The inability of cells to grow in low iron correlates with increasing activity of their iron regulatory protein (IRP)

. 1997 Sep ; 33 (8) : 633-9.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid09338146

We studied the factors that determine the differing growth requirements of low-iron-tolerant (LIT) versus high-iron-dependent (HID) cells for extracellular nontransferrin iron. The growth of LIT cells HeLa and THP-1, when transferred from transferrin (5 micrograms/ml) medium into low-iron (5 microM ferric citrate) medium, was not significantly affected while HID cells Jiyoye and K562 showed nearly no growth. HeLa and THP-1 cells, as well as Jiyoye and K562 cells, do not produce transferrin in sufficient amounts to support their growth in low-iron medium. Surprisingly, similar rates of iron uptake in low-iron medium (0.033 and 0.032 nmol Fe/min and 10(6) cells) were found for LIT cells HeLa and HID cells K562. Furthermore, the intracellular iron level (4.64 nmol/10(6) cells) of HeLa cells grown in low-iron medium was much higher than iron levels (0.15 or 0.20 nmol/10(6) cells) of HeLa or K562 cells grown in transferrin medium. We demonstrated that the activity (ratio activated/total) of the iron regulatory protein (IRP) in HID cells Jiyoye and K562 increased more than twofold (from 0.32 to 0.79 and from 0.47 to 1.12, respectively) within 48 h after their transfer into low-iron medium. In the case of LIT cells HeLa and THP-1, IRP activity stayed at similar or slightly decreased levels (0.86-0.73 and 0.58-0.55, respectively). Addition of iron chelator deferoxamine (50 microM, i.e., about half-maximal growth-inhibitory dose) resulted in significantly increased activity of IRP also in HeLa and THP-1 cells. We hypothesize that the relatively higher bioavailability of nontransferrin iron in LIT cells, over that in HID cells, determines the differing responses observed under low-iron conditions.

Zobrazit více v PubMed

Nucleic Acids Res. 1990 Mar 11;18(5):1175-9 PubMed

Leukemia. 1989 Feb;3(2):104-7 PubMed

Exp Cell Res. 1977 Feb;104(2):255-62 PubMed

Leukemia. 1987 May;1(5):437-41 PubMed

Exp Cell Res. 1989 Jun;182(2):358-69 PubMed

J Biol Chem. 1990 Feb 25;265(6):3139-45 PubMed

Br J Haematol. 1976 Aug;33(4):517-26 PubMed

J Immunol Methods. 1989 May 12;119(2):203-10 PubMed

Cell. 1993 Jan 15;72(1):19-28 PubMed

J Clin Invest. 1985 Oct;76(4):1463-70 PubMed

Proc Natl Acad Sci U S A. 1989 May;86(10):3574-8 PubMed

Exp Cell Res. 1988 May;176(1):87-95 PubMed

Cancer Res. 1988 Jul 1;48(13):3571-5 PubMed

J Biol Chem. 1991 Feb 15;266(5):2997-3004 PubMed

Cancer Res. 1988 Jun 1;48(11):3014-8 PubMed

Biochim Biophys Acta. 1991 Apr 9;1073(3):456-62 PubMed

Immunol Lett. 1987 May;15(1):23-5 PubMed

Biochem Soc Symp. 1986;51:117-29 PubMed

J Immunol Methods. 1983 Dec 16;65(1-2):55-63 PubMed

J Membr Biol. 1985;88(3):205-15 PubMed

J Biol Chem. 1989 Aug 15;264(23):13765-9 PubMed

Blood. 1991 Sep 15;78(6):1526-31 PubMed

J Biol Chem. 1993 Apr 25;268(12):8521-8 PubMed

Exp Cell Res. 1987 Jul;171(1):52-62 PubMed

Science. 1988 May 13;240(4854):924-8 PubMed

Blood. 1988 Dec;72(6):1930-6 PubMed

In Vitro Cell Dev Biol Anim. 1995 Sep;31(8):625-32 PubMed

Cancer Res. 1987 Feb 15;47(4):936-42 PubMed

Hybridoma. 1988 Jun;7(3):255-63 PubMed

Cancer Res. 1986 Apr;46(4 Pt 1):1644-7 PubMed

J Inorg Biochem. 1992 Aug 15-Sep;47(3-4):183-95 PubMed

Annu Rev Biochem. 1980;49:357-93 PubMed

J Clin Invest. 1988 Jul;82(1):331-9 PubMed

Proc Natl Acad Sci U S A. 1988 Apr;85(7):2171-5 PubMed

Immunol Cell Biol. 1993 Aug;71 ( Pt 4):303-9 PubMed

Cell. 1989 Jul 28;58(2):373-82 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...