Involvement of Small Non-Coding RNA and Cell Antigens in Pathogenesis of Extramedullary Multiple Myeloma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-03-00076
Ministry of Health
MUNI/A/1391/2021
Masaryk University
LX22NPO5102
National Institute for Cancer Research (Programme EXCELES, ID Project No. LX22NPO5102) - Funded by the European Union - Next Generation EU
PubMed
36499093
PubMed Central
PMC9741227
DOI
10.3390/ijms232314765
PII: ijms232314765
Knihovny.cz E-zdroje
- Klíčová slova
- NGS, bioinformatics, immunophenotyping, microRNA, multiple myeloma,
- MeSH
- lidé MeSH
- mikro RNA * genetika MeSH
- mnohočetný myelom * genetika MeSH
- nádorové mikroprostředí MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA * MeSH
Extramedullary multiple myeloma (EMD) is an aggressive disease; malignant plasma cells lose their dependence in the bone marrow microenvironment and migrate into tissues. EMD is a negative prognostic factor of survival. Using flow cytometry and next-generation sequencing, we aimed to identify antigens and microRNAs (miRNAs) involved in EMD pathogenesis. Flow cytometry analysis revealed significant differences in the level of clonal plasma cells between MM and EMD patients, while the expression of CD markers was comparable between these two groups. Further, miR-26a-5p and miR-30e-5p were found to be significantly down-regulated in EMD compared to MM. Based on the expression of miR-26a-5p, we were able to distinguish these two groups of patients with high sensitivity and specificity. In addition, the involvement of deregulated miRNAs in cell cycle regulation, ubiquitin-mediated proteolysis and signaling pathways associated with infections or neurological disorders was observed using GO and KEGG pathways enrichment analysis. Subsequently, a correlation between the expression of analyzed miRNAs and the levels of CD molecules was observed. Finally, clinicopathological characteristics as well as CD antigens associated with the prognosis of MM and EMD patients were identified. Altogether, we identified several molecules possibly involved in the transformation of MM into EMD.
Zobrazit více v PubMed
Rajkumar S.V. Multiple Myeloma: 2020 Update on Diagnosis, Risk-Stratification and Management. Am. J. Hematol. 2020;95:548–567. doi: 10.1002/ajh.25791. PubMed DOI
Maluskova D., Svobodová I., Kucerova M., Brozova L., Muzik J., Jarkovský J., Hájek R., Maisnar V., Dusek L. Epidemiology of Multiple Myeloma in the Czech Republic. Klin. Onkol. 2017;30:35–42. doi: 10.14735/amko20172S35. PubMed DOI
Kyle R.A., Child J.A., Anderson K., Barlogie B., Bataille R., Bensinger W., Blade J., Boccadoro M., Dalton W., Dimopoulos M., et al. Criteria for the Classification of Monoclonal Gammopathies, Multiple Myeloma and Related Disorders: A Report of the International Myeloma Working Group. Br. J. Haematol. 2003;121:749–757. PubMed
Rajkumar S.V., Dimopoulos M.A., Palumbo A., Blade J., Merlini G., Mateos M.-V., Kumar S., Hillengass J., Kastritis E., Richardson P., et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014;15:e538–e548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI
Bhutani M., Foureau D.M., Atrash S., Voorhees P.M., Usmani S.Z. Extramedullary Multiple Myeloma. Leukemia. 2020;34:1–20. doi: 10.1038/s41375-019-0660-0. PubMed DOI
Pour L., Sevcikova S., Greslikova H., Kupska R., Majkova P., Zahradova L., Sandecka V., Adam Z., Krejci M., Kuglik P., et al. Soft-Tissue Extramedullary Multiple Myeloma Prognosis Is Significantly Worse in Comparison to Bone-Related Extramedullary Relapse. Haematologica. 2014;99:360–364. doi: 10.3324/haematol.2013.094409. PubMed DOI PMC
Usmani S.Z., Heuck C., Mitchell A., Szymonifka J., Nair B., Hoering A., Alsayed Y., Waheed S., Haider S., Restrepo A., et al. Extramedullary Disease Portends Poor Prognosis in Multiple Myeloma and Is Over-Represented in High-Risk Disease Even in the Era of Novel Agents. Haematologica. 2012;97:1761–1767. doi: 10.3324/haematol.2012.065698. PubMed DOI PMC
Varettoni M., Corso A., Pica G., Mangiacavalli S., Pascutto C., Lazzarino M. Incidence, Presenting Features and Outcome of Extramedullary Disease in Multiple Myeloma: A Longitudinal Study on 1003 Consecutive Patients. Ann. Oncol. 2010;21:325–330. doi: 10.1093/annonc/mdp329. PubMed DOI
Katodritou E., Kyrtsonis M.-C., Delimpasi S., Kyriakou D., Symeonidis A., Spanoudakis E., Vasilopoulos G., Anagnostopoulos A., Kioumi A., Zikos P., et al. Real-World Data on Len/Dex Combination at Second-Line Therapy of Multiple Myeloma: Treatment at Biochemical Relapse Is a Significant Prognostic Factor for Progression-Free Survival. Ann. Hematol. 2018;97:1671–1682. doi: 10.1007/s00277-018-3361-2. PubMed DOI PMC
Sheth N., Yeung J., Chang H. P53 Nuclear Accumulation Is Associated with Extramedullary Progression of Multiple Myeloma. Leuk. Res. 2009;33:1357–1360. doi: 10.1016/j.leukres.2009.01.010. PubMed DOI
Sevcikova S., Minarik J., Stork M., Jelinek T., Pour L., Hajek R. Extramedullary Disease in Multiple Myeloma—Controversies and Future Directions. Blood Rev. 2019;36:32–39. doi: 10.1016/j.blre.2019.04.002. PubMed DOI
Gregory R.I., Yan K.P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., Shiekhattar R. The Microprocessor Complex Mediates the Genesis of MicroRNAs. Nature. 2004;432:235–240. doi: 10.1038/nature03120. PubMed DOI
El-Daly S.M., Bayraktar R., Anfossi S., Calin G.A. The Interplay between MicroRNAs and the Components of the Tumor Microenvironment in B-Cell Malignancies. Int. J. Mol. Sci. 2020;21:3387. doi: 10.3390/ijms21093387. PubMed DOI PMC
Forterre A., Komuro H., Aminova S., Harada M. A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers. 2020;12:1852. doi: 10.3390/cancers12071852. PubMed DOI PMC
Zheng B., Xi Z., Liu R., Yin W., Sui Z., Ren B., Miller H., Gong Q., Liu C. The Function of MicroRNAs in B-Cell Development, Lymphoma, and Their Potential in Clinical Practice. Front. Immunol. 2018;9:936. doi: 10.3389/fimmu.2018.00936. PubMed DOI PMC
Vychytilova-Faltejskova P., Svobodova Kovarikova A., Grolich T., Prochazka V., Slaba K., Machackova T., Halamkova J., Svoboda M., Kala Z., Kiss I., et al. MicroRNA Biogenesis Pathway Genes Are Deregulated in Colorectal Cancer. Int. J. Mol. Sci. 2019;20:4460. doi: 10.3390/ijms20184460. PubMed DOI PMC
Hanahan D., Weinberg R.A. The Hallmarks of Cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI
Shah M.Y., Ferrajoli A., Sood A.K., Lopez-Berestein G., Calin G.A. MicroRNA Therapeutics in Cancer—An Emerging Concept. eBioMedicine. 2016;12:34–42. doi: 10.1016/j.ebiom.2016.09.017. PubMed DOI PMC
Calvo K.R., Landgren O., Roccaro A.M., Ghobrial I.M. Role of MicroRNAs from Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma. Semin. Hematol. 2011;48:39–45. doi: 10.1053/j.seminhematol.2010.11.007. PubMed DOI PMC
Chi J., Ballabio E., Chen X.-H., Kušec R., Taylor S., Hay D., Tramonti D., Saunders N.J., Littlewood T., Pezzella F., et al. MicroRNA Expression in Multiple Myeloma Is Associated with Genetic Subtype, Isotype and Survival. Biol. Direct. 2011;6:23. doi: 10.1186/1745-6150-6-23. PubMed DOI PMC
Gutiérrez N.C., Sarasquete M.E., Misiewicz-Krzeminska I., Delgado M., de Las Rivas J., Ticona F.V., Fermiñán E., Martín-Jiménez P., Chillón C., Risueño A., et al. Deregulation of MicroRNA Expression in the Different Genetic Subtypes of Multiple Myeloma and Correlation with Gene Expression Profiling. Leukemia. 2010;24:629–637. doi: 10.1038/leu.2009.274. PubMed DOI
Lionetti M., Biasiolo M., Agnelli L., Todoerti K., Mosca L., Fabris S., Sales G., Deliliers G.L., Bicciato S., Lombardi L., et al. Identification of MicroRNA Expression Patterns and Definition of a MicroRNA/MRNA Regulatory Network in Distinct Molecular Groups of Multiple Myeloma. Blood. 2009;114:e20–e26. doi: 10.1182/blood-2009-08-237495. PubMed DOI
Mouhieddine T.H., Weeks L.D., Ghobrial I.M. Monoclonal Gammopathy of Undetermined Significance. Blood. 2019;133:2484–2494. doi: 10.1182/blood.2019846782. PubMed DOI
Pichiorri F., Suh S.-S., Ladetto M., Kuehl M., Palumbo T., Drandi D., Taccioli C., Zanesi N., Alder H., Hagan J.P., et al. MicroRNAs Regulate Critical Genes Associated with Multiple Myeloma Pathogenesis. Proc. Natl. Acad. Sci. USA. 2008;105:12885–12890. doi: 10.1073/pnas.0806202105. PubMed DOI PMC
Rossi M., Tagliaferri P., Tassone P. MicroRNAs in Multiple Myeloma and Related Bone Disease. Ann. Transl. Med. 2015;3:334. doi: 10.3978/j.issn.2305-5839.2015.12.13. PubMed DOI PMC
Rihova L., Vsianska P., Bezdekova R., Kralova R., Penka M., Krejci M., Pour L., Hájek R. Minimal Residual Disease Assessment in Multiple Myeloma by Multiparametric Flow Cytometry. Klin. Onkol. 2017;30:21–28. doi: 10.14735/amko20172S21. PubMed DOI
Gregorová J., Vrábel D., Radová L., Gablo N.A., Almaši M., Štork M., Slabý O., Pour L., Minařík J., Ševčíková S. MicroRNA Analysis for Extramedullary Multiple Myeloma Relapse. Klin. Onkol. 2018;31:148–150. PubMed
Vandesompele J., de Preter K., Pattyn F., Poppe B., van Roy N., de Paepe A., Speleman F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002;3:research0034.1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Besse L., Sedlarikova L., Greslikova H., Kupska R., Almasi M., Penka M., Jelinek T., Pour L., Adam Z., Kuglik P., et al. Cytogenetics in Multiple Myeloma Patients Progressing into Extramedullary Disease. Eur. J. Haematol. 2016;97:93–100. doi: 10.1111/ejh.12688. PubMed DOI
Besse L., Sedlarikova L., Kryukov F., Nekvindova J., Radova L., Slaby O., Kuglik P., Almasi M., Penka M., Krejci M., et al. Circulating Serum MicroRNA-130a as a Novel Putative Marker of Extramedullary Myeloma. PLoS ONE. 2015;10:e0137294. doi: 10.1371/journal.pone.0137294. PubMed DOI PMC
Stork M., Sevcikova S., Minarik J., Krhovska P., Radocha J., Pospisilova L., Brozova L., Jarkovsky J., Spicka I., Straub J., et al. Identification of Patients at High Risk of Secondary Extramedullary Multiple Myeloma Development. Br. J. Haematol. 2022;196:954–962. doi: 10.1111/bjh.17925. PubMed DOI PMC
Svachova H., Kryukov F., Kryukova E., Sevcikova S., Nemec P., Greslikova H., Rihova L., Kubiczkova L., Hajek R. Nestin Expression throughout Multistep Pathogenesis of Multiple Myeloma. Br. J. Haematol. 2014;164:701–709. doi: 10.1111/bjh.12689. PubMed DOI
Jelinek T., Bezdekova R., Zatopkova M., Burgos L., Simicek M., Sevcikova T., Paiva B., Hajek R. Current Applications of Multiparameter Flow Cytometry in Plasma Cell Disorders. Blood Cancer J. 2017;7:e617. doi: 10.1038/bcj.2017.90. PubMed DOI PMC
Paiva B., Almeida J., Pérez-Andrés M., Mateo G., López A., Rasillo A., Vídriales M.-B., López-Berges M.-C., Miguel J.F.S., Orfao A. Utility of Flow Cytometry Immunophenotyping in Multiple Myeloma and Other Clonal Plasma Cell-Related Disorders. Cytom. B Clin. Cytom. 2010;78:239–252. doi: 10.1002/cyto.b.20512. PubMed DOI
Murray M.E., Gavile C.M., Nair J.R., Koorella C., Carlson L.M., Buac D., Utley A., Chesi M., Bergsagel P.L., Boise L.H., et al. CD28-Mediated pro-Survival Signaling Induces Chemotherapeutic Resistance in Multiple Myeloma. Blood. 2014;123:3770–3779. doi: 10.1182/blood-2013-10-530964. PubMed DOI PMC
Shi Q., Wu C., Han W., Zhao S., Wu Y., Jin Y., Qu X., Li J., Zhang R., Chen L. Clinical Significance of CD200 Expression in Newly Diagnosed Multiple Myeloma Patients and Dynamic Changing during Treatment. Leuk. Lymphoma. 2021;62:709–715. doi: 10.1080/10428194.2020.1839653. PubMed DOI
Aref S., Azmy E., El-Gilany A.H. Upregulation of CD200 Is Associated with Regulatory T Cell Expansion and Disease Progression in Multiple Myeloma. Hematol. Oncol. 2017;35:51–57. doi: 10.1002/hon.2206. PubMed DOI
Hu Y., Liu H., Fang C., Li C., Xhyliu F., Dysert H., Bodo J., Habermehl G., Russell B.E., Li W., et al. Targeting of CD38 by the Tumor Suppressor MiR-26a Serves as a Novel Potential Therapeutic Agent in Multiple Myeloma. Cancer Res. 2020;80:2031–2044. doi: 10.1158/0008-5472.CAN-19-1077. PubMed DOI PMC
Jung S.-H., Lee S.-E., Lee M., Kim S.-H., Yim S.-H., Kim T.W., Min C.-K., Chung Y.-J. Circulating MicroRNA Expressions Can Predict the Outcome of Lenalidomide plus Low-Dose Dexamethasone Treatment in Patients with Refractory/Relapsed Multiple Myeloma. Haematologica. 2017;102:e456–e459. doi: 10.3324/haematol.2017.168070. PubMed DOI PMC
Cui Y., Liu Y., Wang D., Liu Y., Liu L., Fang B. Comparative Analysis of MiRNA Expression Profiles of Multiple Myeloma with 1q21 Gains and Normal FISH. Acta Haematol. 2018;139:96–100. doi: 10.1159/000486662. PubMed DOI
Manier S., Liu C.-J., Avet-Loiseau H., Park J., Shi J., Campigotto F., Salem K.Z., Huynh D., Glavey S.V., Rivotto B., et al. Prognostic Role of Circulating Exosomal MiRNAs in Multiple Myeloma. Blood. 2017;129:2429–2436. doi: 10.1182/blood-2016-09-742296. PubMed DOI PMC
Chen L., Li C., Zhang R., Gao X., Qu X., Zhao M., Qiao C., Xu J., Li J. MiR-17-92 Cluster MicroRNAs Confers Tumorigenicity in Multiple Myeloma. Cancer Lett. 2011;309:62–70. doi: 10.1016/j.canlet.2011.05.017. PubMed DOI
Ventura A., Young A.G., Winslow M.M., Lintault L., Meissner A., Erkeland S.J., Newman J., Bronson R.T., Crowley D., Stone J.R., et al. Targeted Deletion Reveals Essential and Overlapping Functions of the MiR-17 through 92 Family of MiRNA Clusters. Cell. 2008;132:875–886. doi: 10.1016/j.cell.2008.02.019. PubMed DOI PMC
Blimark C., Holmberg E., Mellqvist U.-H., Landgren O., Björkholm M., Hultcrantz M., Kjellander C., Turesson I., Kristinsson S.Y. Multiple Myeloma and Infections: A Population-Based Study on 9253 Multiple Myeloma Patients. Haematologica. 2015;100:107–113. doi: 10.3324/haematol.2014.107714. PubMed DOI PMC
Dispenzieri A., Kyle R.A. Neurological Aspects of Multiple Myeloma and Related Disorders. Best Pract. Res. Clin. Haematol. 2005;18:673–688. doi: 10.1016/j.beha.2005.01.024. PubMed DOI
Grufferman S., Cohen H.J., Delzell E.S., Morrison M.C., Schold S.C., Moore J.O. Familial Aggregation of Multiple Myeloma and Central Nervous System Diseases. J. Am. Geriatr. Soc. 1989;37:303–309. doi: 10.1111/j.1532-5415.1989.tb05495.x. PubMed DOI
Ozen M., Karaahmet F., Tezcan M.E., Bulut N., Altundag K. Estrogen or Testosterone May Be Effective Agents in the Management of Both Multiple Myeloma and Alzheimer’s Disease. Med. Hypotheses. 2006;68:231–232. doi: 10.1016/j.mehy.2006.07.002. PubMed DOI
Yang X., Liang L., Zhang X.-F., Jia H.-L., Qin Y., Zhu X.-C., Gao X.-M., Qiao P., Zheng Y., Sheng Y.-Y., et al. MicroRNA-26a Suppresses Tumor Growth and Metastasis of Human Hepatocellular Carcinoma by Targeting Interleukin-6-Stat3 Pathway. Hepatology. 2013;58:158–170. doi: 10.1002/hep.26305. PubMed DOI
Kumar A., Bhatia H.S., de Oliveira A.C.P., Fiebich B.L. MicroRNA-26a Modulates Inflammatory Response Induced by Toll-like Receptor 4 Stimulation in Microglia. J. Neurochem. 2015;135:1189–1202. doi: 10.1111/jnc.13364. PubMed DOI
Zhang G.-J., Li L.-F., Yang G.-D., Xia S.-S., Wang R., Leng Z.-W., Liu Z.-L., Tian H.-P., He Y., Meng C.-Y., et al. MiR-92a Promotes Stem Cell-like Properties by Activating Wnt/β-Catenin Signaling in Colorectal Cancer. Oncotarget. 2017;8:101760–101770. doi: 10.18632/oncotarget.21667. PubMed DOI PMC
Brock M., Trenkmann M., Gay R.E., Gay S., Speich R., Huber L.C. MicroRNA-18a Enhances the Interleukin-6-Mediated Production of the Acute-Phase Proteins Fibrinogen and Haptoglobin in Human Hepatocytes. J. Biol. Chem. 2011;286:40142–40150. doi: 10.1074/jbc.M111.251793. PubMed DOI PMC
Masi M.C., Gironelli L., Bonuccelli U., Cei G., Meucci G., Giraldi C. Amyotrophic lateral sclerosis with multiple myeloma. Riv. Neurol. 1990;60:167–170. PubMed
Koc F., Paydas S., Yerdelen D., Demirkiran M. Motor Neuron Disease Associated with Multiple Myeloma. Int. J. Neurosci. 2008;118:337–341. doi: 10.1080/00207450701242644. PubMed DOI
Terré A., Colombat M., Cez A., Martin C., Diet C., Brechignac S., Oghina S., Bodez D., Faguer S., Savey L., et al. AA Amyloidosis Complicating Monoclonal Gammopathies, an Unusual Feature Validating the Concept of “Monoclonal Gammopathy of Inflammatory Significance”? Int. J. Clin. Pract. 2021;75:e14817. doi: 10.1111/ijcp.14817. PubMed DOI
Rocanières P., Lamure S., Geny C., Hillaire-Buys D., Faillie J.-L., Bres V. Parkinsonian Patients Requiring Proteasome Inhibitors for Multiple Myeloma: Exceptional Circumstances Call for Extra Caution. J. Park. Dis. 2022 doi: 10.3233/JPD-223496. PubMed DOI
Jiang X., Li X., Wu F., Gao H., Wang G., Zheng H., Wang H., Li J., Chen C. Overexpression of MiR-92a Promotes the Tumor Growth of Osteosarcoma by Suppressing F-Box and WD Repeat-Containing Protein 7. Gene. 2017;606:10–16. doi: 10.1016/j.gene.2017.01.002. PubMed DOI
Yang W., Dou C., Wang Y., Jia Y., Li C., Zheng X., Tu K. MicroRNA-92a Contributes to Tumor Growth of Human Hepatocellular Carcinoma by Targeting FBXW7. Oncol. Rep. 2015;34:2576–2584. doi: 10.3892/or.2015.4210. PubMed DOI
Xu G., Cai J., Wang L., Jiang L., Huang J., Hu R., Ding F. MicroRNA-30e-5p Suppresses Non-Small Cell Lung Cancer Tumorigenesis by Regulating USP22-Mediated Sirt1/JAK/STAT3 Signaling. Exp. Cell Res. 2018;362:268–278. doi: 10.1016/j.yexcr.2017.11.027. PubMed DOI
Hua X., Chu H., Wang C., Shi X., Wang A., Zhang Z. Targeting USP22 with MiR-30-5p to Inhibit the Hypoxia-induced Expression of PD-L1 in Lung Adenocarcinoma Cells. Oncol. Rep. 2021;46:215. doi: 10.3892/or.2021.8166. PubMed DOI
Tohami T., Drucker L., Shapiro H., Radnay J., Lishner M. Overexpression of Tetraspanins Affects Multiple Myeloma Cell Survival and Invasive Potential. FASEB J. 2007;21:691–699. doi: 10.1096/fj.06-6610com. PubMed DOI
Zismanov V., Drucker L., Attar-Schneider O., Matalon S.T., Pasmanik-Chor M., Lishner M. Tetraspanins Stimulate Protein Synthesis in Myeloma Cell Lines. J. Cell Biochem. 2012;113:2500–2510. doi: 10.1002/jcb.24126. PubMed DOI
Chen F., Hu Y., Wang X., Fu S., Liu Z., Zhang J. Expression of CD81 and CD117 in Plasma Cell Myeloma and the Relationship to Prognosis. Cancer Med. 2018;7:5920–5927. doi: 10.1002/cam4.1840. PubMed DOI PMC
Xu P., Xia T., Ling Y., Chen B. MiRNAs with Prognostic Significance in Multiple Myeloma. Medicine. 2019;98:e16711. doi: 10.1097/MD.0000000000016711. PubMed DOI PMC
Katayama Y., Sakai A., Oue N., Asaoku H., Otsuki T., Shiomomura T., Masuda R., Hino N., Takimoto Y., Imanaka F., et al. A Possible Role for the Loss of CD27-CD70 Interaction in Myelomagenesis. Br. J. Haematol. 2003;120:223–234. doi: 10.1046/j.1365-2141.2003.04069.x. PubMed DOI
Guikema J.E.J., Hovenga S., Vellenga E., Conradie J.J., Abdulahad W.H., Bekkema R., Smit J.W., Zhan F., Shaughnessy J., Bos N.A. CD27 Is Heterogeneously Expressed in Multiple Myeloma: Low CD27 Expression in Patients with High-Risk Disease. Br. J. Haematol. 2003;121:36–43. doi: 10.1046/j.1365-2141.2003.04260.x. PubMed DOI
Senbanjo L.T., Chellaiah M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017;5:18. doi: 10.3389/fcell.2017.00018. PubMed DOI PMC
Garcés J.-J., Simicek M., Vicari M., Brozova L., Burgos L., Bezdekova R., Alignani D., Calasanz M.-J., Growkova K., Goicoechea I., et al. Transcriptional Profiling of Circulating Tumor Cells in Multiple Myeloma: A New Model to Understand Disease Dissemination. Leukemia. 2020;34:589–603. doi: 10.1038/s41375-019-0588-4. PubMed DOI
Liu F., Wang Z., Liu F., Xu J., Liu Q., Yin K., Lan J. MicroRNA-29a-3p Enhances Dental Implant Osseointegration of Hyperlipidemic Rats via Suppressing Dishevelled 2 and Frizzled 4. Cell Biosci. 2018;8:55. doi: 10.1186/s13578-018-0254-y. PubMed DOI PMC
Cui Y., Li T., Yang D., Li S., Le W. MiR-29 Regulates Tet1 Expression and Contributes to Early Differentiation of Mouse ESCs. Oncotarget. 2016;7:64932–64941. doi: 10.18632/oncotarget.10751. PubMed DOI PMC
Chung E.Y., Psathas J.N., Yu D., Li Y., Weiss M.J., Thomas-Tikhonenko A. CD19 Is a Major B Cell Receptor-Independent Activator of MYC-Driven B-Lymphomagenesis. J. Clin. Investig. 2012;122:2257–2266. doi: 10.1172/JCI45851. PubMed DOI PMC
Kim H.-Y., Kim Y.-M., Hong S. Astaxanthin Suppresses the Metastasis of Colon Cancer by Inhibiting the MYC-Mediated Downregulation of MicroRNA-29a-3p and MicroRNA-200a. Sci. Rep. 2019;9:9457. doi: 10.1038/s41598-019-45924-3. PubMed DOI PMC
Chen Y., Zhang W., Yan L., Zheng P., Li J. MiR-29a-3p Directly Targets Smad Nuclear Interacting Protein 1 and Inhibits the Migration and Proliferation of Cervical Cancer HeLa Cells. PeerJ. 2020;8:e10148. doi: 10.7717/peerj.10148. PubMed DOI PMC
Rawstron A.C., Orfao A., Beksac M., Bezdickova L., Brooimans R.A., Bumbea H., Dalva K., Fuhler G., Gratama J., Hose D., et al. Report of the European Myeloma Network on Multiparametric Flow Cytometry in Multiple Myeloma and Related Disorders. Haematologica. 2008;93:431–438. doi: 10.3324/haematol.11080. PubMed DOI
Mateo G., Montalbán M.A., Vidriales M.-B., Lahuerta J.J., Mateos M.V., Gutiérrez N., Rosiñol L., Montejano L., Bladé J., Martínez R., et al. Prognostic Value of Immunophenotyping in Multiple Myeloma: A Study by the PETHEMA/GEM Cooperative Study Groups on Patients Uniformly Treated with High-Dose Therapy. J. Clin. Oncol. 2008;26:2737–2744. doi: 10.1200/JCO.2007.15.4120. PubMed DOI
Chang L., Zhou G., Soufan O., Xia J. MiRNet 2.0: Network-Based Visual Analytics for MiRNA Functional Analysis and Systems Biology. Nucleic Acids Res. 2020;48:W244–W251. doi: 10.1093/nar/gkaa467. PubMed DOI PMC
Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021;49:D605–D612. doi: 10.1093/nar/gkaa1074. PubMed DOI PMC
Li R., Qu H., Wang S., Wei J., Zhang L., Ma R., Lu J., Zhu J., Zhong W.-D., Jia Z. GDCRNATools: An R/Bioconductor Package for Integrative Analysis of LncRNA, MiRNA and MRNA Data in GDC. Bioinformatics. 2018;34:2515–2517. doi: 10.1093/bioinformatics/bty124. PubMed DOI
Detection of early relapse in multiple myeloma patients