VDAC2 and aldolase A identified as membrane proteins of K562 cells with increased expression under iron deprivation
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- aldolasa genetika metabolismus MeSH
- buňky K562 * MeSH
- deficit železa * MeSH
- lidé MeSH
- napětím ovládaný aniontový kanál 2 genetika metabolismus MeSH
- regulace genové exprese * MeSH
- upregulace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aldolasa MeSH
- napětím ovládaný aniontový kanál 2 MeSH
- VDAC2 protein, human MeSH Prohlížeč
We have shown previously that iron deprivation significantly stimulates the uptake of non-transferrin ferric iron from ferric citrate by erythroleukemia K562 cells and that this stimulation depends on protein synthesis. However, we have not detected increased expression of any known iron transport protein (Kovar J. et al. (2006) Blood Cells Mol Dis 37:95-99). Therefore, in order to identify membrane proteins of K562 cells with increased expression under iron deprivation, we employed the isolation of membrane proteins by two-phase partitioning system, protein separation by high-resolution 2D electrophoresis, computer differential analysis, and tandem mass spectrometry. Employing these techniques we identified two proteins with statistically significant upregulation, i.e., aldolase A (ALDA) and voltage-dependent anion channel 2 (VDAC2). The upregulation of aldolase A and VDAC2 in K562 cells under iron deprivation was also confirmed by western blot analysis. This is the first time when the control of aldolase A and VDAC2 levels by iron status of the cell is demonstrated.
Zobrazit více v PubMed
Biometals. 2003 Mar;16(1):103-11 PubMed
Am J Physiol. 1998 Aug;275(2):G279-86 PubMed
Electrophoresis. 2004 May;25(9):1327-33 PubMed
Biochem J. 2006 Nov 15;400(1):143-51 PubMed
J Biol Chem. 1997 Jul 25;272(30):18966-73 PubMed
J Membr Biol. 2005 May;205(1):1-16 PubMed
Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8117-20 PubMed
Biochim Biophys Acta. 2001 Sep 3;1514(1):117-26 PubMed
In Vitro Cell Dev Biol Anim. 1997 Sep;33(8):633-9 PubMed
Biochem Biophys Res Commun. 2007 Jun 15;357(4):1065-70 PubMed
Cell Prolif. 2003 Aug;36(4):199-213 PubMed
J Exp Biol. 2003 Sep;206(Pt 17):2911-22 PubMed
J Cell Biol. 2001 Jan 22;152(2):237-50 PubMed
Biochim Biophys Acta. 1998 Feb 2;1369(1):103-8 PubMed
Blood Cells Mol Dis. 2007 Jul-Aug;39(1):82-91 PubMed
Proteomics. 2003 Oct;3(10):1947-54 PubMed
Am J Med Sci. 1999 Oct;318(4):207-12 PubMed
J Biol Chem. 1995 Sep 8;270(36):20937-41 PubMed
Biochim Biophys Acta. 2007 Oct;1768(10):2510-5 PubMed
Biochim Biophys Acta. 1995 Nov 9;1269(2):105-14 PubMed
Cell. 2004 Apr 30;117(3):285-97 PubMed
Respir Physiol Neurobiol. 2007 Sep 30;158(2-3):143-50 PubMed
APMIS. 2007 Feb;115(2):81-103 PubMed
J Biol Chem. 1993 Jan 25;268(3):1835-41 PubMed
Eur J Clin Chem Clin Biochem. 1995 Nov;33(11):791-7 PubMed
J Membr Biol. 2005 Mar;204(2):57-66 PubMed
Exp Cell Res. 1989 Jun;182(2):358-69 PubMed
Blood Cells Mol Dis. 2006 Sep-Oct;37(2):95-9 PubMed
Electrophoresis. 2000 Apr;21(6):1054-70 PubMed
Biochem J. 1999 Sep 15;342 Pt 3:481-96 PubMed
J Biol Chem. 2006 Jan 27;281(4):1897-904 PubMed
Mutat Res. 2001 Apr 18;475(1-2):153-9 PubMed
Clin Sci (Lond). 1985 Apr;68(4):463-7 PubMed
Clin Chim Acta. 2005 Aug;358(1-2):24-36 PubMed
Curr Med Chem. 2005;12(23):2711-29 PubMed
Br J Haematol. 2007 May;137(3):252-61 PubMed
Biochem Biophys Res Commun. 1999 Nov 2;264(3):709-13 PubMed
J Biol Chem. 1996 Dec 20;271(51):32529-37 PubMed
Neurochem Res. 2007 Apr-May;32(4-5):931-46 PubMed
J Biol Chem. 2003 Feb 21;278(8):5557-63 PubMed
Oncogene. 2005 Sep 1;24(38):5905-13 PubMed
J Biol Chem. 2004 Feb 6;279(6):4811-9 PubMed
Proc Natl Acad Sci U S A. 1990 Jan;87(1):200-4 PubMed
Histol Histopathol. 2007 Jan;22(1):85-90 PubMed
Arch Biochem Biophys. 1986 May 1;246(2):501-14 PubMed
J Cell Physiol. 2001 Apr;187(1):124-35 PubMed