The effect of reagents mimicking oxidative stress on fibrinogen function

. 2013 ; 2013 () : 359621. [epub] 20131021

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24235886

Fibrinogen is one of the plasma proteins most susceptible to oxidative modification. It has been suggested that modification of fibrinogen may cause thrombotic/bleeding complications associated with many pathophysiological states of organism. We exposed fibrinogen molecules to three different modification reagents-malondialdehyde, sodium hypochlorite, and peroxynitrite-that are presented to various degrees in different stages of oxidative stress. We studied the changes in fibrin network formation and platelet interactions with modified fibrinogens under flow conditions. The fastest modification of fibrinogen was caused by hypochlorite. Fibers from fibrinogen modified with either reagent were thinner in comparison with control fibers. We found that platelet dynamic adhesion was significantly lower on fibrinogen modified with malondialdehyde and significantly higher on fibrinogen modified either with hypochlorite or peroxynitrite reflecting different prothrombotic/antithrombotic properties of oxidatively modified fibrinogens. It seems that, in the complex reactions ongoing in living organisms at conditions of oxidation stress, hypochlorite modifies proteins (e.g., fibrinogen) faster and more preferentially than malondialdehyde. It suggests that the prothrombotic effects of prior fibrinogen modifications may outweigh the antithrombotic effect of malondialdehyde-modified fibrinogen in real living systems.

Zobrazit více v PubMed

Paton LN, Mocatta TJ, Richards AM, Winterbourn CC. Increased thrombin-induced polymerization of fibrinogen associated with high protein carbonyl levels in plasma from patients post myocardial infarction. Free Radical Biology and Medicine. 2010;48(2):223–229. PubMed

Ashki N, Hayes KC, Bao F. The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord. Neuroscience. 2008;156(1):107–117. PubMed

Heffron SP, Parastatidis I, Cuchel M, et al. Inflammation induces fibrinogen nitration in experimental human endotoxemia. Free Radical Biology and Medicine. 2009;47(8):1140–1146. PubMed PMC

Shacter E, Williams JA, Lim M, Levine RL. Differential susceptibility of plasma proteins to oxidative modification: examination by western blot immunoassay. Free Radical Biology and Medicine. 1994;17(5):429–437. PubMed

Weisel JW. Fibrinogen and fibrin. Advances in Protein Chemistry. 2005;70:247–299. PubMed

Mosesson MW. Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis. 2005;3(8):1894–1904. PubMed

Ryan EA, Mockros LF, Weisel JW, Lorand L. Structural origins of fibrin clot rheology. Biophysical Journal. 1999;77(5):2813–2826. PubMed PMC

Vadseth C, Souza JM, Thomson L, et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. The Journal of Biological Chemistry. 2004;279(10):8820–8826. PubMed

Shacter E, Williams JA, Levine RL. Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radical Biology and Medicine. 1995;18(4):815–821. PubMed

Azizova OA, Piryazev AP, Aseychev AV, Shvachko AG. Oxidative modification of fibrinogen inhibits its transformation into fibrin under the effect of thrombin. Bulletin of Experimental Biology and Medicine. 2009;147(2):201–203. PubMed

Nowak P, Wachowicz B. Peroxynitrite-mediated modification of fibrinogen affects platelet aggregation and adhesion. Platelets. 2002;13(5-6):293–299. PubMed

Belisario MA, Di Domenico C, Pelagalli A, Della Morte R, Staiano N. Metal-ion catalyzed oxidation affects fibrinogen activity on platelet aggregation and adhesion. Biochimie. 1997;79(7):449–455. PubMed

Tetik S, Kaya K, Demir M, Eksioglu-Demiralp E, Yardimci T. Oxidative modification of fibrinogen affects its binding activity to glycoprotein (GP) IIb/IIIa. Clinical and Applied Thrombosis/Hemostasis. 2010;16(1):51–59. PubMed

Aseychev AV, Azizova OA, Shulenina LV, Piryazev AP. Effect of oxidized fibrinogen on aggregation of activated platelets and neutrophils. Bulletin of Experimental Biology and Medicine. 2009;147(3):312–318. PubMed

Azizova OA, Aseichev AV, Piryazev AP, Roitman EV, Shcheglovitova ON. Effects of oxidized fibrinogen on the functions of blood cells, blood clotting, and rheology. Bulletin of Experimental Biology and Medicine. 2007;144(3):397–407. PubMed

Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical Chemistry. 1997;43(7):1209–1214. PubMed

Hawkins CL, Davies MJ. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. Biochemical Journal. 1998;332(3):617–625. PubMed PMC

Hazell LJ, Stocker R. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochemical Journal. 1993;290(1):165–172. PubMed PMC

Nowak P, Zbikowska HM, Ponczek M, Kolodziejczyk J, Wachowicz B. Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: functional consequences. Thrombosis Research. 2007;121(2):163–174. PubMed

Ischiropoulos H, Al-Mehdi AB. Peroxynitrite-mediated oxidative protein modifications. FEBS Letters. 1995;364(3):279–282. PubMed

Lupidi G, Angeletti M, Eleuteri AM, Tacconi L, Coletta M, Fioretti E. Peroxynitrite-mediated oxidation of fibrinogen inhibits clot formation. FEBS Letters. 1999;462(3):236–240. PubMed

Headlam HA, Davies MJ. Markers of protein oxidation: different oxidants give rise to variable yields of bound and released carbonyl products. Free Radical Biology and Medicine. 2004;36(9):1175–1184. PubMed

Libondi T, Ragone R, Vincenti D, Stiuso P, Auricchio G, Colonna G. In vitro cross-linking of calf lens α-crystallin by malondialdehyde. International Journal of Peptide and Protein Research. 1994;44(4):342–347. PubMed

Carrell Morris J. The acid ionization constant of HOCl from 5 to 35°. Journal of Physical Chemistry. 1966;70(12):3798–3805.

Riedel T, Brynda E, Dyr JE, Houska M. Controlled preparation of thin fibrin films immobilized at solid surfaces. Journal of Biomedical Materials Research A. 2009;88(2):437–447. PubMed

Bellavite P, Andrioli G, Guzzo P, et al. A colorimetric method for the measurement of platelet adhesion in microtiter plates. Analytical Biochemistry. 1994;216(2):444–450. PubMed

Vaníčková M, Suttnar J, Dyr JE. The adhesion of blood platelets on fibrinogen surface: comparison of two biochemical microplate assays. Platelets. 2006;17(7):470–476. PubMed

Sobotková A, Mášová-Chrastinová L, Suttnar J, et al. Antioxidant change platelet responses to various stimulating events. Free Radical Biology and Medicine. 2009;47(12):1707–1714. PubMed PMC

Upchurch GR, Jr., Ramdev N, Walsh MT, Loscalzo J. Prothrombotic consequences of the oxidation of fibrinogen and their inhibition by aspirin. Journal of Thrombosis and Thrombolysis. 1998;5(1):9–14. PubMed

Tetik S, Kaya K, Yardimci T. Effect of oxidized fibrinogen on hemostatic system: in vitro study. Clinical and Applied Thrombosis/Hemostasis. 2011;17(3):259–263. PubMed

Templar J, Kon SP, Milligan TP, Newman DJ, Raftery MJ. Increased plasma malondialdehyde levels in glomerular disease as determined by a fully validated HPLC method. Nephrology Dialysis Transplantation. 1999;14(4):946–951. PubMed

Massberg S, Enders G, de Matos FCM, et al. Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood. 1999;94(11):3829–3838. PubMed

Panzenboeck U, Raitmayer S, Reicher H, et al. Effects of reagent and enzymatically generated hypochlorite on physicochemical and metabolic properties of high density lipoproteins. The Journal of Biological Chemistry. 1997;272(47):29711–29720. PubMed

Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery. 2007;6(8):662–680. PubMed

Mallozzi C, Di Stasi AMM, Minetti M. Peroxynitrite modulates tyrosine-dependent signal transduction pathway of human erythrocyte band 3. FASEB Journal. 1997;11(14):1281–1290. PubMed

Khan AU, Kasha M. Singlet molecular oxygen evolution upon simple acidification of aqueous hypochlorite: application to studies on the deleterious health effects of chlorinated drinking water. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(26):12362–12364. PubMed PMC

Stief TW, Kurz J, Doss MO, Fareed J. Singlet oxygen inactivates fibrinogen, factor V, factor VIII, factor X, and platelet aggregation of human blood. Thrombosis Research. 2000;97(6):473–480. PubMed

Stief TW, Kretschmer V, Kosche B, Doss MO, Renz H. Thrombin converts singlet oxygen (1O2)-oxidized fibrinogen into a soluble t-PA cofactor. A new method for preparing a stimulator for functional t-PA assays. Annals of Hematology. 2001;80(4):189–194. PubMed

Suontaka A, Blombäck M, Chapman J. Changes in functional activities of plasma fibrinogen after treatment with methylene blue and red light. Transfusion. 2003;43(5):568–575. PubMed

Martinez GR, Di Mascio P, Bonini MG, et al. Peroxynitrite does not decompose to singlet oxygen (1DgO2) and nitroxyl (NO2) Proceedings of the National Academy of Sciences of the United States of America. 2000;97(19):10307–10312. PubMed PMC

Stikarova J, Suttnar J, Reicheltova Z, et al. The effect of oxidative stress on fibrinogen and its physiological functions. FEBS Journal. 2009;276(supplement 1):p. S166.

Riedel T, Suttnar J, Brynda E, Houska M, Medved L, Dyr JE. Fibrinopeptides A and B release in the process of surface fibrin formation. Blood. 2011;117(5):1700–1706. PubMed PMC

Gutteridge JMC. The use of standards for malonyldialdehyde. Analytical Biochemistry. 1975;69(2):518–526. PubMed

Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochemical Journal. 1997;324(1):1–18. PubMed PMC

Pieters M, Covic N, van der Westhuizen FH, et al. Glycaemic control improves fibrin network characteristics in type 2 diabetes—a purified fibrinogen model. Thrombosis and Haemostasis. 2008;99(4):691–700. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace