Molecular Dynamic Simulations Suggest That Metabolite-Induced Post-Translational Modifications Alter the Behavior of the Fibrinogen Coiled-Coil Domain
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
e-INFRA LM2018140
Ministerstvo Školství, Mládeže a Tělovýchovy
00023736
Ministerstvo Zdravotnictví Ceské Republiky
19-02739S
Czech Science Foundation
NV18-08-00149
Czech Health Research Council
OP RDE (CZ.02.1.01/0.0/0.0/16_025/0007428)
European Regional Development Fund
PubMed
34065002
PubMed Central
PMC8150326
DOI
10.3390/metabo11050307
PII: metabo11050307
Knihovny.cz E-resources
- Keywords
- citrullination, coiled-coil, fibrinogen, molecular dynamic simulation, oxidation, post-translational modifications,
- Publication type
- Journal Article MeSH
Fibrinogen is an abundant blood plasma protein that, inter alia, participates in blood coagulation. It polymerizes to form a fibrin clot that is among the major components of the thrombus. Fibrinogen reactions with various reactive metabolites may induce post-translational modifications (PTMs) into the protein structure that affect the architecture and properties of fibrin clots. We reviewed the previous literature to find the positions of PTMs of fibrinogen. For 7 out of 307 reported PTMs, we used molecular dynamics simulations to characterize their effect on the behavior of the fibrinogen coiled-coil domain. Interactions of the γ-coil with adjacent chains give rise to π-helices in Aα and Bβ chains of even unmodified fibrinogen. The examined PTMs suppress fluctuations of the γ-coil, which may affect the fibrinolysis and stiffness of the fibrin fibers. Citrullination of AαR104 and oxidations of γP70 and γP76 to glutamic semialdehyde unfold the α-helical structure of Aα and Bβ chains. Oxidation of γM78 to methionine sulfoxide induces the formation of an α-helix in the γ-coil region. Our findings suggest that certain PTMs alter the protein secondary structure. Thus, the altered protein structure may indicate the presence of PTMs in the molecule and consequently of certain metabolites within the system.
See more in PubMed
Brieger K., Schiavone S., Miller F.J., Krause K. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012;142:w13659. doi: 10.4414/smw.2012.13659. PubMed DOI
Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21:363–383. doi: 10.1038/s41580-020-0230-3. PubMed DOI
Shacter E., Williams J.A., Lim M., Levine R.L. Differential susceptibility of plasma proteins to oxidative modification: Examination by western blot immunoassay. Free Radic. Biol. Med. 1994;17:429–437. doi: 10.1016/0891-5849(94)90169-4. PubMed DOI
Butera D., Hogg P.J. Fibrinogen function achieved through multiple covalent states. Nat. Commun. 2020;11:1–10. doi: 10.1038/s41467-020-19295-7. PubMed DOI PMC
Weigandt K.M., White N., Chung D., Ellingson E., Wang Y., Fu X., Pozzo D.C. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophys. J. 2012;103:2399–2407. doi: 10.1016/j.bpj.2012.10.036. PubMed DOI PMC
Sauls D.L., Lockhart E., Warren M.E., Lenkowski A., Wilhelm S.E., Hoffman M. Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: A potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry. 2006;45:2480–2487. doi: 10.1021/bi052076j. PubMed DOI
Winterbourn C.C., Kettle A.J., Hampton M.B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 2016;85:765–792. doi: 10.1146/annurev-biochem-060815-014442. PubMed DOI
Wentworth P., McDunn J.E., Wentworth A.D., Takeuchi C., Nieva J., Jones T., Bautista C., Ruedi J.M., Gutierrez A., Janda K.D., et al. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science. 2002;298:2195–2199. doi: 10.1126/science.1077642. PubMed DOI
Storz G., Imlayt J.A. Oxidative stress. Curr. Opin. Microbiol. 1999;2:188–194. doi: 10.1016/S1369-5274(99)80033-2. PubMed DOI
Hougland J.L., Darling J., Flynn S. Molecular Basis of Oxidative Stress–Chemistry, Mechanism, and Disease Pathogenesis. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2013. Protein posttranslational modification; pp. 71–92.
de Vries J.J., Snoek C.J., Rijken D.C., de Maat M.P. Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and fibrinolysis: A systematic review. Arter. Thromb. Vasc. Biol. 2020;40:554–569. doi: 10.1161/ATVBAHA.119.313626. PubMed DOI PMC
Yurina L.V., Vasilyeva A.D., Bugrova A.E., Indeykina M.I., Kononikhin A.S., Nikolaev E.N., Rosenfeld M.A. Hypochlorite-induced oxidative modification of fibrinogen. Dokl. Biochem. Biophys. 2019;484:37–41. doi: 10.1134/S1607672919010101. PubMed DOI
Rosenfeld M.A., Shchegolikhin A.N., Bychkova A.V., Leonova V.B., Biryukova M.I., Kostanova E.A. Ozone-induced oxidative modification of fibrinogen: Role of the D regions. Free Radic. Biol. Med. 2014;77:106–120. doi: 10.1016/j.freeradbiomed.2014.08.018. PubMed DOI
Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006. PubMed DOI PMC
Sharma M., Damgaard D., Senolt L., Svensson B., Bay-Jensen A.-C., Nielsen C.H., Hägglund P. Expanding the citrullinome of synovial fibrinogen from rheumatoid arthritis patients. J. Proteom. 2019;208:103484. doi: 10.1016/j.jprot.2019.103484. PubMed DOI
Okumura N., Haneishi A., Terasawa F. Citrullinated fibrinogen shows defects in FPA and FPB release and fibrin polymerization catalyzed by thrombin. Clin. Chim. Acta. 2009;401:119–123. doi: 10.1016/j.cca.2008.12.002. PubMed DOI
Jakubowski H. Homocysteine thiolactone: Metabolic origin and protein homocysteinylation in humans. J. Nutr. 2000;130:377S–381S. doi: 10.1093/jn/130.2.377S. PubMed DOI
Kollman J.M., Pandi L., Sawaya M.R., Riley M., Doolittle R.F. Crystal structure of human fibrinogen. Biochemistry. 2009;48:3877–3886. doi: 10.1021/bi802205g. PubMed DOI
Köhler S., Schmid F., Settanni G. The internal dynamics of fibrinogen and its implications for coagulation and adsorption. PLoS Comput. Biol. 2015;11:e1004346. doi: 10.1371/journal.pcbi.1004346. PubMed DOI PMC
Sayers E.W., Barrett T., Benson D.A., Bolton E., Bryant S.H., Canese K., Chetvernin V., Church D.M., DiCuccio M., Federhen S., et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2009;38:D5–D16. doi: 10.1093/nar/gkp967. PubMed DOI PMC
Rackham O.J., Madera M., Armstrong C.T., Vincent T.L., Woolfson D.N., Gough J. The evolution and structure prediction of coiled coils across all genomes. J. Mol. Biol. 2010;403:480–493. doi: 10.1016/j.jmb.2010.08.032. PubMed DOI
Moutevelis E., Woolfson D.N. A periodic table of coiled-coil protein structures. J. Mol. Biol. 2009;385:726–732. doi: 10.1016/j.jmb.2008.11.028. PubMed DOI
Doolittle R.F., McNamara K., Lin K. Correlating structure and function during the evolution of fibrinogen-related domains. Protein Sci. 2012;21:1808–1823. doi: 10.1002/pro.2177. PubMed DOI PMC
Wolfenstein-Todel C., Mosesson M.W. Carboxy-terminal amino acid sequence of a human fibrinogen. gamma.-chain variant (.gamma.’) Biochemistry. 1981;20:6146–6149. doi: 10.1021/bi00524a036. PubMed DOI
Fu Y., Grieninger G. Fib420: A normal human variant of fibrinogen with two extended alpha chains. Proc. Natl. Acad. Sci. USA. 1994;91:2625–2628. doi: 10.1073/pnas.91.7.2625. PubMed DOI PMC
Weisel J.W., Litvinov R.I. Anonymous Fibrous Proteins: Structures and Mechanisms. Springer; Berlin/Heidelberg, Germany: 2017. Fibrin formation, structure and properties; pp. 405–456. PubMed PMC
Sovová Ž., Štikarová J., Kaufmanová J., Májek P., Suttnar J., Šácha P., Malý M., Dyr J.E. Impact of posttranslational modifications on atomistic structure of fibrinogen. PLoS ONE. 2020;15:e0227543. doi: 10.1371/journal.pone.0227543. PubMed DOI PMC
White N.J., Wang Y., Fu X., Cardenas J.C., Martin E.J., Brophy D.F., Wade C.E., Wang X., John A.E.S., Lim E.B., et al. Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury. Free Radic. Biol. Med. 2016;96:181–189. doi: 10.1016/j.freeradbiomed.2016.04.023. PubMed DOI PMC
Bychkova A.V., Vasilyeva A.D., Bugrova A.E., Indeykina M.I., Kononikhin A.S., Nikolaev E.N., Konstantinova M.L., Rosenfeld M.A. Oxidation-induced modification of the fibrinogen polypeptide chains. Dokl. Biochem. Biophys. 2017;474:173–177. doi: 10.1134/S1607672917030115. PubMed DOI
Yurina L., Vasilyeva A., Indeykina M., Bugrova A., Biryukova M., Kononikhin A., Nikolaev E., Rosenfeld M. Ozone-induced damage of fibrinogen molecules: Identification of oxidation sites by high-resolution mass spectrometry. Free Radic. Res. 2019;53:430–455. doi: 10.1080/10715762.2019.1600686. PubMed DOI
Yurina L.V., Vasilyeva A.D., Kononenko V.L., Bugrova A.E., Indeykina M.I., Kononikhin A.S., Nikolaev E.N., Rosenfeld M.A. The Structural–Functional Damage of Fibrinogen Oxidized by Hydrogen Peroxide. Dokl. Biochem. Biophys. 2020;492:130–134. doi: 10.1134/S1607672920020167. PubMed DOI
Nakayama-Hamada M., Suzuki A., Kubota K., Takazawa T., Ohsaka M., Kawaida R., Ono M., Kasuya A., Furukawa H., Yamada R., et al. Comparison of enzymatic properties between hPADI2 and hPADI4. Biochem. Biophys. Res. Commun. 2005;327:192–200. doi: 10.1016/j.bbrc.2004.11.152. PubMed DOI
Kubota K., Yoneyama-Takazawa T., Ichikawa K. Determination of sites citrullinated by peptidylarginine deiminase using 18O stable isotope labeling and mass spectrometry. Rapid Commun. Mass Spectrom. 2005;19:683–688. doi: 10.1002/rcm.1842. PubMed DOI
Zhao X., Okeke N.L., Sharpe O., Batliwalla F.M., Lee A.T., Ho P.P., Tomooka B.H., Gregersen P.K., Robinson W.H. Circulating immune complexes contain citrullinated fibrinogen in rheumatoid arthritis. Arthritis Res. Ther. 2008;10:1–13. doi: 10.1186/ar2478. PubMed DOI PMC
Van Beers J.J., Raijmakers R., Alexander L.-E., Stammen-Vogelzangs J., Mc Lokate A., Heck A.J., Schasfoort R.B., Pruijn G.J. Mapping of citrullinated fibrinogen B-cell epitopes in rheumatoid arthritis by imaging surface plasmon resonance. Arthritis Res. Ther. 2010;12:R219. doi: 10.1186/ar3205. PubMed DOI PMC
Tutturen A.E., Fleckenstein B., de Souza G.A. Assessing the citrullinome in rheumatoid arthritis synovial fluid with and without enrichment of citrullinated peptides. J. Proteome Res. 2014;13:2867–2873. doi: 10.1021/pr500030x. PubMed DOI
Wang F., Chen F.-F., Gao W.-B., Wang H.-Y., Zhao N.-W., Xu M., Gao D.-Y., Yu W., Yan X.-L., Zhao J.-N., et al. Identification of citrullinated peptides in the synovial fluid of patients with rheumatoid arthritis using LC-MALDI-TOF/TOF. Clin. Rheumatol. 2016;35:2185–2194. doi: 10.1007/s10067-016-3247-4. PubMed DOI PMC
Sikora M., Marczak Ł., Kubalska J., Graban A., Jakubowski H. Identification of N-homocysteinylation sites in plasma proteins. Amino Acids. 2014;46:235–244. doi: 10.1007/s00726-013-1617-7. PubMed DOI
Svensson J., Bergman A., Adamson U., Blombäck M., Wallén H., Jörneskog G. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study. Biochem. Biophys. Res. Commun. 2012;421:335–342. doi: 10.1016/j.bbrc.2012.03.154. PubMed DOI
Bryk A.H., Zettl K., Wiśniewski J.R., Undas A. Glycation and acetylation sites on fibrinogen in plasma fibrin clot of patients with type 2 diabetes: Effects of low-dose acetylsalicylic acid. Thromb. Res. 2021;198:93–98. doi: 10.1016/j.thromres.2020.11.031. PubMed DOI
Parastatidis I., Thomson L., Burke A., Chernysh I., Nagaswami C., Visser J., Stamer S., Liebler D.C., Koliakos G., Heijnen H.F.G., et al. Fibrinogen β-chain tyrosine nitration is a prothrombotic risk factor. J. Biol. Chem. 2008;283:33846–33853. doi: 10.1074/jbc.M805522200. PubMed DOI PMC
Medeiros R., Sousa B., Rossi S., Afonso C., Bonino L., Pitt A., López E., Spickett C., Borthagaray G. Identification and relative quantification of 3-nitrotyrosine residues in fibrinogen nitrated in vitro and fibrinogen from ischemic stroke patient plasma using LC-MS/MS. Free Radic. Biol. Med. 2021;165:334–347. doi: 10.1016/j.freeradbiomed.2021.01.049. PubMed DOI
Blombäck B., Blombäck M., Edman P., Hessel B. Human fibrinopeptides isolation, characterization and structure. Biochim. Biophys. Acta Gen. Subj. 1966;115:371–396. doi: 10.1016/0304-4165(66)90437-5. PubMed DOI
Seydewitz H.H., Kaiser C., Rothweiler H., Witt I. The location of a second in vivo phosphorylation site in the Aα-chain of human fibrinogen. Thromb. Res. 1984;33:487–498. PubMed
Heldin P. Phosphorylation in vitro of human fibrinogen with casein kinase TS and characterization of phosphorylated sites. Arch. Biochem. Biophys. 1987;257:269–275. doi: 10.1016/0003-9861(87)90566-2. PubMed DOI
Nagel T., Klaus F., Ibanez I.G., Wege H., Lohse A., Meyer B. Fast and facile analysis of glycosylation and phosphorylation of fibrinogen from human plasma—correlation with liver cancer and liver cirrhosis. Anal. Bioanal. Chem. 2018;410:7965–7977. doi: 10.1007/s00216-018-1418-7. PubMed DOI
Heldin P., Humble E. Phosphorylation of human fibrinogen in vitro with protein kinase C: Characterization of the phosphorylated sites. Arch. Biochem. Biophys. 1987;252:49–59. doi: 10.1016/0003-9861(87)90007-5. PubMed DOI
Lund T., Svindland A., Pepaj M., Jensen A.-B., Berg J.P., Kilhovd B., Hanssen K.F. Fibrin (ogen) may be an important target for methylglyoxal-derived AGE modification in elastic arteries of humans. Diabetes Vasc. Dis. Res. 2011;8:284–294. PubMed
Henschen-Edman A.H. Anonymous Methods in Protein Structure Analysis. Springer; Berlin/Heidelberg, Germany: 1995. Human fibrinogen occurs as over 1 million non-identical molecules; pp. 435–443.
Henschen A. Identification of tyrosine sulfate and tyrosine phosphate residues during sequence analysis. Protein Sci. 1993;2:152.
Henschen A.H., Theodor I., Prikle H. Hydroxyproline-a posttranslational modification of proline, is a constituent of human fibrinogen. Thromb. Haemost. 1991;65:821.
Ono M., Matsubara J., Honda K., Sakuma T., Hashiguchi T., Nose H., Nakamori S., Okusaka T., Kosuge T., Sata N., et al. Prolyl 4-hydroxylation of α-fibrinogen: A novel protein modification revealed by plasma proteomics. J. Biol. Chem. 2009;284:29041–29049. doi: 10.1074/jbc.M109.041749. PubMed DOI PMC
Blomback B., Edman P. Blomback m. on structure of human fibrinopeptides. Acta Chem. Scand. 1963;17:1184.
Nickerson J.M., Fuller G.M. Modification of fibrinogen chains during synthesis: Glycosylation of B. beta. and. gamma. chains. Biochemistry. 1981;20:2818–2821. doi: 10.1021/bi00513a017. PubMed DOI
Kabsch W., Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolym. Orig. Res. Biomol. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI
Frishman D., Argos P. Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Bioinform. 1995;23:566–579. doi: 10.1002/prot.340230412. PubMed DOI
Weaver T.M. The π-helix translates structure into function. Protein Sci. 2000;9:201–206. doi: 10.1110/ps.9.1.201. PubMed DOI PMC
Damiana T., Damgaard D., Sidelmann J.J., Nielsen C.H., de Maat M.P., Münster A.-M.B., Palarasah Y. Citrullination of fibrinogen by peptidylarginine deiminase 2 impairs fibrin clot structure. Clin. Chim. Acta. 2020;501:6–11. doi: 10.1016/j.cca.2019.10.033. PubMed DOI
Stikarová J., Kotlín R., Riedel T., Suttnar J., Pimková K., Chrastinová L., Dyr J.E. The effect of reagents mimicking oxidative stress on fibrinogen function. Sci. World J. 2013;2013:1–8. PubMed PMC
Lee B.C., Gladyshev V.N. The biological significance of methionine sulfoxide stereochemistry. Free Radic. Biol. Med. 2011;50:221–227. doi: 10.1016/j.freeradbiomed.2010.11.008. PubMed DOI PMC
Margreitter C., Petrov D., Zagrovic B. Vienna-PTM web server: A toolkit for MD simulations of protein post-translational modifications. Nucleic. Acids Res. 2013;41:W422–W426. PubMed PMC
Abraham M.J., Van Der Spoel D., Lindahl E., Hess B. GROMACS User Manual Version 5.0.4. Royal Institute of Technology and Uppsala University; Stockholm, Sweden: 2014.
Schmid N., Eichenberger A.P., Choutko A., Riniker S., Winger M., Mark A.E., Van Gunsteren W.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 2011;40:843. doi: 10.1007/s00249-011-0700-9. PubMed DOI
Petrov D., Margreitter C., Grandits M., Oostenbrink C., Zagrovic B. A systematic framework for molecular dynamics simulations of protein post-translational modifications. PLoS Comput. Biol. 2013;9:e1003154. PubMed PMC
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. PubMed