Analysis of measurable residual disease by IG/TR gene rearrangements: quality assurance and updated EuroMRD guidelines

. 2024 Jun ; 38 (6) : 1315-1322. [epub] 20240514

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38744919
Odkazy

PubMed 38744919
PubMed Central PMC11147754
DOI 10.1038/s41375-024-02272-0
PII: 10.1038/s41375-024-02272-0
Knihovny.cz E-zdroje

Minimal/measurable residual disease (MRD) diagnostics using real-time quantitative PCR analysis of rearranged immunoglobulin and T-cell receptor gene rearrangements are nowadays implemented in most treatment protocols for patients with acute lymphoblastic leukemia (ALL). Within the EuroMRD Consortium, we aim to provide comparable, high-quality MRD diagnostics, allowing appropriate risk-group classification for patients and inter-protocol comparisons. To this end, we set up a quality assessment scheme, that was gradually optimized and updated over the last 20 years, and that now includes participants from around 70 laboratories worldwide. We here describe the design and analysis of our quality assessment scheme. In addition, we here report revised data interpretation guidelines, based on our newly generated data and extensive discussions between experts. The main novelty is the partial re-definition of the "positive below quantitative range" category by two new categories, "MRD low positive, below quantitative range" and "MRD of uncertain significance". The quality assessment program and revised guidelines will ensure reproducible and accurate MRD data for ALL patients. Within the Consortium, similar programs and guidelines have been introduced for other lymphoid diseases (e.g., B-cell lymphoma), for new technological platforms (e.g., digital droplet PCR or Next-Generation Sequencing), and for other patient-specific MRD PCR-based targets (e.g., fusion genes).

Bristol MRD Group Bristol Genetics Laboratory Southmead Hospital Bristol UK

Centro de Investigación del Cáncer Instituto de Biología Molecular y Celular del Cáncer and Department of Medicine University of Salamanca Salamanca Spain

Centro Tettamanti Fondazione IRCCS San Gerardo dei Tintori Monza Italy

CLIP Department of Pediatric Hematology and Oncology 2nd Faculty of Medicine and University Hospital Motol Charles University Prague Czech Republic

Department of Genetics University Hospital Robert Debré Paris France

Department of Hematology University Hospital Frankfurt Frankfurt Germany

Department of Immunology LUMC Leiden The Netherlands

Department of Internal Medicine 2 University Hospital Schleswig Holstein Kiel Germany

Department of Molecular Biotechnology and health sciences Hematology Division University of Torino Torino Italy

Department of Pediatric Oncology and Hematology Charité Universitätsmedizin Berlin Berlin Germany

Department of Pediatrics University Hospital of Schleswig Holstein Campus Kiel Kiel Germany

European Scientific foundation for Laboratory Hemato Oncology Zutphen The Netherlands

German Cancer Consortium Heidelberg Germany

Hematology Laboratory Saint Louis Hospital Paris Cité University Paris France

Laboratory Medical Immunology Department of Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands

Military Medical City Hospital Doha Qatar

School of Medicine University of Milano Bicocca Monza Italy

Tyks Laboratories Genomics Department Turku University Hospital Turku Finland

Université Paris Cité Paris France

University Children's Hospital Zurich Switzerland

Zobrazit více v PubMed

van Dongen JJ, van der Velden VH, Bruggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125:3996–4009. doi: 10.1182/blood-2015-03-580027. PubMed DOI PMC

Nunes V, Cazzaniga G, Biondi A. An update on PCR use for minimal residual disease monitoring in acute lymphoblastic leukemia. Expert Rev Mol Diagn. 2017;17:953–63. doi: 10.1080/14737159.2017.1377073. PubMed DOI

Pieters R, de Groot-Kruseman H, Van der Velden V, Fiocco M, van den Berg H, de Bont E, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: study ALL10 from the Dutch Childhood Oncology Group. J Clin Oncol. 2016;34:2591–601. doi: 10.1200/JCO.2015.64.6364. PubMed DOI

Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grumayer R, Moricke A, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–14. doi: 10.1182/blood-2009-10-248146. PubMed DOI

Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22:771–82. doi: 10.1038/leu.2008.5. PubMed DOI

Fronkova E, Mejstrikova E, Avigad S, Chik KW, Castillo L, Manor S, et al. Minimal residual disease (MRD) analysis in the non-MRD-based ALL IC-BFM 2002 protocol for childhood ALL: is it possible to avoid MRD testing? Leukemia. 2008;22:989–97. doi: 10.1038/leu.2008.22. PubMed DOI

van der Velden VH, Panzer-Grumayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A, et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia. 2007;21:706–13. doi: 10.1038/sj.leu.2404535. PubMed DOI

van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21:604–11. doi: 10.1038/sj.leu.2404586. PubMed DOI

Pfeifer H, Cazzaniga G, van der Velden VHJ, Cayuela JM, Schafer B, Spinelli O, et al. Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia. 2019;33:1910–22. doi: 10.1038/s41375-019-0413-0. PubMed DOI

Pott C, Bruggemann M, Ritgen M, van der Velden VHJ, van Dongen JJM, Kneba M. MRD detection in B-cell non-Hodgkin lymphomas using Ig gene rearrangements and chromosomal translocations as targets for real-time quantitative PCR. Methods Mol Biol. 2019;1956:199–228. doi: 10.1007/978-1-4939-9151-8_9. PubMed DOI

Lefranc MP. IMGT databases, web resources and tools for immunoglobulin and T cell receptor sequence analysis. Leukemia. 2003;17:260–6. doi: 10.1038/sj.leu.2402637. PubMed DOI

Kotrova M, van der Velden VHJ, van Dongen JJM, Formankova R, Sedlacek P, Bruggemann M, et al. Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 2017;52:962–8. doi: 10.1038/bmt.2017.16. PubMed DOI

Svaton M, Skotnicova A, Reznickova L, Rennerova A, Valova T, Kotrova M, et al. NGS better discriminates true MRD positivity for the risk stratification of childhood ALL treated on MRD-based protocol. Blood. 2023;141:529–33. PubMed PMC

van der Velden VH, Wijkhuijs JM, van Dongen JJ. Non-specific amplification of patient-specific Ig/TCR gene rearrangements depends on the time point during therapy: implications for minimal residual disease monitoring. Leukemia. 2008;22:641–4. doi: 10.1038/sj.leu.2404925. PubMed DOI

Fronkova E, Muzikova K, Mejstrikova E, Kovac M, Formankova R, Sedlacek P, et al. B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant. 2008;42:187–96. doi: 10.1038/bmt.2008.122. PubMed DOI

Kotrova M, Koopmann J, Trautmann H, Alakel N, Beck J, Nachtkamp K, et al. Prognostic value of low-level MRD in adult acute lymphoblastic leukemia detected by low- and high-throughput methods. Blood Adv. 2022;6:3006–10. doi: 10.1182/bloodadvances.2021006727. PubMed DOI PMC

Fronkova E, Svaton M, Trka J. Quality control for IG /TR marker identification and MRD analysis. Methods Mol Biol. 2022;2453:91–99. doi: 10.1007/978-1-0716-2115-8_6. PubMed DOI PMC

Kotrova M, Fronkova E, Svaton M, Drandi D, Schön F, Hoogeveen P, et al. The gray area of RQ-PCR-based measurable residual disease: subdividing the ‘positive, below quantitative range’ category. Leukemia. 2024. PubMed PMC

Drandi D, Alcantara M, Benmaad I, Sohlbrandt A, Lhermitte L, Zaccaria G, et al. Droplet digital PCR quantification of mantle cell lymphoma follow-up samples from four prospective trials of the European MCL network. HemaSphere. 2020;4:e347. doi: 10.1097/HS9.0000000000000347. PubMed DOI PMC

Kuiper RP, Hoogeveen PG, Bladergroen R, van Dijk F, Sonneveld E, van Leeuwen FN, et al. Minimal residual disease (MRD) detection in acute lymphoblastic leukaemia based on fusion genes and genomic deletions: towards MRD for all. Br J Haematol. 2021;194:888–92. doi: 10.1111/bjh.17744. PubMed DOI PMC

van Outersterp I, van der Velden VHJ, Hoogeveen PG, Vaitkeviciene GE, Sonneveld E, van Haaften G, et al. ABL-class genomic breakpoint Q-PCR: a patient-specific approach for MRD monitoring in acute lymphoblastic leukemia. HemaSphere. 2023;7:e967. doi: 10.1097/HS9.0000000000000967. PubMed DOI PMC

Venn NC, Huang L, Hovorkova L, Muskovic W, Wong M, Law T, et al. Measurable residual disease analysis in paediatric acute lymphoblastic leukaemia patients with ABL-class fusions. Br J Cancer. 2022;127:908–15. doi: 10.1038/s41416-022-01806-6. PubMed DOI PMC

Bruggemann M, van der Velden VH, Raff T, Droese J, Ritgen M, Pott C, et al. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia. 2004;18:709–19. doi: 10.1038/sj.leu.2403263. PubMed DOI

Szczepanski T, van der Velden VH, Hoogeveen PG, de Bie M, Jacobs DC, van Wering ER, et al. Vdelta2-Jalpha rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood. 2004;103:3798–804. doi: 10.1182/blood-2003-08-2952. PubMed DOI

van der Velden VH, de Bie M, van Wering ER, van Dongen JJ. Immunoglobulin light chain gene rearrangements in precursor-B-acute lymphoblastic leukemia: characteristics and applicability for the detection of minimal residual disease. Haematologica. 2006;91:679–82. PubMed

van der Velden VHJ, Bruggemann M, Hoogeveen PG, de Bie M, Hart PG, Raff T, et al. TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia. 2004;18:1971–80. doi: 10.1038/sj.leu.2403505. PubMed DOI

Venn NC, van der Velden VH, de Bie M, Waanders E, Giles JE, Law T, et al. Highly sensitive MRD tests for ALL based on the IKZF1 Delta3-6 microdeletion. Leukemia. 2012;26:1414–6. doi: 10.1038/leu.2011.348. PubMed DOI PMC

Starza ID, Eckert C, Drandi D, Cazzaniga G, Euro MRDC. Minimal residual disease analysis by monitoring immunoglobulin and T-cell receptor gene rearrangements by quantitative PCR and droplet digital PCR. Methods Mol Biol. 2022;2453:79–89. doi: 10.1007/978-1-0716-2115-8_5. PubMed DOI PMC

Bruggemann M, Kotrova M, Knecht H, Bartram J, Boudjogrha M, Bystry V, et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia. 2019;33:2241–53. doi: 10.1038/s41375-019-0496-7. PubMed DOI PMC

Theunissen P, Mejstrikova E, Sedek L, van der Sluijs-Gelling AJ, Gaipa G, Bartels M, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129:347–57. doi: 10.1182/blood-2016-07-726307. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace