Fibrinopeptides A and B release in the process of surface fibrin formation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HL056051
NHLBI NIH HHS - United States
HL-56051
NHLBI NIH HHS - United States
PubMed
21106983
PubMed Central
PMC3056594
DOI
10.1182/blood-2010-08-300301
PII: S0006-4971(20)60118-5
Knihovny.cz E-zdroje
- MeSH
- fibrin metabolismus MeSH
- fibrinogen metabolismus MeSH
- fibrinopeptid A metabolismus MeSH
- fibrinopeptid B metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- povrchová plasmonová rezonance MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- thrombin metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fibrin MeSH
- fibrinogen MeSH
- fibrinopeptid A MeSH
- fibrinopeptid B MeSH
- thrombin MeSH
Fibrinogen adsorption on a surface results in the modification of its functional characteristics. Our previous studies revealed that fibrinogen adsorbs onto surfaces essentially in 2 different orientations depending on its concentration in the solution: "side-on" at low concentrations and "end-on" at high concentrations. In the present study, we analyzed the thrombin-mediated release of fibrinopeptides A and B (FpA and FpB) from fibrinogen adsorbed in these orientations, as well as from surface-bound fibrinogen-fibrin complexes prepared by converting fibrinogen adsorbed in either orientation into fibrin and subsequently adding fibrinogen. The release of fibrinopeptides from surface-adsorbed fibrinogen and from surface-bound fibrinogen-fibrin complexes differed significantly compared with that from fibrinogen in solution. The release of FpB occurred without the delay (lag phase) characteristic of its release from fibrinogen in solution. The amount of FpB released from end-on adsorbed fibrinogen and from adsorbed fibrinogen-fibrin complexes was much higher than that of FpA. FpB is known as a potent chemoattractant, so its preferential release suggests a physiological purpose in the attraction of cells to the site of injury. The N-terminal portions of fibrin β chains including residues Bβ15-42, which are exposed after cleavage of FpB, have been implicated in many processes, including angiogenesis and inflammation.
Zobrazit více v PubMed
Geer CB, Tripathy A, Schoenfisch MH, Lord ST, Gorkun OV. Role of B-b knob-hole interactions in fibrin binding to adsorbed fibrinogen. J Thromb Haemost. 2007;5(12):2344–2351. PubMed
Geer CB, Rus IA, Lord ST, Schoenfisch MH. Surface-dependent fibrinopeptide A accessibility to thrombin. Acta Biomater. 2007;3(5):663–668. PubMed
Evans-Nguyen KM, Fuierer RR, Fitchett BD, Tolles LR, Conboy JC, Schoenfisch MH. Changes in adsorbed fibrinogen upon conversion to fibrin. Langmuir. 2006;22(11):5115–5121. PubMed
Soman P, Rice Z, Siedliecki CA. Measuring the time-dependent functional activity of adsorbed fibrinogen by atomic force microscopy. Langmuir. 2008;24(16):8801–8806. PubMed
Savage B, Ruggeri ZM. Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein IIb-IIIa on nonactivated platelets. J Biol Chem. 1991;266(17):11227–11233. PubMed
Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reaction. Blood. 2001;98(4):1231–1238. PubMed
Medved L, Weisel JW. Recommendations for nomenclature on fibrinogen and fibrin. J Thromb Haemost. 2009;7(2):355–359. PubMed PMC
Yang Z, Kollman JM, Pandi L, Doolittle RF. Crystal structure of native chicken fibrinogen at 2.7 angstrom resolution. Biochemistry. 2001;40(42):12515–12523. PubMed
Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry. 2009;48(18):3877–3886. PubMed
Lishko VK, Kudryk B, Yakubenko VP, Yee VC, Ugarova TP. Regulated unmasking of the cryptic binding site for integrin alpha(M)beta(2) in the gamma C-domain of fibrinogen. Biochemistry. 2002;41(43):12942–12951. PubMed
Medved L, Nieuwenhuizen W. Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost. 2003;89(3):409–419. PubMed
Blombäck B. Fibrinogen and fibrin-proteins with complex roles in hemostasis and thrombosis. Thromb Res. 1996;83(1):1–75. PubMed
Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci U S A. 2000;97(26):14156–14161. PubMed PMC
Weisel JW. Fibrin assembly–lateral aggregation and the role of the 2 pairs of fibrinopeptides. Biophys J. 1986;50(6):1079–1093. PubMed PMC
Weisel JW, Veklich Y, Gorkun O. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. J Mol Biol. 1993;232(1):285–297. PubMed
Blombäck B, Hessel B, Hogg D, Therkildsen L. 2-step fibrinogen-fibrin transition in blood coagulation. Nature. 1978;275(5680):501–505. PubMed
Fredenburgh JC, Stafford AR, Pospisil CH, Weitz JI. Modes and consequences of thrombin's interaction with fibrin. Biophys Chem. 2004;112(2–3):277–284. PubMed
Di Cera E. Thrombin interaction. Chest. 2003;124(3):11S–17S. PubMed
Binnie CG, Lord ST. The fibrinogen sequences that interact with thrombin. Blood. 1993;81(12):3186–3192. PubMed
Pechik I, Madrazo J, Mosesson MW, Hernandez I, Gilliland GL, Medved L. Crystal structure of the complex between thrombin and the central ‘E’ region of fibrin. Prox Natl Acad Sci U S A. 2004;101(9):2718–2723. PubMed PMC
Mullin JL, Gorkun OV, Binnie CG, Lord ST. Recombinant fibrinogen studies reveal that thrombin specificity dictates order of fibrinopeptide release. J Biol Chem. 2000;275(33):25239–25246. PubMed
Pechik I, Yakovlev S, Mosesson MW, Gilliland GL, Medved L. Structural basis for sequential cleavage of fibrinopeptides upon fibrin assembly. Biochemistry. 2006;45(11):3588–3597. PubMed PMC
Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:247–299. PubMed
Blombäck B, Bark N. Fibrinopeptides and fibrin gel structure. Biophys Chem. 2004;112(2–3):147–151. PubMed
Tang L, Eaton JW. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med. 1993;178(6):2147–2156. PubMed PMC
Laurens N, Koowijk P, De Maat MPM. Fibrin structure and wound healing. J Thromb Haemost. 2006;4(5):932–939. PubMed
Dyr JE, Tichý I, Jirousková M, et al. Molecular arrangement of adsorbed fibrinogen molecules characterized by specific monoclonal antibodies and a surface plasmon resonance sensor. Sens Actuators B Chem. 1998;51(1–3):268–272.
Dyr JE, Cajthamlova H, Suttnar J, Fortova H. Fibrinopeptide release from surface-bound fibrinogen. In: Ernst E., Koenig W, Low GDO, Meade TW, editors. Fibrinogen: a ‘new’ cardiovascular risk factor. Vienna: Blackwell-MZV; 1992. pp. 27–30.
Brynda E, Houska M, Lednicky F. Adsorption of human fibrinogen onto hydrophobic surfaces: The effect of concentration in solution. J Colloid Interface Sci. 1986;113(1):164–171.
Jirousková M, Dyr JE, Suttnar J, Holada K, Trnková B. Platelet adhesion to fibrinogen, fibrin monomer, and fibrin protofibrils in flowing blood–the effect of fibrinogen immobilization and fibrin formation. Thromb Haemost. 1997;78(3):1125–1131. PubMed
Dyr JE, Jirousková M, Rysavá J, et al. Surface plasmon resonance analysis of immobilized fibrinogen and fibrin and their interaction with thrombin and fibrinogen. In: Baldini F, Croitoru NI, Frenz M, et al., editors. Proceedings of the Society of Photo-Optical Instrumentation Engineers. Bellingham, WA: SPIE; 1999. pp. 176–183.
Weisel JW. The electron microscope band pattern of human fibrin: Various stains, lateral order, and carbohydrate localization. J Ultrastruct Mol Struct Res. 1986;96(1–3):176–188. PubMed
Riedel T, Brynda E, Dyr JE, Houska M. Controlled preparation of thin fibrin films immobilized at solid surfaces. J Biomed Mater Res A. 2009;88(2):437–447. PubMed
Suttnar J, Dyr JE, Fortová H, Pristach J. Determination of fibrinopeptides by high performance liquid chromatography. Biochem Clin Bohemoslov. 1989;18:17–25.
Doolittle RF. X-ray crystallographic studies on fibrinogen and fibrin. J Thromb Haemost. 2003;1(7):1559–1565. PubMed
Chtcheglova LA, Vogel M, Gruber HJ, Dietler G, Haeberli A. Kinetics of the interaction of desAABB-Fibrin monomer with immobilized fibrinogen. Biopolymers. 2006;83(1):69–82. PubMed
Dyr JE, Blombäck B, Hessel B, Kornalík F. Conversion of fibrinogen to fibrin induced by preferential release of fibrinopeptide B. Biochim Biophys Acta. 1989;990(1):18–24. PubMed
Evans-Nguyen KM, Tolles LR, Gorkun OV, Lord ST, Schoenfisch MH. Interaction of thrombin with fibrinogen adsorbed on methyl-, hydroxyl-, amine-, and carboxyl-terminated self-assembled monolayers. Biochemistry. 2005;44(47):15561–15568. PubMed
Petzelbauer P, Zacharowski PA, Miyazaki Y, et al. The fibrin-derived peptide B beta(15-42) protects the myocardium against ischemia-reperfusion injury. Nat Med. 2005;11(3):298–304. PubMed
Zacharowski K, Zacharowski P, Reingruber S, Petzelbauer P. Fibrin(ogen) and its fragments in the pathophysiology and treatment of myocardial infarction. J Mol Med. 2006;84(6):469–477. PubMed
Kay AB, Pepper DS, McKenzie R. The identification of fibrinopeptide B as a chemotactic agent derived from human fibrinogen. Br J Haematol. 1974;27(4):669–677. PubMed
Skogen WF, Senior RM, Griffin GL, Wilner GD. Fibrinogen-derived peptide B beta 1-42 is a multidomain neutrophil chemoattractant. Blood. 1988;71(5):1475–1479. PubMed
Erban JK, Wagner DD. A 130-kDa protein on endothelial cells binds to amino acids 15-42 of the B beta chain of fibrinogen. J Biol Chem. 1992;267(4):2451–2458. PubMed
Martinez J, Ferber A, Bach TL, Yaen CH. Interaction of fibrin with VE-cadherin. Ann N Y Acad Sci. 2001;936:386–405. PubMed
Weitz JI, Koehn JA, Canfield RE, Landman SL, Friedman R. Development of a radioimmunoassay for the fibrinogen-derived peptide B beta 1-42. Blood. 1986;67(4):1014–1022. PubMed
Palumbo JS, Kombrinck KW, Drew AF, et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood. 2000;96(10):3302–3309. PubMed
Sporn LA, Bunce LA, Francis CW. Cell proliferation on fibrin: modulation by fibrinopeptide cleavage. Blood. 1995;86(5):1802–1810. PubMed
Sturge J, Carey N, Davies AH, Powell JT. Fibrin monomer and fibrinopeptide B act additively to increase DNA synthesis in smooth muscle cells cultured from human saphenous vein. J Vasc Surg. 2001;33(4):847–853. PubMed
Lishko VK, Burke T, Tatiana Ugarova T. Antiadhesive effect of fibrinogen: a safeguard for thrombus stability. Blood. 2007;109(4):1541–1549. PubMed PMC
Podolnikova NP, Yermolenko IS, Fuhrmann A, et al. Control of integrin RIIbβ3 outside-in signaling and platelet adhesion by sensing the physical properties of fibrin(ogen) substrates. Biochemistry. 2010;49(1):68–77. PubMed PMC