Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39861194
PubMed Central
PMC11768729
DOI
10.3390/ph18010133
PII: ph18010133
Knihovny.cz E-zdroje
- Klíčová slova
- Janus kinase/signal transducer and activator of transcription (JAK/STAT), NLRP3 inflammasome, medicinal plants, microglia, neurodegenerative diseases, neuroinflammation, nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), oxidative stress, phytochemicals,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework. This review evaluates the effects of medicinal plants on neuroinflammation, emphasizing their mechanisms of action, effective dosages, and clinical implications, based on a systematic search of databases such as PubMed, SCOPUS, and Web of Science. The key findings highlight that plants like Cleistocalyx nervosum var. paniala, Curcuma longa, Cannabis sativa, and Dioscorea nipponica reduce pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), inhibit enzymes (COX-2 and iNOS), and activate antioxidant pathways, particularly Nrf2. NF-κB emerged as the primary pro-inflammatory pathway inhibited across studies. While the anti-inflammatory potential of these plants is significant, the variability in dosages and phytochemical compositions limits clinical translation. Here, we highlight that medicinal plants are effective modulators of neuroinflammation, underscoring their therapeutic potential. Future research should focus on animal models, standardized protocols, and safety assessments, integrating advanced methodologies, such as genetic studies and nanotechnology, to enhance their applicability in neurodegenerative disease management.
Zobrazit více v PubMed
Davinelli S., Maes M., Corbi G., Zarrelli A., Willcox D.C., Scapagnini G. Dietary phytochemicals and neuro-inflammaging: From mechanistic insights to translational challenges. Immun. Ageing. 2016;13:16. doi: 10.1186/s12979-016-0070-3. PubMed DOI PMC
Pan T., Xiao Q., Fan H.J., Xu L., Qin S.C., Yang L.X., Jin X.M., Xiao B.G., Zhang B., Ma C.G., et al. Wuzi Yanzong Pill relieves MPTP-induced motor dysfunction and neuron loss by inhibiting NLRP3 inflammasome-mediated neuroinflammation. Metab. Brain Dis. 2023;38:2211–2222. doi: 10.1007/s11011-023-01266-8. PubMed DOI
Tanaka M., Vécsei L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. Biomedicines. 2024;12:1083. doi: 10.3390/biomedicines12051083. PubMed DOI PMC
Tanaka M., Vécsei L. Revolutionizing our understanding of Parkinson’s disease: Dr. Heinz Reichmann’s pioneering research and future research direction. J. Neural Transm. 2024;131:1367–1387. doi: 10.1007/s00702-024-02812-z. PubMed DOI PMC
Rink C., Khanna S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid. Redox Signal. 2011;14:1889–1903. doi: 10.1089/ars.2010.3474. PubMed DOI PMC
Morozumi T., Preziosa P., Meani A., Albergoni M., Margoni M., Pagani E., Filippi M., Rocca M.A. Influence of cardiorespiratory fitness and MRI measures of neuroinflammation on hippocampal volume in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2024;95:29–36. doi: 10.1136/jnnp-2023-331482. PubMed DOI
Abadin X., de Dios C., Zubillaga M., Ivars E., Puigròs M., Marí M., Morales A., Vizuete M., Vitorica J., Trullas R., et al. Neuroinflammation in Age-Related Neurodegenerative Diseases: Role of Mitochondrial Oxidative Stress. Antioxidants. 2024;13:1440. doi: 10.3390/antiox13121440. PubMed DOI PMC
Solleiro-Villavicencio H., Rivas-Arancibia S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4(+)T Cells in Neurodegenerative Diseases. Front. Cell. Neurosci. 2018;12:114. doi: 10.3389/fncel.2018.00114. PubMed DOI PMC
Direito R., Barbalho S.M., Figueira M.E., Minniti G., de Carvalho G.M., de Oliveira Zanuso B., de Oliveira Dos Santos A.R., de Góes Corrêa N., Rodrigues V.D., de Alvares Goulart R., et al. Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review. Metabolites. 2023;13:728. doi: 10.3390/metabo13060728. PubMed DOI PMC
Teleanu D.M., Niculescu A.G., Lungu I.I., Radu C.I., Vladâcenco O., Roza E., Costăchescu B., Grumezescu A.M., Teleanu R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022;23:5938. doi: 10.3390/ijms23115938. PubMed DOI PMC
de Lima E.P., Moretti R.C., Jr., Torres Pomini K., Laurindo L.F., Sloan K.P., Sloan L.A., Castro M.V.M., Baldi E., Jr., Ferraz B.F.R., de Souza Bastos Mazuqueli Pereira E., et al. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology. 2024;13:519. doi: 10.3390/biology13070519. PubMed DOI PMC
Girotto O.S., Furlan O.O., Moretti Junior R.C., Goulart R.A., Baldi Junior E., Barbalho-Lamas C., Fornari Laurindo L., Barbalho S.M. Effects of apples (Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit. Rev. Food Sci. Nutr. 2024:1–32. doi: 10.1080/10408398.2024.2372690. PubMed DOI
Valotto Neto L.J., Reverete de Araujo M., Moretti Junior R.C., Mendes Machado N., Joshi R.K., Dos Santos Buglio D., Barbalho Lamas C., Direito R., Fornari Laurindo L., Tanaka M., et al. Investigating the Neuroprotective and Cognitive-Enhancing Effects of Bacopa monnieri: A Systematic Review Focused on Inflammation, Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis. Antioxidants. 2024;13:393. doi: 10.3390/antiox13040393. PubMed DOI PMC
Silveira Rossi J.L., Barbalho S.M., Reverete de Araujo R., Bechara M.D., Sloan K.P., Sloan L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes/Metab. Res. Rev. 2022;38:e3502. doi: 10.1002/dmrr.3502. PubMed DOI
Tanaka M., Szabó Á., Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int. J. Mol. Sci. 2024;25:12767. doi: 10.3390/ijms252312767. PubMed DOI PMC
de Lima E.P., Tanaka M., Lamas C.B., Quesada K., Detregiachi C.R.P., Araújo A.C., Guiguer E.L., Catharin V., de Castro M.V.M., Junior E.B., et al. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines. 2024;12:2096. doi: 10.3390/biomedicines12092096. PubMed DOI PMC
Simpson D.S.A., Oliver P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants. 2020;9:743. doi: 10.3390/antiox9080743. PubMed DOI PMC
Fabisiak T., Patel M. Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front. Cell Dev. Biol. 2022;10:976953. doi: 10.3389/fcell.2022.976953. PubMed DOI PMC
Rodriguez-Lopez A., Torres-Paniagua A.M., Acero G., Díaz G., Gevorkian G. Increased TSPO expression, pyroglutamate-modified amyloid beta (AβN3(pE)) accumulation and transient clustering of microglia in the thalamus of Tg-SwDI mice. J. Neuroimmunol. 2023;382:578150. doi: 10.1016/j.jneuroim.2023.578150. PubMed DOI
Laurindo L.F., de Carvalho G.M., de Oliveira Zanuso B., Figueira M.E., Direito R., de Alvares Goulart R., Buglio D.S., Barbalho S.M. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics. 2023;15:229. doi: 10.3390/pharmaceutics15010229. PubMed DOI PMC
Tanaka M., Battaglia S., Giménez-Llort L., Chen C., Hepsomali P., Avenanti A., Vécsei L. Innovation at the Intersection: Emerging Translational Research in Neurology and Psychiatry. Cells. 2024;13:790. doi: 10.3390/cells13100790. PubMed DOI PMC
Tanaka M., Chen C. Editorial: Towards a mechanistic understanding of depression, anxiety, and their comorbidity: Perspectives from cognitive neuroscience. Front. Behav. Neurosci. 2023;17:1268156. doi: 10.3389/fnbeh.2023.1268156. PubMed DOI PMC
Fornari Laurindo L., Aparecido Dias J., Cressoni Araújo A., Torres Pomini K., Machado Galhardi C., Rucco Penteado Detregiachi C., Santos de Argollo Haber L., Donizeti Roque D., Dib Bechara M., Vialogo Marques de Castro M., et al. Immunological dimensions of neuroinflammation and microglial activation: Exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front. Immunol. 2023;14:1305933. doi: 10.3389/fimmu.2023.1305933. PubMed DOI PMC
Yu M., Wang F., Han K. Silencing of SH3BP2 Inhibits Microglia Activation Via the JAK/STAT Signaling in Spinal Cord Injury Models. Inflammation. 2024 doi: 10.1007/s10753-024-02186-0. PubMed DOI
Cokdinleyen M., Dos Santos L.C., de Andrade C.J., Kara H., Colás-Ruiz N.R., Ibañez E., Cifuentes A. A Narrative Review on the Neuroprotective Potential of Brown Macroalgae in Alzheimer’s Disease. Nutrients. 2024;16:4394. doi: 10.3390/nu16244394. PubMed DOI PMC
Battaglia S., Avenanti A., Vécsei L., Tanaka M. Neurodegeneration in Cognitive Impairment and Mood Disorders for Experimental, Clinical and Translational Neuropsychiatry. Biomedicines. 2024;12:574. doi: 10.3390/biomedicines12030574. PubMed DOI PMC
Hopper A.T., Campbell B.M., Kao H., Pintchovski S.A., Staal R.G.W. Chapter Four—Recent Developments in Targeting Neuroinflammation in Disease. In: Desai M.C., editor. Annual Reports in Medicinal Chemistry. Volume 47. Academic Press; Cambridge, MA, USA: 2012. pp. 37–53.
Liu Y., Yang H., Luo N., Fu Y., Qiu F., Pan Z., Li X., Jian W., Yang X., Xue Q., et al. An Fgr kinase inhibitor attenuates sepsis-associated encephalopathy by ameliorating mitochondrial dysfunction, oxidative stress, and neuroinflammation via the SIRT1/PGC-1α signaling pathway. J. Transl. Med. 2023;21:486. doi: 10.1186/s12967-023-04345-7. PubMed DOI PMC
Bássoli R., Audi D., Ramalho B., Audi M., Quesada K., Barbalho S.M. The Effects of Curcumin on Neurodegenerative Diseases: A Systematic Review. J. Herb. Med. 2023;42:100771. doi: 10.1016/j.hermed.2023.100771. DOI
Barbalho S.M., Direito R., Laurindo L.F., Marton L.T., Guiguer E.L., Goulart R.d.A., Tofano R.J., Carvalho A.C., Flato U.A.P., Capelluppi Tofano V.A., et al. Ginkgo biloba in the aging process: A narrative review. Antioxidants. 2022;11:525. doi: 10.3390/antiox11030525. PubMed DOI PMC
de Oliveira Zanuso B., Dos Santos A.R.d.O., Miola V.F.B., Campos L.M.G., Spilla C.S.G., Barbalho S.M. Panax ginseng and aging related disorders: A systematic review. Exp. Gerontol. 2022;161:111731. doi: 10.1016/j.exger.2022.111731. PubMed DOI
Rangaraju S., Dammer E.B., Raza S.A., Rathakrishnan P., Xiao H., Gao T., Duong D.M., Pennington M.W., Lah J.J., Seyfried N.T., et al. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol. Neurodegener. 2018;13:24. doi: 10.1186/s13024-018-0254-8. PubMed DOI PMC
Blank-Stein N., Mass E. Macrophage and monocyte subsets in response to ischemic stroke. Eur. J. Immunol. 2023;53:e2250233. doi: 10.1002/eji.202250233. PubMed DOI
Cotoia A., Charitos I.A., Corriero A., Tamburrano S., Cinnella G. The Role of Macronutrients and Gut Microbiota in Neuroinflammation Post-Traumatic Brain Injury: A Narrative Review. Nutrients. 2024;16:4359. doi: 10.3390/nu16244359. PubMed DOI PMC
Sarsaiya S., Jain A., Shu F., Jia Q., Gong Q., Wu Q., Shi J., Chen J. Unveiling the potential of dendrobine: Insights into bioproduction, bioactivities, safety, circular economy, and future prospects. Crit. Rev. Biotechnol. 2025:1–19. doi: 10.1080/07388551.2024.2438161. PubMed DOI
Yuan H., Ma Q., Ye L., Piao G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules. 2016;21:559. doi: 10.3390/molecules21050559. PubMed DOI PMC
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC
Menezes A.A., Shah Z.A. A Review of the Consequences of Gut Microbiota in Neurodegenerative Disorders and Aging. Brain Sci. 2024;14:1224. doi: 10.3390/brainsci14121224. PubMed DOI PMC
Park K. The Role of Dietary Phytochemicals: Evidence from Epidemiological Studies. Nutrients. 2023;15:1371. doi: 10.3390/nu15061371. PubMed DOI PMC
Buglio D.S., Marton L.T., Laurindo L.F., Guiguer E.L., Araújo A.C., Buchaim R.L., Goulart R.A., Rubira C.J., Barbalho S.M. The Role of Resveratrol in Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review. J. Med. Food. 2022;25:797–806. doi: 10.1089/jmf.2021.0084. PubMed DOI
Barbalho S.M., Bueno Ottoboni A.M.M., Fiorini A.M.R., Guiguer E.L., Nicolau C.C.T., Goulart R.d.A., Flato U.A.P. Grape juice or wine: Which is the best option? Crit. Rev. Food Sci. Nutr. 2020;60:3876–3889. doi: 10.1080/10408398.2019.1710692. PubMed DOI
Laurindo L.F., Direito R., Bueno Otoboni A.M., Goulart R.A., Quesada K., Barbalho S.M. Grape processing waste: Effects on inflammatory bowel disease and colorectal cancer. Food Rev. Int. 2024;40:336–369. doi: 10.1080/87559129.2023.2168281. DOI
Sen T., Samanta S.K. Medicinal plants, human health and biodiversity: A broad review. Adv. Biochem. Eng. Biotechnol. 2015;147:59–110. doi: 10.1007/10_2014_273. PubMed DOI
Shen L., Tian Q., Ran Q., Gan Q., Hu Y., Du D., Qin Z., Duan X., Zhu X., Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules. 2024;14:1623. doi: 10.3390/biom14121623. PubMed DOI PMC
Montazeri-Khosh Z., Ebrahimpour A., Keshavarz M., Sheybani-Arani M., Samiei A. Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: A promising approach for traumatic brain injury. Immunopharmacol. Immunotoxicol. 2025:1–17. doi: 10.1080/08923973.2024.2444956. PubMed DOI
Pagotto G.L.O., Santos L., Osman N., Lamas C.B., Laurindo L.F., Pomini K.T., Guissoni L.M., Lima E.P., Goulart R.A., Catharin V., et al. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer’s Dementia: Clinical Trial Systematic Review. Antioxidants. 2024;13:651. doi: 10.3390/antiox13060651. PubMed DOI PMC
Chaachouay N., Zidane L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates. 2024;3:184–207. doi: 10.3390/ddc3010011. DOI
Abou Assale T., Afrang N., Wissfeld J., Cuevas-Rios G., Klaus C., Linnartz-Gerlach B., Neumann H. Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice. Front. Neurosci. 2024;18:1504765. doi: 10.3389/fnins.2024.1504765. PubMed DOI PMC
Kim Y., Lim J., Oh J. Taming neuroinflammation in Alzheimer’s disease: The protective role of phytochemicals through the gut-brain axis. Biomed. Pharmacother. 2024;178:117277. doi: 10.1016/j.biopha.2024.117277. PubMed DOI
Kisioglu B., Onal E., Karabulut D., Onbasilar I., Akyol A. Neuroprotective Roles of Lauric Acid and Resveratrol: Shared Benefits in Neuroinflammation and Anxiety, Distinct Effects on Memory Enhancement. Food Sci. Nutr. 2024;12:9735–9748. doi: 10.1002/fsn3.4520. PubMed DOI PMC
Liu J., Wang Y., Sun H., Lei D., Liu J., Fei Y., Wang C., Han C. Resveratrol ameliorates postoperative cognitive dysfunction in aged mice by regulating microglial polarization through CX3CL1/CX3CR1 signaling axis. Neurosci. Lett. 2024;847:138089. doi: 10.1016/j.neulet.2024.138089. PubMed DOI
Tao G., Wang X., Wang J., Ye Y., Zhang M., Lang Y., Ding S. Dihydro-resveratrol ameliorates NLRP3 inflammasome-mediated neuroinflammation via Bnip3-dependent mitophagy in Alzheimer’s disease. Br. J. Pharmacol. 2024;182:1005–1024. doi: 10.1111/bph.17373. PubMed DOI
Hou B.L., Wang C.C., Liang Y., Jiang M., Sun Y.E., Huang Y.L., Ma Z.L. Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation. Chin. J. Integr. Med. 2025 doi: 10.1007/s11655-024-3920-4. PubMed DOI
Carles A., Freyssin A., Guehairia S., Reguero T., Vignes M., Hirbec H., Rubinstenn G., Maurice T. Neuroprotection by chronic administration of Fluoroethylnormemantine (FENM) in mouse models of Alzheimer’s disease. Alzheimer’s Res. Ther. 2025;17:7. doi: 10.1186/s13195-024-01648-9. PubMed DOI PMC
Battaglia S., Avenanti A., Vécsei L., Tanaka M. Neural Correlates and Molecular Mechanisms of Memory and Learning. Int. J. Mol. Sci. 2024;25:2724. doi: 10.3390/ijms25052724. PubMed DOI PMC
Tyler S.E.B., Tyler L.D.K. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci. Rep. 2023;14:210–234. doi: 10.1016/j.ibneur.2023.01.006. PubMed DOI PMC
Suk K. Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids. Neurosignals. 2005;14:23–33. doi: 10.1159/000085383. PubMed DOI
Janpaijit S., Sillapachaiyaporn C., Theerasri A., Charoenkiatkul S., Sukprasansap M., Tencomnao T. Cleistocalyx nervosum var. paniala Berry Seed Protects against TNF-α-Stimulated Neuroinflammation by Inducing HO-1 and Suppressing NF-κB Mechanism in BV-2 Microglial Cells. Molecules. 2023;28:3057. doi: 10.3390/molecules28073057. PubMed DOI PMC
Janpaijit S., Lertpatipanpong P., Sillapachaiyaporn C., Baek S.J., Charoenkiatkul S., Tencomnao T., Sukprasansap M. Anti-neuroinflammatory effects of Cleistocalyx nervosum var. paniala berry-seed extract in BV-2 microglial cells via inhibition of MAPKs/NF-κB signaling pathway. Heliyon. 2022;8:e11869. doi: 10.1016/j.heliyon.2022.e11869. PubMed DOI PMC
Kim K.W., Lee Y.S., Yoon D., Kim G.S., Lee D.Y. The ethanolic extract of Curcuma longa grown in Korea exhibits anti-neuroinflammatory effects by activating of nuclear transcription factor erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. BMC Complement. Med. Ther. 2022;22:343. doi: 10.1186/s12906-022-03825-5. PubMed DOI PMC
Eun C.S., Lim J.S., Lee J., Lee S.P., Yang S.A. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice. BMC Complement. Altern. Med. 2017;17:367. doi: 10.1186/s12906-017-1880-3. PubMed DOI PMC
Borgonetti V., Benatti C., Governa P., Isoldi G., Pellati F., Alboni S., Tascedda F., Montopoli M., Galeotti N., Manetti F., et al. Non-psychotropic Cannabis sativa L. phytocomplex modulates microglial inflammatory response through CB2 receptors-, endocannabinoids-, and NF-κB-mediated signaling. Phytother. Res. 2022;36:2246–2263. doi: 10.1002/ptr.7458. PubMed DOI PMC
Barbalace M.C., Freschi M., Rinaldi I., Mazzara E., Maraldi T., Malaguti M., Prata C., Maggi F., Petrelli R., Hrelia S., et al. Identification of Anti-Neuroinflammatory Bioactive Compounds in Essential Oils and Aqueous Distillation Residues Obtained from Commercial Varieties of Cannabis sativa L. Int. J. Mol. Sci. 2023;24:16601. doi: 10.3390/ijms242316601. PubMed DOI PMC
Jiang Y.K., Li M.M., Wang S.Y., Hao Z.C., Meng X., Kuang H.X., Yang B.Y., Liu Y. Protective effect of phenylpropionamides in the seed of Cannabis sativa L. on Parkinson’s disease through autophagy. Fitoterapia. 2024;175:105883. doi: 10.1016/j.fitote.2024.105883. PubMed DOI
Borgonetti V., Anceschi L., Brighenti V., Corsi L., Governa P., Manetti F., Pellati F., Galeotti N. Cannabidiol-rich non-psychotropic Cannabis sativa L. oils attenuate peripheral neuropathy symptoms by regulation of CB2-mediated microglial neuroinflammation. Phytother. Res. 2023;37:1924–1937. doi: 10.1002/ptr.7710. PubMed DOI
Zhou Y., Wang S., Ji J., Lou H., Fan P. Hemp (Cannabis sativa L.) Seed Phenylpropionamides Composition and Effects on Memory Dysfunction and Biomarkers of Neuroinflammation Induced by Lipopolysaccharide in Mice. ACS Omega. 2018;3:15988–15995. doi: 10.1021/acsomega.8b02250. PubMed DOI PMC
Shin J., Kim D.U., Bae G.S., Han J.Y., Lim D.W., Lee Y.M., Kim E., Kwon E., Han D., Kim S. Antidepressant-like Effects of Cannabis sativa L. Extract in an Lipopolysaccharide Model: Modulation of Mast Cell Activation in Deep Cervical Lymph Nodes and Dura Mater. Pharmaceuticals. 2024;17:1409. doi: 10.3390/ph17101409. PubMed DOI PMC
Azam S., Kim Y.S., Jakaria M., Yu Y.J., Ahn J.Y., Kim I.S., Choi D.K. Dioscorea nipponica Makino Rhizome Extract and Its Active Compound Dioscin Protect against Neuroinflammation and Scopolamine-Induced Memory Deficits. Int. J. Mol. Sci. 2022;23:9923. doi: 10.3390/ijms23179923. PubMed DOI PMC
Li S.Y., Zhou Y.L., He D.H., Liu W., Fan X.Z., Wang Q., Pan H.F., Cheng Y.X., Liu Y.Q. Centipeda minima extract exerts antineuroinflammatory effects via the inhibition of NF-κB signaling pathway. Phytomed. Int. J. Phytother. Phytopharm. 2020;67:153164. doi: 10.1016/j.phymed.2019.153164. PubMed DOI
Jeong Y.H., Li W., Go Y., Oh Y.C. Atractylodis Rhizoma Alba Attenuates Neuroinflammation in BV2 Microglia upon LPS Stimulation by Inducing HO-1 Activity and Inhibiting NF-κB and MAPK. Int. J. Mol. Sci. 2019;20:4015. doi: 10.3390/ijms20164015. PubMed DOI PMC
Kwon S.H., Ma S.X., Ko Y.H., Seo J.Y., Lee B.R., Lee T.H., Kim S.Y., Lee S.Y., Jang C.G. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells. Biomol. Ther. 2016;24:543–551. doi: 10.4062/biomolther.2015.205. PubMed DOI PMC
Kwon S.H., Ma S.X., Hong S.I., Lee S.Y., Jang C.G. Lonicera japonica THUNB. Extract Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses by Suppressing NF-κB Signaling in BV-2 Microglial Cells. J. Med. Food. 2015;18:762–775. doi: 10.1089/jmf.2014.3341. PubMed DOI PMC
Eom H.W., Park S.Y., Kim Y.H., Seong S.J., Jin M.L., Ryu E.Y., Kim M.J., Lee S.J. Bambusae Caulis in Taeniam modulates neuroprotective and anti-neuroinflammatory effects in hippocampal and microglial cells via HO-1- and Nrf-2-mediated pathways. Int. J. Mol. Med. 2012;30:1512–1520. doi: 10.3892/ijmm.2012.1128. PubMed DOI
Jung H.W., Yoon C.H., Park K.M., Han H.S., Park Y.K. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food Chem. Toxicol. 2009;47:1190–1197. doi: 10.1016/j.fct.2009.02.012. PubMed DOI
Subedi L., Baek S.H., Kim S.Y. Genetically Engineered Resveratrol-Enriched Rice Inhibits Neuroinflammation in Lipopolysaccharide-Activated BV2 Microglia Via Downregulating Mitogen-Activated Protein Kinase-Nuclear Factor Kappa B Signaling Pathway. Oxid. Med. Cell Longev. 2018;2018:8092713. doi: 10.1155/2018/8092713. PubMed DOI PMC
Sen R., Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986;47:921–928. doi: 10.1016/0092-8674(86)90807-X. PubMed DOI
Sun E., Motolani A., Campos L., Lu T. The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. Int. J. Mol. Sci. 2022;23:8972. doi: 10.3390/ijms23168972. PubMed DOI PMC
Nennig S.E., Schank J.R. The Role of NFkB in Drug Addiction: Beyond Inflammation. Alcohol. Alcohol. 2017;52:172–179. doi: 10.1093/alcalc/agw098. PubMed DOI PMC
Yu H., Lin L., Zhang Z., Zhang H., Hu H. Targeting NF-kappaB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther. 2020;5:209. doi: 10.1038/s41392-020-00312-6. PubMed DOI PMC
Sun S.C. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017;17:545–558. doi: 10.1038/nri.2017.52. PubMed DOI PMC
Shih R.H., Wang C.Y., Yang C.M. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci. 2015;8:77. doi: 10.3389/fnmol.2015.00077. PubMed DOI PMC
Zusso M., Lunardi V., Franceschini D., Pagetta A., Lo R., Stifani S., Frigo A.C., Giusti P., Moro S. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J. Neuroinflamm. 2019;16:148. doi: 10.1186/s12974-019-1538-9. PubMed DOI PMC
Shabab T., Khanabdali R., Moghadamtousi S.Z., Kadir H.A., Mohan G. Neuroinflammation pathways: A general review. Int. J. Neurosci. 2017;127:624–633. doi: 10.1080/00207454.2016.1212854. PubMed DOI
Glass C.K., Saijo K., Winner B., Marchetto M.C., Gage F.H. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–934. doi: 10.1016/j.cell.2010.02.016. PubMed DOI PMC
Caetano-Silva M.E., Rund L.A., Vailati-Riboni M., Pacheco M.T.B., Johnson R.W. Copper-Binding Peptides Attenuate Microglia Inflammation through Suppression of NF-kB Pathway. Mol. Nutr. Food Res. 2021;65:e2100153. doi: 10.1002/mnfr.202100153. PubMed DOI PMC
Badenetti L., Manzoli R., Rubin M., Cozza G., Moro E. Monitoring Nrf2/ARE Pathway Activity with a New Zebrafish Reporter System. Int. J. Mol. Sci. 2023;24:6804. doi: 10.3390/ijms24076804. PubMed DOI PMC
Sandberg M., Patil J., D’Angelo B., Weber S.G., Mallard C. NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology. 2014;79:298–306. doi: 10.1016/j.neuropharm.2013.11.004. PubMed DOI PMC
Wei Z., Zhao J., Zhang L., Xia M. Cell-Based Assays to Identify Modulators of Nrf2/ARE Pathway. Methods Mol. Biol. 2022;2474:59–69. doi: 10.1007/978-1-0716-2213-1_7. PubMed DOI PMC
Sivandzade F., Prasad S., Bhalerao A., Cucullo L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019;21:101059. doi: 10.1016/j.redox.2018.11.017. PubMed DOI PMC
Dordoe C., Wang X., Lin P., Wang Z., Hu J., Wang D., Fang Y., Liang F., Ye S., Chen J., et al. Non-mitogenic fibroblast growth factor 1 protects against ischemic stroke by regulating microglia/macrophage polarization through Nrf2 and NF-kappaB pathways. Neuropharmacology. 2022;212:109064. doi: 10.1016/j.neuropharm.2022.109064. PubMed DOI
Zhang M., An C., Gao Y., Leak R.K., Chen J., Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 2013;100:30–47. doi: 10.1016/j.pneurobio.2012.09.003. PubMed DOI PMC
Zhang Q., Liu J., Duan H., Li R., Peng W., Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021;34:43–63. doi: 10.1016/j.jare.2021.06.023. PubMed DOI PMC
Zhou J., Zheng Q., Chen Z. The Nrf2 Pathway in Liver Diseases. Front. Cell Dev. Biol. 2022;10:826204. doi: 10.3389/fcell.2022.826204. PubMed DOI PMC
Taguchi K., Motohashi H., Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells. 2011;16:123–140. doi: 10.1111/j.1365-2443.2010.01473.x. PubMed DOI
Dayalan Naidu S., Muramatsu A., Saito R., Asami S., Honda T., Hosoya T., Itoh K., Yamamoto M., Suzuki T., Dinkova-Kostova A.T. C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Sci. Rep. 2018;8:8037. doi: 10.1038/s41598-018-26269-9. PubMed DOI PMC
Song X., Long D. Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Front. Neurosci. 2020;14:267. doi: 10.3389/fnins.2020.00267. PubMed DOI PMC
Mohan S., Gupta D. Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed. Pharmacother. 2018;108:1866–1878. doi: 10.1016/j.biopha.2018.10.019. PubMed DOI
Cores Á., Piquero M., Villacampa M., León R., Menéndez J.C. NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules. 2020;10:904. doi: 10.3390/biom10060904. PubMed DOI PMC
Gan L., Johnson J.A. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim. Biophys. Acta. 2014;1842:1208–1218. doi: 10.1016/j.bbadis.2013.12.011. PubMed DOI
He W.J., Lv C.H., Chen Z., Shi M., Zeng C.X., Hou D.X., Qin S. The Regulatory Effect of Phytochemicals on Chronic Diseases by Targeting Nrf2-ARE Signaling Pathway. Antioxidants. 2023;12:236. doi: 10.3390/antiox12020236. PubMed DOI PMC
Amoroso R., Maccallini C., Bellezza I. Activators of Nrf2 to Counteract Neurodegenerative Diseases. Antioxidants. 2023;12:778. doi: 10.3390/antiox12030778. PubMed DOI PMC
Seok J.K., Kang H.C., Cho Y.Y., Lee H.S., Lee J.Y. Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch. Pharm. Res. 2021;44:16–35. doi: 10.1007/s12272-021-01307-9. PubMed DOI PMC
Malik A., Kanneganti T.D. Inflammasome activation and assembly at a glance. J. Cell Sci. 2017;130:3955–3963. doi: 10.1242/jcs.207365. PubMed DOI PMC
Swanson K.V., Deng M., Ting J.P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019;19:477–489. doi: 10.1038/s41577-019-0165-0. PubMed DOI PMC
Guo H., Callaway J.B., Ting J.P. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893. PubMed DOI PMC
Bulte D., Rigamonti C., Romano A., Mortellaro A. Inflammasomes: Mechanisms of Action and Involvement in Human Diseases. Cells. 2023;12:1766. doi: 10.3390/cells12131766. PubMed DOI PMC
Fu J., Wu H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu. Rev. Immunol. 2023;41:301–316. doi: 10.1146/annurev-immunol-081022-021207. PubMed DOI PMC
Song N., Li T. Regulation of NLRP3 Inflammasome by Phosphorylation. Front. Immunol. 2018;9:2305. doi: 10.3389/fimmu.2018.02305. PubMed DOI PMC
Wu N., Zheng C., Xu J., Ma S., Jia H., Yan M., An F., Zhou Y., Qi J., Bian H. Race between virus and inflammasomes: Inhibition or escape, intervention and therapy. Front. Cell Infect. Microbiol. 2023;13:1173505. doi: 10.3389/fcimb.2023.1173505. PubMed DOI PMC
Anderson F.L., Biggs K.E., Rankin B.E., Havrda M.C. NLRP3 inflammasome in neurodegenerative disease. Transl. Res. 2023;252:21–33. doi: 10.1016/j.trsl.2022.08.006. PubMed DOI PMC
Paik S., Kim J.K., Silwal P., Sasakawa C., Jo E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol. Immunol. 2021;18:1141–1160. doi: 10.1038/s41423-021-00670-3. PubMed DOI PMC
Zhan X., Li Q., Xu G., Xiao X., Bai Z. The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors. Front. Immunol. 2022;13:1109938. doi: 10.3389/fimmu.2022.1109938. PubMed DOI PMC
Biasizzo M., Kopitar-Jerala N. Interplay Between NLRP3 Inflammasome and Autophagy. Front. Immunol. 2020;11:591803. doi: 10.3389/fimmu.2020.591803. PubMed DOI PMC
Kelley N., Jeltema D., Duan Y., He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019;20:3328. doi: 10.3390/ijms20133328. PubMed DOI PMC
Pellegrini C., Antonioli L., Lopez-Castejon G., Blandizzi C., Fornai M. Canonical and Non-Canonical Activation of NLRP3 Inflammasome at the Crossroad between Immune Tolerance and Intestinal Inflammation. Front. Immunol. 2017;8:36. doi: 10.3389/fimmu.2017.00036. PubMed DOI PMC
Zhao C., Zhao W. NLRP3 Inflammasome-A Key Player in Antiviral Responses. Front. Immunol. 2020;11:211. doi: 10.3389/fimmu.2020.00211. PubMed DOI PMC
Zito G., Buscetta M., Cimino M., Dino P., Bucchieri F., Cipollina C. Cellular Models and Assays to Study NLRP3 Inflammasome Biology. Int. J. Mol. Sci. 2020;21:4294. doi: 10.3390/ijms21124294. PubMed DOI PMC
Lin S., Mei X. Role of NLRP3 Inflammasomes in Neuroinflammation Diseases. Eur. Neurol. 2020;83:576–580. doi: 10.1159/000509798. PubMed DOI
Han Q.Q., Le W. NLRP3 Inflammasome-Mediated Neuroinflammation and Related Mitochondrial Impairment in Parkinson’s Disease. Neurosci. Bull. 2023;39:832–844. doi: 10.1007/s12264-023-01023-y. PubMed DOI PMC
Lu R., Zhang L., Yang X. Interaction between autophagy and the NLRP3 inflammasome in Alzheimer’s and Parkinson’s disease. Front. Aging Neurosci. 2022;14:1018848. doi: 10.3389/fnagi.2022.1018848. PubMed DOI PMC
Soraci L., Gambuzza M.E., Biscetti L., Laganà P., Lo Russo C., Buda A., Barresi G., Corsonello A., Lattanzio F., Lorello G., et al. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson’s disease: Mechanisms and therapeutic implications. J. Neurol. 2023;270:1346–1360. doi: 10.1007/s00415-022-11491-3. PubMed DOI PMC
Su Q., Ng W.L., Goh S.Y., Gulam M.Y., Wang L.F., Tan E.K., Ahn M., Chao Y.X. Targeting the inflammasome in Parkinson’s disease. Front. Aging Neurosci. 2022;14:957705. doi: 10.3389/fnagi.2022.957705. PubMed DOI PMC
Barczuk J., Siwecka N., Lusa W., Rozpedek-Kaminska W., Kucharska E., Majsterek I. Targeting NLRP3-Mediated Neuroinflammation in Alzheimer’s Disease Treatment. Int. J. Mol. Sci. 2022;23:8979. doi: 10.3390/ijms23168979. PubMed DOI PMC
Severini C., Barbato C., Di Certo M.G., Gabanella F., Petrella C., Di Stadio A., de Vincentiis M., Polimeni A., Ralli M., Greco A. Alzheimer’s Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease. Curr. Neuropharmacol. 2021;19:498–512. doi: 10.2174/1570159X18666200621204546. PubMed DOI PMC
Liang T., Zhang Y., Wu S., Chen Q., Wang L. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front. Pharmacol. 2022;13:845185. doi: 10.3389/fphar.2022.845185. PubMed DOI PMC
Yang Z., Liu J., Wei S., Deng J., Feng X., Liu S., Liu M. A novel strategy for bioactive natural products targeting NLRP3 inflammasome in Alzheimer’s disease. Front. Pharmacol. 2022;13:1077222. doi: 10.3389/fphar.2022.1077222. PubMed DOI PMC
Deng C., Cai X., Jin K., Wang Q. Editorial: The NLRP3 inflammasome-mediated neuroinflammation and its related mitochondrial impairment in neurodegeneration. Front. Aging Neurosci. 2022;14:1118281. doi: 10.3389/fnagi.2022.1118281. PubMed DOI PMC
Zhu X., Liu H., Wang D., Guan R., Zou Y., Li M., Zhang J., Chen J. NLRP3 deficiency protects against hypobaric hypoxia induced neuroinflammation and cognitive dysfunction. Ecotoxicol. Environ. Saf. 2023;255:114828. doi: 10.1016/j.ecoenv.2023.114828. PubMed DOI
Yu Q., Zhao T., Liu M., Cao D., Li J., Li Y., Xia M., Wang X., Zheng T., Liu C., et al. Targeting NLRP3 Inflammasome in Translational Treatment of Nervous System Diseases: An Update. Front. Pharmacol. 2021;12:707696. doi: 10.3389/fphar.2021.707696. PubMed DOI PMC
Sarapultsev A., Gusev E., Komelkova M., Utepova I., Luo S., Hu D. JAK-STAT signaling in inflammation and stress-related diseases: Implications for therapeutic interventions. Mol. Biomed. 2023;4:40. doi: 10.1186/s43556-023-00151-1. PubMed DOI PMC
Cardona K., Medina J., Orrego-Cardozo M., Restrepo de Mejía F., Elcoroaristizabal X., Naranjo Galvis C.A. Inflammatory gene expression profiling in peripheral blood from patients with Alzheimer’s disease reveals key pathways and hub genes with potential diagnostic utility: A preliminary study. PeerJ. 2021;9:e12016. doi: 10.7717/peerj.12016. PubMed DOI PMC
Jain M., Singh M.K., Shyam H., Mishra A., Kumar S., Kumar A., Kushwaha J. Role of JAK/STAT in the Neuroinflammation and its Association with Neurological Disorders. Ann. Neurosci. 2021;28:191–200. doi: 10.1177/09727531211070532. PubMed DOI PMC
Oh S.L., Zhou M., Chin E.W.M., Amarnath G., Cheah C.H., Ng K.P., Kandiah N., Goh E.L.K., Chiam K.H. Alzheimer’s Disease Blood Biomarkers Associated With Neuroinflammation as Therapeutic Targets for Early Personalized Intervention. Front. Digit. Health. 2022;4:875895. doi: 10.3389/fdgth.2022.875895. PubMed DOI PMC
Varma V.R., Desai R.J., Navakkode S., Wong L.W., Anerillas C., Loeffler T., Schilcher I., Mahesri M., Chin K., Horton D.B., et al. Hydroxychloroquine lowers Alzheimer’s disease and related dementias risk and rescues molecular phenotypes related to Alzheimer’s disease. Mol. Psychiatry. 2023;28:1312–1326. doi: 10.1038/s41380-022-01912-0. PubMed DOI PMC
Rusek M., Smith J., El-Khatib K., Aikins K., Czuczwar S.J., Pluta R. The Role of the JAK/STAT Signaling Pathway in the Pathogenesis of Alzheimer’s Disease: New Potential Treatment Target. Int. J. Mol. Sci. 2023;24:864. doi: 10.3390/ijms24010864. PubMed DOI PMC
Nevado-Holgado A.J., Ribe E., Thei L., Furlong L., Mayer M.A., Quan J., Richardson J.C., Cavanagh J., Consortium N., Lovestone S. Genetic and Real-World Clinical Data, Combined with Empirical Validation, Nominate Jak-Stat Signaling as a Target for Alzheimer’s Disease Therapeutic Development. Cells. 2019;8:425. doi: 10.3390/cells8050425. PubMed DOI PMC
Porro C., Cianciulli A., Trotta T., Lofrumento D.D., Panaro M.A. Curcumin Regulates Anti-Inflammatory Responses by JAK/STAT/SOCS Signaling Pathway in BV-2 Microglial Cells. Biology. 2019;8:51. doi: 10.3390/biology8030051. PubMed DOI PMC
Yan Z., Gibson S.A., Buckley J.A., Qin H., Benveniste E.N. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin. Immunol. 2018;189:4–13. doi: 10.1016/j.clim.2016.09.014. PubMed DOI PMC
Qin H., Buckley J.A., Li X., Liu Y., Fox T.H., 3rd, Meares G.P., Yu H., Yan Z., Harms A.S., Li Y., et al. Inhibition of the JAK/STAT Pathway Protects Against α-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. J Neurosci. 2016;36:5144–5159. doi: 10.1523/JNEUROSCI.4658-15.2016. PubMed DOI PMC
Hu X., Li J., Fu M., Zhao X., Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021;6:402. doi: 10.1038/s41392-021-00791-1. PubMed DOI PMC
Vidal-Itriago A., Radford R.A., Aramideh J.A., Maurel C., Scherer N.M., Don E.K., Lee A., Chung R.S., Graeber M.B., Morsch M. Microglia morphophysiological diversity and its implications for the CNS. Front. Front. Immunol. Immunol. 2022;13:997786. doi: 10.3389/fimmu.2022.997786. PubMed DOI PMC
Gullotta G.S., Costantino G., Sortino M.A., Spampinato S.F. Microglia and the blood–brain barrier: An external player in acute and chronic neuroinflammatory conditions. Int. J. Mol. Sci. 2023;24:9144. doi: 10.3390/ijms24119144. PubMed DOI PMC
Son Y., Yeo I.-J., Hong J.-T., Eo S.-K., Lee D., Kim K. Side-Chain Immune Oxysterols Induce Neuroinflammation by Activating Microglia. Int. J. Mol. Sci. 2023;24:15288. doi: 10.3390/ijms242015288. PubMed DOI PMC
Sun Y., Che J., Zhang J. Emerging non-proinflammatory roles of microglia in healthy and diseased brains. Brain Res. Bull. 2023;199:110664. doi: 10.1016/j.brainresbull.2023.110664. PubMed DOI
Zhang W., Jiang J., Xu Z., Yan H., Tang B., Liu C., Chen C., Meng Q. Microglia-containing human brain organoids for the study of brain development and pathology. Mol. Psychiatry. 2023;28:96–107. doi: 10.1038/s41380-022-01892-1. PubMed DOI PMC
Colonna M., Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 2017;35:441–468. doi: 10.1146/annurev-immunol-051116-052358. PubMed DOI PMC
Matsudaira T., Prinz M. Life and death of microglia: Mechanisms governing microglial states and fates. Immunol. Lett. 2022;245:51–60. doi: 10.1016/j.imlet.2022.04.001. PubMed DOI
Wright-Jin E.C., Gutmann D.H. Microglia as dynamic cellular mediators of brain function. Trends Mol. Med. 2019;25:967–979. doi: 10.1016/j.molmed.2019.08.013. PubMed DOI PMC
Costa J., Martins S., Ferreira P.A., Cardoso A.M., Guedes J.R., Peça J., Cardoso A.L. The old guard: Age-related changes in microglia and their consequences. Mech. Ageing Dev. 2021;197:111512. doi: 10.1016/j.mad.2021.111512. PubMed DOI
Al-Onaizi M., Al-Khalifah A., Qasem D., ElAli A. Role of microglia in modulating adult neurogenesis in health and neurodegeneration. Int. J. Mol. Sci. 2020;21:6875. doi: 10.3390/ijms21186875. PubMed DOI PMC
D’Alessandro G., Marrocco F., Limatola C. Microglial cells: Sensors for neuronal activity and microbiota-derived molecules. Front. Immunol. 2022;13:1011129. doi: 10.3389/fimmu.2022.1011129. PubMed DOI PMC
Zhang L., Wang Y., Liu T., Mao Y., Peng B. Novel microglia-based therapeutic approaches to neurodegenerative disorders. Neurosci. Bull. 2023;39:491–502. doi: 10.1007/s12264-022-01013-6. PubMed DOI PMC
Liu W., Taso O., Wang R., Bayram S., Graham A.C., Garcia-Reitboeck P., Mallach A., Andrews W.D., Piers T.M., Botia J.A. Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Human. Mol. Genet. 2020;29:3224–3248. doi: 10.1093/hmg/ddaa209. PubMed DOI PMC
Strizova Z., Benesova I., Bartolini R., Novysedlak R., Cecrdlova E., Foley L.K., Striz I. M1/M2 macrophages and their overlaps—Myth or reality? Clin. Sci. 2023;137:1067–1093. doi: 10.1042/CS20220531. PubMed DOI PMC
Gao C., Jiang J., Tan Y., Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023;8:359. doi: 10.1038/s41392-023-01588-0. PubMed DOI PMC
Li J., Shui X., Sun R., Wan L., Zhang B., Xiao B., Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front. Cell. Neurosci. 2021;15:736310. doi: 10.3389/fncel.2021.736310. PubMed DOI PMC
Lis-López L., Bauset C., Seco-Cervera M., Cosín-Roger J. Is the Macrophage Phenotype Determinant for Fibrosis Development? Biomedicines. 2021;9:1747. doi: 10.3390/biomedicines9121747. PubMed DOI PMC
Gomes C., Ferreira R., George J., Sanches R., Rodrigues D.I., Gonçalves N., Cunha R.A. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J. Neuroinflamm. 2013;10:780. doi: 10.1186/1742-2094-10-16. PubMed DOI PMC
Russo C., Valle M.S., Russo A., Malaguarnera L. The interplay between ghrelin and microglia in neuroinflammation: Implications for obesity and neurodegenerative diseases. Int. J. Mol. Sci. 2022;23:13432. doi: 10.3390/ijms232113432. PubMed DOI PMC
Liu L., Tong F., Li H., Bin Y., Ding P., Peng L., Liu Z., Dong X. Maturation, morphology, and function: The decisive role of intestinal flora on microglia: A review. J. Integr. Neurosci. 2023;22:70. doi: 10.31083/j.jin2203070. PubMed DOI
Ng P.Y., McNeely T.L., Baker D.J. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J. 2023;290:1326–1339. doi: 10.1111/febs.16315. PubMed DOI PMC
Umpierre A.D., Wu L.J. How microglia sense and regulate neuronal activity. Glia. 2021;69:1637–1653. doi: 10.1002/glia.23961. PubMed DOI PMC
Hristovska I., Robert M., Combet K., Honnorat J., Comte J., Pascual O. Sleep decreases neuronal activity control of microglial dynamics in mice. Nat. Commun. 2022;13:6273. doi: 10.1038/s41467-022-34035-9. PubMed DOI PMC
Ikegami A., Kato D., Wake H. Microglial process dynamics depend on astrocyte and synaptic activity. Nagoya J. Med. Sci. 2023;85:772. PubMed PMC
Ahn K., Lee S.J., Mook-Jung I. White matter-associated microglia: New players in brain aging and neurodegenerative diseases. Ageing Res. Rev. 2022;75:101574. doi: 10.1016/j.arr.2022.101574. PubMed DOI
Sun N., Victor M.B., Park Y.P., Xiong X., Scannail A.N., Leary N., Prosper S., Viswanathan S., Luna X., Boix C.A., et al. Human microglial state dynamics in Alzheimer’s disease progression. Cell. 2023;186:4386–4403.e29. doi: 10.1016/j.cell.2023.08.037. PubMed DOI PMC
Kelly R., Joers V., Tansey M.G., McKernan D.P., Dowd E. Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson’s Disease. Molecules. 2020;25:453. doi: 10.3390/molecules25030453. PubMed DOI PMC
Tanaka M., Vécsei L. Editorial of Special Issue ‘Dissecting Neurological and Neuropsychiatric Diseases: Neurodegeneration and Neuroprotection’. J. Mol. Sci. 2022;23:13. doi: 10.3390/ijms23136991. PubMed DOI PMC
Harry G.J. Microglia in Neurodegenerative Events-An Initiator or a Significant Other? Int. J. Mol. Sci. 2021;22:5818. doi: 10.3390/ijms22115818. PubMed DOI PMC
Tofaris G.K. Initiation and progression of α-synuclein pathology in Parkinson’s disease. Cell Mol. Life Sci. 2022;79:210. doi: 10.1007/s00018-022-04240-2. PubMed DOI PMC
Toni M. Special Issue “Neurobiology of Protein Synuclein”. Int. J. Mol. Sci. 2024;25:3223. doi: 10.3390/ijms25063223. PubMed DOI PMC
Badanjak K., Fixemer S., Smajić S., Skupin A., Grünewald A. The Contribution of Microglia to Neuroinflammation in Parkinson’s Disease. Int. J. Mol. Sci. 2021;22:4676. doi: 10.3390/ijms22094676. PubMed DOI PMC
Basellini M.J., Kothuis J.M., Comincini A., Pezzoli G., Cappelletti G., Mazzetti S. Pathological Pathways and Alpha-Synuclein in Parkinson’s Disease: A View from the Periphery. Front. Biosci. 2023;28:33. doi: 10.31083/j.fbl2802033. PubMed DOI
Xu Y., Li Y., Wang C., Han T., Liu H., Sun L., Hong J., Hashimoto M., Wei J. The reciprocal interactions between microglia and T cells in Parkinson’s disease: A double-edged sword. J. Neuroinflamm. 2023;20:33. doi: 10.1186/s12974-023-02723-y. PubMed DOI PMC
Yan Y.Q., Zheng R., Liu Y., Ruan Y., Lin Z.H., Xue N.J., Chen Y., Zhang B.R., Pu J.L. Parkin regulates microglial NLRP3 and represses neurodegeneration in Parkinson’s disease. Aging Cell. 2023;22:e13834. doi: 10.1111/acel.13834. PubMed DOI PMC
Yang J., Hamade M., Wu Q., Wang Q., Axtell R., Giri S., Mao-Draayer Y. Current and Future Biomarkers in Multiple Sclerosis. Int. J. Mol. Sci. 2022;23:5877. doi: 10.3390/ijms23115877. PubMed DOI PMC
Charabati M., Wheeler M.A., Weiner H.L., Quintana F.J. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell. 2023;186:1309–1327. doi: 10.1016/j.cell.2023.03.008. PubMed DOI PMC
Mey G.M., Mahajan K.R., DeSilva T.M. Neurodegeneration in multiple sclerosis. WIREs Mech. Dis. 2023;15:e1583. doi: 10.1002/wsbm.1583. PubMed DOI PMC
Ren J., Dai C., Zhou X., Barnes J.A., Chen X., Wang Y., Yuan L., Shingu T., Heimberger A.B., Chen Y., et al. Qki is an essential regulator of microglial phagocytosis in demyelination. J. Exp. Med. 2021;218:e20190348. doi: 10.1084/jem.20190348. PubMed DOI PMC
Zhang X., Chen F., Sun M., Wu N., Liu B., Yi X., Ge R., Fan X. Microglia in the context of multiple sclerosis. Front. Neurol. 2023;14:1157287. doi: 10.3389/fneur.2023.1157287. PubMed DOI PMC
Yu Z., Fang X., Liu W., Sun R., Zhou J., Pu Y., Zhao M., Sun D., Xiang Z., Liu P., et al. Microglia Regulate Blood-Brain Barrier Integrity via MiR-126a-5p/MMP9 Axis during Inflammatory Demyelination. Adv. Sci. 2022;9:e2105442. doi: 10.1002/advs.202105442. PubMed DOI PMC
Tanaka M., Szabó Á., Vécsei L. Preclinical modeling in depression and anxiety: Current challenges and future research directions. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2023;32:505–509. doi: 10.17219/acem/165944. PubMed DOI PMC
Nunes Y.C., Mendes N.M., Pereira de Lima E., Chehadi A.C., Lamas C.B., Haber J.F.S., Dos Santos Bueno M., Araújo A.C., Catharin V.C.S., Detregiachi C.R.P., et al. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients. 2024;16:2721. doi: 10.3390/nu16162721. PubMed DOI PMC
Wróbel-Biedrawa D., Podolak I. Anti-Neuroinflammatory Effects of Adaptogens: A Mini-Review. Molecules. 2024;29:866. doi: 10.3390/molecules29040866. PubMed DOI PMC