868. e4. 10.1016/j.str.2018.04.005 PubMed DOI PMC

Medved L, Weisel JW, FIBRINOGEN AND FACTOR XIII SUBCOMMITTEE OF THE SCIENTIFIC STANDARDIZATION COMMITTEE OF THE INTERNATIONAL SOCIETY ON THROMBOSIS AND HAEMOSTASIS. Recommendations for nomenclature on fibrinogen and fibrin. Journal of Thrombosis and Haemostasis 2009;7:355–9. PubMed PMC

Burton RA, Tsurupa G, Hantgan RR, Tjandra N, Medved L. NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen αC-domain fragment. Biochemistry 2007;46:8550–60. 10.1021/bi700606v PubMed DOI PMC

Zuev YF, Litvinov RI, Sitnitsky AE, Idiyatullin BZ, Bakirova DR, Galanakis DK et al. Conformational flexibility and self-association of fibrinogen in concentrated solutions. The Journal of Physical Chemistry B 2017;121:7833–43. 10.1021/acs.jpcb.7b05654 PubMed DOI

Fu Y, Grieninger G. Fib420: a normal human variant of fibrinogen with two extended alpha chains. Proceedings of the National Academy of Sciences 1994;91:2625–8. PubMed PMC

Doolittle RF, McNamara K, Lin K. Correlating structure and function during the evolution of fibrinogen-related domains. Protein Science 2012;21:1808–23. 10.1002/pro.2177 PubMed DOI PMC

Yee VC, Pratt KP, Côté HC, Le Trong I, Chung DW, Davie EW et al. Crystal structure of a 30 kDa C-terminal fragment from the γ chain of human fibrinogen. Structure 1997;5:125–38. 10.1016/s0969-2126(97)00171-8 PubMed DOI

Mosesson MW, Finlayson JS, Umfleet RA. Human fibrinogen heterogeneities III. Identification of γ chain variants. J Biol Chem 1972;247:5223–7. PubMed

Wolfenstein-Todel C, Mosesson MW. Carboxy-terminal amino acid sequence of a human fibrinogen. gamma.-chain variant (. gamma.’). Biochemistry 1981;20:6146–9. 10.1021/bi00524a036 PubMed DOI

Doolittle RF. The structure and evolution of vertebrate fibrinogen. Ann N Y Acad Sci 1983;408:13–27. 10.1111/j.1749-6632.1983.tb23231.x PubMed DOI

Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2009;38:D5–D16. 10.1093/nar/gkp967 PubMed DOI PMC

Štikarová J, Kotlín R, Riedel T, Suttnar J, Pimková K, Chrastinová L et al. The effect of reagents mimicking oxidative stress on fibrinogen function. The Scientific World Journal 2013;2013. PubMed PMC

Shacter E, Williams JA, Levine RL. Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radical Biology and Medicine 1995;18:815–21. 10.1016/0891-5849(95)93872-4 PubMed DOI

Weigandt KM, White N, Chung D, Ellingson E, Wang Y, Fu X et al. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophys J 2012;103:2399–407. 10.1016/j.bpj.2012.10.036 PubMed DOI PMC

Hugenholtz G, Macrae F, Adelmeijer J, Dulfer S, Porte RJ, Lisman T et al. Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen. Journal of Thrombosis and Haemostasis 2016;14:1054–66. 10.1111/jth.13278 PubMed DOI

Nowak P, Zbikowska HM, Ponczek M, Kolodziejczyk J, Wachowicz B. Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: functional consequences. Thromb Res 2007;121:163–74. 10.1016/j.thromres.2007.03.017 PubMed DOI

Upchurch GR, Ramdev N, Walsh MT, Loscalzo J. Prothrombotic consequences of the oxidation of fibrinogen and their inhibition by aspirin. J Thromb Thrombolysis 1998;5:9–14. 10.1023/a:1008859729045 PubMed DOI

Torbitz VD, Bochi GV, de Carvalho José Antônio Mainardi, de Almeida Vaucher R, da Silva, et al. In vitro oxidation of fibrinogen promotes functional alterations and formation of advanced oxidation protein products, an inflammation mediator. Inflammation 2015;38:1201–6. 10.1007/s10753-014-0085-x PubMed DOI

Xu Y, Qiang M, Zhang J, Liu Y, He R. Reactive carbonyl compounds (RCCs) cause aggregation and dysfunction of fibrinogen. Protein & cell 2012;3:627–40. PubMed PMC

Hazen SL, Hsu FF, Mueller DM, Crowley JR, Heinecke JW. Human neutrophils employ chlorine gas as an oxidant during phagocytosis. J Clin Invest 1996;98:1283–9. 10.1172/JCI118914 PubMed DOI PMC

Yurina LV, Vasilyeva AD, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN et al. Hypochlorite-induced oxidative modification of fibrinogen. 2019;484:37–41. PubMed

Bychkova AV, Vasilyeva AD, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN et al. Oxidation-induced modification of the fibrinogen polypeptide chains. 2017;474:173–7. PubMed

Shishehbor MH, Aviles RJ, Brennan M, Fu X, Goormastic M, Pearce GL et al. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 2003;289:1675–80. 10.1001/jama.289.13.1675 PubMed DOI

Brennan M, Wu W, Fu X, Shen Z, Song W, Frost H et al. A tale of two controversies defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 2002;277:17415–27. 10.1074/jbc.M112400200 PubMed DOI

Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R et al. Ly-6C hi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007;117:195–205. 10.1172/JCI29950 PubMed DOI PMC

Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 2010;122:1837–45. 10.1161/CIRCULATIONAHA.110.961714 PubMed DOI

Gole MD, Souza JM, Choi I, Hertkorn C, Malcolm S, Foust RF III et al. Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. American Journal of Physiology-Lung Cellular and Molecular Physiology 2000;278:L961–7. 10.1152/ajplung.2000.278.5.L961 PubMed DOI

Piroddi M, Palmese A, Pilolli F, Amoresano A, Pucci P, Ronco C et al. Plasma nitroproteome of kidney disease patients. Amino Acids 2011;40:653–67. 10.1007/s00726-010-0693-1 PubMed DOI

Ponczek M, Bijak M, Saluk J, Kolodziejczyk-Czepas J, Nowak P. The comparison of peroxynitrite action on bovine, porcine and human fibrinogens. Open Life Sciences 2014;9:233–41.

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity 2014;2014. PubMed PMC

Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, metabolism and cardiovascular diseases 2005;15:316–28. 10.1016/j.numecd.2005.05.003 PubMed DOI

Ho E, Galougahi KK, Liu C, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox biology 2013;1:483–91. 10.1016/j.redox.2013.07.006 PubMed DOI PMC

Rankinen T, Hietanen E, Väisänen S, Lehtiö M, Penttilä I, Bouchard C et al. Relationship between lipid peroxidation and plasma fibrinogen in middle-aged men. Thromb Res 2000;99:453–9. 10.1016/s0049-3848(00)00271-1 PubMed DOI

Libondi T, RAGONE R, VINCENTI D, Stiuso P, AURICCHIO G, COLONNA G. In vitro cross-linking of calf lens α-crystallin by malondialdehyde. Int J Pept Protein Res 1994;44:342–7. 10.1111/j.1399-3011.1994.tb01018.x PubMed DOI

Burney PR, White N, Pfaendtner J. Structural effects of methionine oxidation on isolated subdomains of human fibrin D and αC regions. PloS one 2014;9:e86981 10.1371/journal.pone.0086981 PubMed DOI PMC

Pederson EN, Interlandi G. Oxidation-induced destabilization of the fibrinogen α; C-domain dimer investigated by molecular dynamics simulations. Proteins: Structure, Function, and Bioinformatics 2019. PubMed PMC

Sies H. Biological redox systems and oxidative stress. Cellular and Molecular Life Sciences 2007;64:2181–8. 10.1007/s00018-007-7230-8 PubMed DOI PMC

Schmidt D, Brennan SO. Modified form of the fibrinogen Bβ chain (des-Gln Bβ), a potential long-lived marker of pancreatitis. Clin Chem 2007;53:2105–11. 10.1373/clinchem.2007.093179 PubMed DOI

Ghimenti S, Lomonaco T, Onor M, Murgia L, Paolicchi A, Fuoco R et al. Measurement of warfarin in the oral fluid of patients undergoing anticoagulant oral therapy. PloS one 2011;6:e28182 10.1371/journal.pone.0028182 PubMed DOI PMC

Lomonaco T, Ghimenti S, Piga I, Onor M, Melai B, Fuoco R et al. Determination of total and unbound warfarin and warfarin alcohols in human plasma by high performance liquid chromatography with fluorescence detection. Journal of Chromatography A 2013;1314:54–62. 10.1016/j.chroma.2013.08.091 PubMed DOI

Lomonaco T, Ghimenti S, Piga I, Biagini D, Onor M, Fuoco R et al. Influence of sampling on the determination of warfarin and warfarin alcohols in oral fluid. PloS one 2014;9:e114430 10.1371/journal.pone.0114430 PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature methods 2012;9:671 10.1038/nmeth.2089 PubMed DOI PMC

Margreitter C, Petrov D, Zagrovic B. Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications. Nucleic Acids Res 2013;41:W422–6. 10.1093/nar/gkt416 PubMed DOI PMC

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1:19–25.

Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European biophysics journal 2011;40:843 10.1007/s00249-011-0700-9 PubMed DOI

Petrov D, Margreitter C, Grandits M, Oostenbrink C, Zagrovic B. A systematic framework for molecular dynamics simulations of protein post-translational modifications. PLoS computational biology 2013;9:e1003154 10.1371/journal.pcbi.1003154 PubMed DOI PMC

Frishman D, Argos P. Knowledge-based protein secondary structure assignment. Proteins: Structure, Function, and Bioinformatics 1995;23:566–79. PubMed

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of applied crystallography 1993;26:283–91.

Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics 2003:2.3.1–2.3.22. PubMed

Crooks GE, Hon G, Chandonia J, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004;14:1188–90. 10.1101/gr.849004 PubMed DOI PMC

Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers: Original Research on Biomolecules 1983;22:2577–637. PubMed

MacArthur MW, Thornton JM. Influence of proline residues on protein conformation. J Mol Biol 1991;218:397–412. 10.1016/0022-2836(91)90721-h PubMed DOI

Ly B, Godal HC. Denaturation of fibrinogen, the protective effect of calcium. Pathophysiology of Haemostasis and Thrombosis 1972;1:204–9.

Headlam HA, Davies MJ. Markers of protein oxidation: different oxidants give rise to variable yields of bound and released carbonyl products. Free Radical Biology and Medicine 2004;36:1175–84. 10.1016/j.freeradbiomed.2004.02.017 PubMed DOI

Rosenfeld MA, Bychkova AV, Shchegolikhin AN, Leonova VB, Kostanova EA, Biryukova MI et al. Fibrin self-assembly is adapted to oxidation. Free Radical Biology and Medicine 2016;95:55–64. 10.1016/j.freeradbiomed.2016.03.005 PubMed DOI

Weaver TM. The π-helix translates structure into function. Protein Science 2000;9:201–6. 10.1110/ps.9.1.201 PubMed DOI PMC

Köhler S, Schmid F, Settanni G. The internal dynamics of fibrinogen and its implications for coagulation and adsorption. PLoS computational biology 2015;11:e1004346 10.1371/journal.pcbi.1004346 PubMed DOI PMC

Mason JM, Arndt KM. Coiled coil domains: stability, specificity, and biological implications. Chembiochem 2004;5:170–6. 10.1002/cbic.200300781 PubMed DOI

Yoshida N, Hirata H, Morigami Y, Imaoka S, Matsuda M, Yamazumi K et al. Characterization of an abnormal fibrinogen Osaka V with the replacement of gamma-arginine 375 by glycine. The lack of high affinity calcium binding to D-domains and the lack of protective effect of calcium on fibrinolysis. J Biol Chem 1992;267:2753–9. PubMed

Brennan SO, Maghzal G, Shneider BL, Gordon R, Magid MS, George PM. Novel fibrinogen γ375 Arg→ Trp mutation (fibrinogen Aguadilla) causes hepatic endoplasmic reticulum storage and hypofibrinogenemia. Hepatology 2002;36:652–8. 10.1053/jhep.2002.35063 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...