Current applications of multiparameter flow cytometry in plasma cell disorders

. 2017 Oct 20 ; 7 (10) : e617. [epub] 20171020

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29053157

Multiparameter flow cytometry (MFC) has become standard in the management of patients with plasma cell (PC) dyscrasias, and could be considered mandatory in specific areas of routine clinical practice. It plays a significant role during the differential diagnostic work-up because of its fast and conclusive readout of PC clonality, and simultaneously provides prognostic information in most monoclonal gammopathies. Recent advances in the treatment and outcomes of multiple myeloma led to the implementation of new response criteria, including minimal residual disease (MRD) status as one of the most relevant clinical endpoints with the potential to act as surrogate for survival. Recent technical progress led to the development of next-generation flow (NGF) cytometry that represents a validated, highly sensitive, cost-effective and widely available technique for standardized MRD evaluation, which also could be used for the detection of circulating tumor cells. Here we review current applications of MFC and NGF in most PC disorders including the less frequent solitary plasmocytoma, light-chain amyloidosis or Waldenström macroglobulinemia.

Erratum v

PubMed

Zobrazit více v PubMed

Castillo JJ. Plasma cell disorders. Prim Care 2016; 43: 677–691. PubMed

Sant M, Allemani C, Tereanu C, Angelis RD, Capocaccia R, Visser O et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood 2010; 116: 3724–3734. PubMed

Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M-V et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014; 15: e538–e548. PubMed

Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR et al. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 2006; 354: 1362–1369. PubMed

Bladé J. Clinical practice. Monoclonal gammopathy of undetermined significance. N Engl J Med 2006; 355: 2765–2770. PubMed

Kyle RA, Rajkumar SV. Epidemiology of the plasma-cell disorders. Best Pract Res Clin Haematol 2007; 20: 637–664. PubMed

Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 2002; 346: 564–569. PubMed

Kyle RA, Remstein ED, Therneau TM, Dispenzieri A, Kurtin PJ, Hodnefield JM et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med 2007; 356: 2582–2590. PubMed

Kaleem Z, Crawford E, Pathan MH, Jasper L, Covinsky MA, Johnson LR et al. Flow cytometric analysis of acute leukemias. Diagnostic utility and critical analysis of data. Arch Pathol Lab Med 2003; 127: 42–48. PubMed

Braylan RC. Impact of flow cytometry on the diagnosis and characterization of lymphomas, chronic lymphoproliferative disorders and plasma cell neoplasias. Cytom Part J Int Soc Anal Cytol 2004; 58: 57–61. PubMed

Kwok M, Rawstron AC, Varghese A, Evans PAS, O’Connor SJM, Doughty C et al. Minimal residual disease is an independent predictor for 10-year survival in CLL. Blood 2016; 128: 2770–2773. PubMed

Theunissen P, Mejstrikova E, Sedek L, van der Sluijs-Gelling AJ, Gaipa G, Bartels M et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood 2016; 129: 347–357. PubMed PMC

Grimwade D, Freeman SD. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for ‘prime time’? Blood 2014; 124: 3345–3355. PubMed

Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM et al. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138- and CD138+ plasma cells. Haematologica 2010; 95: 1016–1020. PubMed PMC

Jelinek T, Hajek R. Monoclonal antibodies - A new era in the treatment of multiple myeloma. Blood Rev 2016; 30: 101–110. PubMed

Arroz M, Came N, Lin P, Chen W, Yuan C, Lagoo A et al. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom 2016; 90: 31–39. PubMed

Flores-Montero J, de Tute R, Paiva B, Perez JJ, Böttcher S, Wind H et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom 2016; 90: 61–72. PubMed

Paiva B, Puig N, Cedena MT, de Jong BG, Ruiz Y, Rapado I et al. Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia 2017; 31: 382–392. PubMed PMC

Ocqueteau M, Orfao A, Almeida J, Bladé J, González M, García-Sanz R et al. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol 1998; 152: 1655–1665. PubMed PMC

Paiva B, Merino J, San Miguel JF. Utility of flow cytometry studies in the management of patients with multiple myeloma. Curr Opin Oncol 2016; 28: 511–517. PubMed

Olteanu H, Harrington AM, Hari P, Kroft SH. CD200 expression in plasma cell myeloma. Br J Haematol 2011; 153: 408–411. PubMed

Olteanu H. Role of flow cytometry in the diagnosis and prognosis of plasma cell myeloma. Surg Pathol Clin 2016; 9: 101–116. PubMed

Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, García-Sánchez O, Böttcher S et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017; 31: 2094–2103. PubMed PMC

Nadav L, Katz B-Z, Baron S, Yossipov L, Polliack A, Deutsch V et al. Diverse niches within multiple myeloma bone marrow aspirates affect plasma cell enumeration. Br J Haematol 2006; 133: 530–532. PubMed

Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008; 93: 431–438. PubMed

Seegmiller AC, Xu Y, McKenna RW, Karandikar NJ. Immunophenotypic differentiation between neoplastic plasma cells in mature B-cell lymphoma vs plasma cell myeloma. Am J Clin Pathol 2007; 127: 176–181. PubMed

Olteanu H, Wang H-Y, Chen W, McKenna RW, Karandikar NJ. Immunophenotypic studies of monoclonal gammopathy of undetermined significance. BMC Clin Pathol 2008; 8: 13. PubMed PMC

Paiva B, Almeida J, Pérez-Andrés M, Mateo G, López A, Rasillo A et al. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin Cytom 2010; 78: 239–252. PubMed

Pérez-Persona E, Vidriales M-B, Mateo G, García-Sanz R, Mateos M-V, de Coca AG et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 2007; 110: 2586–2592. PubMed

Paiva B, Vídriales M-B, Rosiñol L, Martínez-López J, Mateos M-V, Ocio EM et al. A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leukemia 2013; 27: 2056–2061. PubMed

Greipp PR, Miguel JS, Durie BGM, Crowley JJ, Barlogie B, Bladé J et al. International Staging System for Multiple Myeloma. J Clin Oncol 2005; 23: 3412–3420. PubMed

Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L et al. Revised international staging system for multiple myeloma: A Report From International Myeloma Working Group. J Clin Oncol Off J Am Soc Clin Oncol 2015; 33: 2863–2869. PubMed PMC

Avet-Loiseau H, Durie BGM, Cavo M, Attal M, Gutierrez N, Haessler J et al. Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an International Myeloma Working Group collaborative project. Leukemia 2013; 27: 711–717. PubMed PMC

Pérez-Persona E, Mateo G, García-Sanz R, Mateos M-V, de Las Heras N, de Coca AG et al. Risk of progression in smouldering myeloma and monoclonal gammopathies of unknown significance: comparative analysis of the evolution of monoclonal component and multiparameter flow cytometry of bone marrow plasma cells. Br J Haematol 2010; 148: 110–114. PubMed

Paiva B, Johnson SK, Mateos M-V, Alapat DV, Puig N, Hernandez M-T et al. Automated multiparameter flow cytometry (MFC) immunophenotyping for reproducible identification of high risk smoldering multiple myeloma (SMM). Blood 2016; 128: 373–373.

Paiva B, Vidriales M-B, Mateo G, Pérez JJ, Montalbán MA, Sureda A et al. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood 2009; 114: 4369–4372. PubMed

Lahuerta J-J, Paiva B, Vidriales M-B, Cordón L, Cedena M-T, Puig N et al. Depth of response in multiple myeloma: a pooled analysis of three PETHEMA/GEM Clinical Trials. J Clin Oncol 2017; 35: 2900–2910. PubMed PMC

Edling CE, Hallberg B. c-Kit—a hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol 2007; 39: 1995–1998. PubMed

Mateo G, Montalbán MA, Vidriales M-B, Lahuerta JJ, Mateos MV, Gutiérrez N et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol Off J Am Soc Clin Oncol 2008; 26: 2737–2744. PubMed

Schmidt-Hieber M, Pérez-Andrés M, Paiva B, Flores-Montero J, Perez JJ, Gutierrez NC et al. CD117 expression in gammopathies is associated with an altered maturation of the myeloid and lymphoid hematopoietic cell compartments and favorable disease features. Haematologica 2011; 96: 328–332. PubMed PMC

Murray ME, Gavile CM, Nair JR, Koorella C, Carlson LM, Buac D et al. CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma. Blood 2014; 123: 3770–3779. PubMed PMC

Paiva B, Gutiérrez N-C, Chen X, Vídriales M-B, Montalbán M-Á, Rosiñol L et al. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia 2012; 26: 1862–1869. PubMed

Paiva B, Puig N, Arana P, Cedena T, Cordon L, Vidriales MB et al. Prognostic value of antigen expression in multiple myeloma (MM): a large GEM/Pethema Study based in four consecutive clinical trials. Blood 2015; 126: 19–19.

San Miguel JF, García-Sanz R, González M, Orfão A. DNA cell content studies in multiple myeloma. Leuk Lymphoma 1996; 23: 33–41. PubMed

García-Sanz R, Orfão A, González M, Moro MJ, Hernández JM, Ortega F et al. Prognostic implications of DNA aneuploidy in 156 untreated multiple myeloma patients. Castelano-Leonés (Spain) Cooperative Group for the Study of Monoclonal Gammopathies. Br J Haematol 1995; 90: 106–112. PubMed

Paiva B, Vídriales M-B, Montalbán M-Á, Pérez JJ, Gutiérrez NC, Rosiñol L et al. Multiparameter flow cytometry evaluation of plasma cell DNA content and proliferation in 595 transplant-eligible patients with myeloma included in the Spanish GEM2000 and GEM2005<65y trials. Am J Pathol 2012; 181: 1870–1878. PubMed

Bladé J, Samson D, Reece D, Apperley J, Björkstrand B, Gahrton G et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 1998; 102: 1115–1123. PubMed

Durie BGM, Harousseau J-L, Miguel JS, Bladé J, Barlogie B, Anderson K et al. International uniform response criteria for multiple myeloma. Leukemia 2006; 20: 1467–1473. PubMed

Rajkumar SV, Harousseau J-L, Durie B, Anderson KC, Dimopoulos M, Kyle R et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood 2011; 117: 4691–4695. PubMed PMC

van de Velde HJK, Liu X, Chen G, Cakana A, Deraedt W, Bayssas M. Complete response correlates with long-term survival and progression-free survival in high-dose therapy in multiple myeloma. Haematologica 2007; 92: 1399–1406. PubMed

Gay F, Larocca A, Wijermans P, Cavallo F, Rossi D, Schaafsma R et al. Complete response correlates with long-term progression-free and overall survival in elderly myeloma treated with novel agents: analysis of 1175 patients. Blood 2011; 117: 3025–3031. PubMed

Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016; 17: e328–e346. PubMed

Barlogie B, Mitchell A, van Rhee F, Epstein J, Morgan GJ, Crowley J. Curing myeloma at last: defining criteria and providing the evidence. Blood 2014; 124: 3043–3051. PubMed PMC

San Miguel JF, Almeida J, Mateo G, Bladé J, López-Berges C, Caballero D et al. Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 2002; 99: 1853–1856. PubMed

Rawstron AC, Davies FE, DasGupta R, Ashcroft AJ, Patmore R, Drayson MT et al. Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 2002; 100: 3095–3100. PubMed

Paiva B, Vidriales M-B, Cerveró J, Mateo G, Pérez JJ, Montalbán MA et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 2008; 112: 4017–4023. PubMed PMC

Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol Off J Am Soc Clin Oncol 2013; 31: 2540–2547. PubMed

Paiva B, Gutiérrez NC, Rosiñol L, Vídriales M-B, Montalbán M-Á, Martínez-López J et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 2012; 119: 687–691. PubMed

Paiva B, Cedena M-T, Puig N, Arana P, Vidriales M-B, Cordon L et al. Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood 2016; 127: 3165–3174. PubMed

Paiva B, García-Sanz R, San Miguel JF. Multiple Myeloma Minimal Residual Disease. Cancer Treat Res 2016; 169: 103–122. PubMed

Stetler-Stevenson M, Paiva B, Stoolman L, Lin P, Jorgensen JL, Orfao A et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytometry B Clin Cytom 2016; 90: 26–30. PubMed PMC

Martinez-Lopez J, Sanchez-Vega B, Barrio S, Cuenca I, Ruiz-Heredia Y, Alonso R et al. Analytical and clinical validation of a novel in-house deep-sequencing method for minimal residual disease monitoring in a phase II trial for multiple myeloma. Leukemia 2017; 31: 1446–1449. PubMed PMC

Martinez-Lopez J, Lahuerta JJ, Pepin F, González M, Barrio S, Ayala R et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 2014; 123: 3073–3079. PubMed PMC

Puig N, Sarasquete ME, Balanzategui A, Martínez J, Paiva B, García H et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myelomaA comparative analysis with flow cytometry. Leukemia 2014; 28: 391–397. PubMed

Jelinek T, Kryukova E, Kufova Z, Kryukov F, Hajek R. Proteasome inhibitors in AL amyloidosis: focus on mechanism of action and clinical activity. Hematol Oncol. 2016 Sep 20; doi:10.1002/hon.2351. PubMed

Nowakowski GS, Witzig TE, Dingli D, Tracz MJ, Gertz MA, Lacy MQ et al. Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma. Blood 2005; 106: 2276–2279. PubMed PMC

Gonsalves WI, Rajkumar SV, Gupta V, Morice WG, Timm MM, Singh PP et al. Quantification of clonal circulating plasma cells in newly diagnosed multiple myeloma: implications for redefining high-risk myeloma. Leukemia 2014; 28: 2060–2065. PubMed PMC

Paiva B, Paino T, Sayagues J-M, Garayoa M, San-Segundo L, Martín M et al. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 2013; 122: 3591–3598. PubMed

Granell M, Calvo X, Garcia-Guiñón A, Escoda L, Abella E, Martínez CM et al. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukaemia definition. Haematologica 2017; 102: 1099–1104, haematol.2016.158303. PubMed PMC

Vagnoni D, Travaglini F, Pezzoni V, Ruggieri M, Bigazzi C, Dalsass A et al. Circulating plasma cells in newly diagnosed symptomatic multiple myeloma as a possible prognostic marker for patients with standard-risk cytogenetics. Br J Haematol 2015; 170: 523–531. PubMed

San Miguel JF, Gutiérrez NC, Mateo G, Orfao A. Conventional diagnostics in multiple myeloma. Eur J Cancer Oxf Engl 1990 2006; 42: 1510–1519. PubMed

Burgos L, Alignani D, Garces J-J, Ortiz L, Jelinek T, Segura V et al. Non-invasive genetic profiling is highly applicable in multiple myeloma (MM) through characterization of circulating tumor cells (CTCs). Blood 2016; 128: 801–801.

Kumar S, Rajkumar SV, Kyle RA, Lacy MQ, Dispenzieri A, Fonseca R et al. Prognostic value of circulating plasma cells in monoclonal gammopathy of undetermined significance. J Clin Oncol 2005; 23: 5668–5674. PubMed

Dingli D, Nowakowski GS, Dispenzieri A, Lacy MQ, Hayman SR, Rajkumar SV et al. Flow cytometric detection of circulating myeloma cells before transplantation in patients with multiple myeloma: a simple risk stratification system. Blood 2006; 107: 3384–3388. PubMed PMC

Pardanani A, Witzig TE, Schroeder G, McElroy EA, Fonseca R, Dispenzieri A et al. Circulating peripheral blood plasma cells as a prognostic indicator in patients with primary systemic amyloidosis. Blood 2003; 101: 827–830. PubMed

Bianchi G, Kyle RA, Larson DR, Witzig TE, Kumar S, Dispenzieri A et al. High levels of peripheral blood circulating plasma cells as a specific risk factor for progression of smoldering multiple myeloma. Leukemia 2013; 27: 680–685. PubMed PMC

Gonsalves WI, Rajkumar SV, Dispenzieri A, Dingli D, Timm MM, Morice WG et al. Quantification of circulating clonal plasma cells via multiparametric flow cytometry identifies patients with smoldering multiple myeloma at high risk of progression. Leukemia 2017; 31: 130–135. PubMed PMC

Peceliunas V, Janiulioniene A, Matuzeviciene R, Zvirblis T, Griskevicius L. Circulating plasma cells predict the outcome of relapsed or refractory multiple myeloma. Leuk Lymphoma 2012; 53: 641–647. PubMed

Mishima Y, Paiva B, Shi J, Park J, Manier S, Takagi S et al. The mutational landscape of circulating tumor cells in multiple myeloma. Cell Rep 2017; 19: 218–224. PubMed PMC

Kumar S, Witzig TE, Greipp PR, Rajkumar SV. Bone marrow angiogenesis and circulating plasma cells in multiple myeloma. Br J Haematol 2003; 122: 272–274. PubMed

An G, Qin X, Acharya C, Xu Y, Deng S, Shi L et al. Multiple myeloma patients with low proportion of circulating plasma cells had similar survival with primary plasma cell leukemia patients. Ann Hematol 2015; 94: 257–264. PubMed

Pellat-Deceunynck C, Barillé S, Jego G, Puthier D, Robillard N, Pineau D et al. The absence of CD56 (NCAM) on malignant plasma cells is a hallmark of plasma cell leukemia and of a special subset of multiple myeloma. Leukemia 1998; 12: 1977–1982. PubMed

Lohr JG, Kim S, Gould J, Knoechel B, Drier Y, Cotton MJ et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med 2016; 8: 363ra147. PubMed PMC

Bretones G, Paiva B, Valdes-Mas R, Alignani D, Garcia M, Burgos L et al. Genomic profiles of bone marrow (BM) clonal plasma cells (PCs) vs circulating tumor cells (CTCs) and Extramedullary (EM) plasmacytomas in multiple myeloma (MM). Blood 2016; 128: 4442–4442.

Hill QA, Rawstron AC, de Tute RM, Owen RG. Outcome prediction in plasmacytoma of bone: a risk model utilizing bone marrow flow cytometry and light-chain analysis. Blood 2014; 124: 1296–1299. PubMed

Dimopoulos MA, Terpos E. Solitary bone plasmacytomas need to flow. Blood 2014; 124: 1209–1210. PubMed PMC

Katodritou E, Terpos E, Symeonidis AS, Pouli A, Kelaidi C, Kyrtsonis M-C et al. Clinical features, outcome, and prognostic factors for survival and evolution to multiple myeloma of solitary plasmacytomas: a report of the Greek myeloma study group in 97 patients. Am J Hematol 2014; 89: 803–808. PubMed

Jelinek T, Kryukova E, Kufova Z, Kryukov F, Hajek R. Proteasome inhibitors in AL amyloidosis: focus on mechanism of action and clinical activity. Hematol Oncol 2016, e-pub ahead of print 20 September 2016 doi:10.1002/hon.2351. PubMed

Jelinek T, Kufova Z, Hajek R. Immunomodulatory drugs in AL amyloidosis. Crit Rev Oncol Hematol 2016; 99: 249–260. PubMed

Paiva B, Martinez-Lopez J, Corchete LA, Sanchez-Vega B, Rapado I, Puig N et al. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis. Blood 2016; 127: 3035–3039. PubMed

Lisenko K, Schönland SO, Jauch A, Andrulis M, Röcken C, Ho AD et al. Flow cytometry-based characterization of underlying clonal B and plasma cells in patients with light chain amyloidosis. Cancer Med 2016; 5: 1464–1472. PubMed PMC

Paiva B, Vídriales M-B, Pérez JJ, López-Berges M-C, García-Sanz R, Ocio EM et al. The clinical utility and prognostic value of multiparameter flow cytometry immunophenotyping in light-chain amyloidosis. Blood 2011; 117: 3613–3616. PubMed

Muchtar E, Jevremovic D, Dispenzieri A, Dingli D, Buadi FK, Lacy MQ et al. The prognostic value of multiparametric flow cytometry in AL amyloidosis at diagnosis and at the end of first-line treatment. Blood 2017; 129: 82–87. PubMed

Gertz MA. Waldenström macroglobulinemia: 2017 update on diagnosis, risk stratification, and management. Am J Hematol 2017; 92: 209–217. PubMed

Waldenstrom J. Macroglobulinaemia. Acta Haematol 1958; 20: 33–39. PubMed

Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 2003; 30: 110–115. PubMed

Castillo JJ, Garcia-Sanz R, Hatjiharissi E, Kyle RA, Leleu X, McMaster M et al. Recommendations for the diagnosis and initial evaluation of patients with Waldenström Macroglobulinaemia: A Task Force from the 8th International Workshop on Waldenström Macroglobulinaemia. Br J Haematol 2016; 175: 77–86. PubMed PMC

Paiva B, Corchete LA, Vidriales M-B, García-Sanz R, Perez JJ, Aires-Mejia I et al. The cellular origin and malignant transformation of Waldenström macroglobulinemia. Blood 2015; 125: 2370–2380. PubMed

Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 2012; 367: 826–833. PubMed

Landgren O, Staudt L. MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med 2012; 367: 2255–2256-2257. PubMed

García-Sanz R, Jiménez C, Puig N, Paiva B, Gutiérrez NC, Rodríguez-Otero P et al. Origin of Waldenstrom’s macroglobulinaemia. Best Pract Res Clin Haematol 2016; 29: 136–147. PubMed

San Miguel JF, Vidriales MB, Ocio E, Mateo G, Sánchez-Guijo F, Sánchez ML et al. Immunophenotypic analysis of Waldenstrom’s macroglobulinemia. Semin Oncol 2003; 30: 187–195. PubMed

Paiva B, Montes MC, García-Sanz R, Ocio EM, Alonso J, de Las Heras N et al. Multiparameter flow cytometry for the identification of the Waldenström’s clone in IgM-MGUS and Waldenström’s Macroglobulinemia: new criteria for differential diagnosis and risk stratification. Leukemia 2014; 28: 166–173. PubMed

Paiva B, Chandia M, Vidriales M-B, Colado E, Caballero-Velázquez T, Escalante F et al. Multiparameter flow cytometry for staging of solitary bone plasmacytoma: new criteria for risk of progression to myeloma. Blood 2014; 124: 1300–1303. PubMed

Avet-Loiseau H, Garand R, Lodé L, Robillard N, Bataille R. 14q32 Translocations discriminate IgM multiple myeloma from Waldenstrom’s macroglobulinemia. Semin Oncol 2003; 30: 153–155. PubMed

Willenbacher W, Willenbacher E, Brunner A, Manzl C. Improved accuracy of discrimination between IgM multiple myeloma and Waldenström macroglobulinaemia by testing for MYD88 L265P mutations. Br J Haematol 2013; 161: 902–904. PubMed

García-Sanz R, Ocio E, Caballero A, Magalhães RJP, Alonso J, López-Anglada L et al. Post-treatment bone marrow residual disease>5% by flow cytometry is highly predictive of short progression-free and overall survival in patients with Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 2011; 11: 168–171. PubMed

Jelinek T, Hajek R. PD-1/PD-L1 inhibitors in multiple myeloma: The present and the future. OncoImmunology 2016; 5: e1254856. PubMed PMC

Seckinger A, Delgado JA, Moser S, Moreno L, Neuber B, Grab A et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell 2017; 31: 396–410. PubMed

Robillard N, Jego G, Pellat-Deceunynck C, Pineau D, Puthier D, Mellerin MP et al. CD28, a marker associated with tumoral expansion in multiple myeloma. Clin Cancer Res Off J Am Assoc Cancer Res 1998; 4: 1521–1526. PubMed

Robillard N, Wuillème S, Lodé L, Magrangeas F, Minvielle S, Avet-Loiseau H. CD33 is expressed on plasma cells of a significant number of myeloma patients, and may represent a therapeutic target. Leukemia 2005; 19: 2021–2022. PubMed

Lee KH, Seo HS, Sohn JY, Lee E, Lee H, Eom H-S et al. Abstract 3123: Aberrant expression of CD33 is associated with poor prognosis in patients with multiple myeloma and tumor progression. Cancer Res 2016; 76(14 Supplement): 3123–3123.

Gonsalves WI, Timm MM, Rajkumar SV, Morice WG, Dispenzieri A, Buadi FK et al. The prognostic significance of CD45 expression by clonal bone marrow plasma cells in patients with newly diagnosed multiple myeloma. Leuk Res 2016; 44: 32–39. PubMed PMC

Pojero F, Flores-Montero J, Sanoja L, Pérez JJ, Puig N, Paiva B et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom 2016; 90: 91–100. PubMed

Iqbal MS, Otsuyama K-I, Shamsasenjan K, Asaoku H, Mahmoud MS, Gondo T et al. Constitutively lower expressions of CD54 on primary myeloma cells and their different localizations in bone marrow. Eur J Haematol 2009; 83: 302–312. PubMed

Van Camp B, Durie BG, Spier C, De Waele M, Van Riet I, Vela E et al. Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood 1990; 76: 377–382. PubMed

Van Riet I, De Waele M, Remels L, Lacor P, Schots R, Van Camp B. Expression of cytoadhesion molecules (CD56, CD54, CD18 and CD29) by myeloma plasma cells. Br J Haematol 1991; 79: 421–427. PubMed

Rawstron A, Barrans S, Blythe D, Davies F, English A, Pratt G et al. Distribution of myeloma plasma cells in peripheral blood and bone marrow correlates with CD56 expression. Br J Haematol 1999; 104: 138–143. PubMed

Conticello C, Giuffrida R, Parrinello N, Buccheri S, Adamo L, Sciuto MR et al. CD200 expression in patients with Multiple Myeloma: another piece of the puzzle. Leuk Res 2013; 37: 1616–1621. PubMed

Tai Y-T, Dillon M, Song W, Leiba M, Li X-F, Burger P et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2008; 112: 1329–1337. PubMed PMC

Muccio VE, Saraci E, Gilestro M, Gattei V, Zucchetto A, Astolfi M et al. Multiple myeloma: New surface antigens for the characterization of plasma cells in the era of novel agents. Cytometry B Clin Cytom 2016; 90: 81–90. PubMed

Roussel M, Lauwers-Cances V, Robillard N, Hulin C, Leleu X, Benboubker L et al. Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myélome. J Clin Oncol 2014; 32: 2712–2717. PubMed

Paiva B, Chandia M, Puig N, Vidriales M-B, Perez JJ, Lopez-Corral L et al. The prognostic value of multiparameter flow cytometry minimal residual disease assessment in relapsed multiple myeloma. Haematologica 2015; 100: e53–e55. PubMed PMC

Fukumoto K, Fujisawa M, Suehara Y, Narita K-T, Usui Y, Takeuchi M et al. Prognostic impact of immunophenotypic complete response in patients with multiple myeloma achieving better than complete response. Leuk Lymphoma 2016; 57: 1786–1792. PubMed

Attal M, Lauwers-Cances V, Hulin C, Leleu X, Caillot D, Escoffre M et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med 2017; 376: 1311–1320. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace