MicroRNA Profiling of Bone Marrow Plasma Extracellular Vesicles in Multiple Myeloma, Extramedullary Disease, and Plasma Cell Leukemia
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
European union
Fakultni nemocnice Brno
Lékařská fakulta, Masarykova univerzita
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
39804194
PubMed Central
PMC11727818
DOI
10.1002/hon.70036
Knihovny.cz E-zdroje
- Klíčová slova
- extramedullary disease, microRNAs, multiple myeloma, plasma cell leukemia, small RNA sequencing, small extracellular vesicles,
- Publikační typ
- časopisecké články MeSH
Multiple myeloma is a plasma cell malignancy characterized by an abnormal increase in monoclonal immunoglobulins. Despite significant advances in treatment, some patients progress to more aggressive forms of multiple myeloma, including extramedullary disease or plasma cell leukemia. Although the exact molecular mechanisms are not known, several studies have confirmed the involvement of small extracellular vesicle-enriched microRNAs in multiple myeloma progression. Therefore, we performed expression profiling of these molecules in bone marrow plasma of multiple myeloma, extramedullary disease, and plasma cell leukemia patients using small RNA sequencing to identify novel molecules involved in disease pathogenesis. In total, 42 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed elevated levels of miR-140-3p, miR-584-5p, miR-191-5p, and miR-143-3p in multiple myeloma patients compared to extramedullary disease and plasma cell leukemia patients. Subsequent statistical analysis revealed significant correlations between patient clinical characteristics or flow cytometry parameters and microRNA expression. These results indicate that dysregulation of microRNAs could contribute to multiple myeloma progression.
Department of Clinical Hematology University Hospital Brno Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
Department of Pharmacology and Toxicology Veterinary Research Institute Brno Czech Republic
Faculty of Medicine Institute of Biostatistics and Analyses Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Rajkumar S. V., “Updated Diagnostic Criteria and Staging System for Multiple Myeloma,” Am Soc Clin Oncol Educ Book 35, no. 36 (2016): e418–e423, 10.1200/EDBK_159009. PubMed DOI
Furukawa Y. and Kikuchi J., “Molecular Pathogenesis of Multiple Myeloma,” International Journal of Clinical Oncology 20, no. 3 (2015): 413–422, 10.1007/s10147-015-0837-0. PubMed DOI
Sevcikova S., Minarik J., Stork M., Jelinek T., Pour L., and Hajek R., “Extramedullary Disease in Multiple Myeloma ‐ Controversies and Future Directions,” Blood Reviews 36 (2019): 32–39, 10.1016/j.blre.2019.04.002. PubMed DOI
Vlachová M., Gregorová J., Vychytilová‐Faltejsková P., et al., “Involvement of Small Non‐coding RNA and Cell Antigens in Pathogenesis of Extramedullary Multiple Myeloma,” International Journal of Molecular Sciences 23, no. 23 (2022): 14765, 10.3390/ijms232314765. PubMed DOI PMC
Gregorova J., Vychytilova‐Faltejskova P., Kramarova T., et al., “Proteomic Analysis of the Bone Marrow Microenvironment in Extramedullary Multiple Myeloma Patients,” Neoplasma 69, no. 2 (2022): 412–424, 10.4149/neo_2021_210527N715. PubMed DOI
Stork M., Sevcikova S., Minarik J., et al., “Identification of Patients at High Risk of Secondary Extramedullary Multiple Myeloma Development,” British Journal of Haematology 196, no. 4 (2022): 954–962, 10.1111/bjh.17925. PubMed DOI PMC
Besse L., Sedlarikova L., Kryukov F., et al., “Circulating Serum MicroRNA‐130a as a Novel Putative Marker of Extramedullary Myeloma,” PLoS One 10, no. 9 (2015): e0137294, 10.1371/journal.pone.0137294. PubMed DOI PMC
Fernández de Larrea C., Kyle R., Rosiñol L., et al., “Primary Plasma Cell Leukemia: Consensus Definition by the International Myeloma Working Group According to Peripheral Blood Plasma Cell Percentage,” Blood Cancer Journal 11, no. 12 (2021): 192, 10.1038/s41408-021-00587-0. PubMed DOI PMC
Bezdekova R., Jelinek T., Kralova R., et al., “Necessity of Flow Cytometry Assessment of Circulating Plasma Cells and Its Connection With Clinical Characteristics of Primary and Secondary Plasma Cell Leukaemia,” British Journal of Haematology 195, no. 1 (2021): 95–107, 10.1111/bjh.17713. PubMed DOI PMC
Raposo G., Nijman H. W., Stoorvogel W., et al., “B Lymphocytes Secrete Antigen‐Presenting Vesicles,” Journal of Experimental Medicine 183, no. 3 (1996): 1161–1172, 10.1084/jem.183.3.1161. PubMed DOI PMC
Welsh J. A., Goberdhan D. C. I., O’Driscoll L., et al., “Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches,” Journal of Extracellular Vesicles 13, no. 2 (2024): e12404, 10.1002/jev2.12404. PubMed DOI PMC
Menu E. and Vanderkerken K., “Exosomes in Multiple Myeloma: From Bench to Bedside,” Blood 140, no. 23 (2022): 2429–2442, 10.1182/blood.2021014749. PubMed DOI PMC
Zhang Y., Liu Y., Liu H., and Tang W. H., “Exosomes: Biogenesis, Biologic Function and Clinical Potential,” Cell & Bioscience 9, no. 1 (2019): 19, 10.1186/s13578-019-0282-2. PubMed DOI PMC
Reale A., Khong T., Xu R., et al., “Human Plasma Extracellular Vesicle Isolation and Proteomic Characterization for the Optimization of Liquid Biopsy in Multiple Myeloma,” Methods in Molecular Biology 2261 (2021): 151–191, 10.1007/978-1-0716-1186-9_10. PubMed DOI
Tuerxun N., Wang J., Qin Y. T., et al., “Identification of Key Genes and miRNA‐mRNA Regulatory Networks Associated With Bone Marrow Immune Microenvironment Regulations in Multiple Myeloma by Integrative Bioinformatics Analysis,” Hematology 27, no. 1 (2022): 506–517, 10.1080/16078454.2022.2068873. PubMed DOI
Wang W., Corrigan‐Cummins M., Barber E. A., et al., “Aberrant Levels of miRNAs in Bone Marrow Microenvironment and Peripheral Blood of Myeloma Patients and Disease Progression,” Journal of Molecular Diagnostics 17, no. 6 (2015): 669–678, 10.1016/j.jmoldx.2015.06.006. PubMed DOI PMC
Gregorova J., Vychytilova‐Faltejskova P., and Sevcikova S., “Epigenetic Regulation of MicroRNA Clusters and Families During Tumor Development,” Cancers 13, no. 6 (2021): 1333, 10.3390/cancers13061333. PubMed DOI PMC
Redis R. S., Calin S., Yang Y., You M. J., and Calin G. A., “Cell‐to‐Cell miRNA Transfer: From Body Homeostasis to Therapy,” Pharmacology & Therapeutics 136, no. 2 (2012): 169–174, 10.1016/j.pharmthera.2012.08.003. PubMed DOI PMC
Umezu T., Tadokoro H., Azuma K., Yoshizawa S., Ohyashiki K., and Ohyashiki J. H., “Exosomal miR‐135b Shed From Hypoxic Multiple Myeloma Cells Enhances Angiogenesis by Targeting Factor‐Inhibiting HIF‐1,” Blood 124, no. 25 (2014): 3748–3757, 10.1182/blood-2014-05-576116. PubMed DOI PMC
Umezu T., Imanishi S., Azuma K., et al., “Replenishing Exosomes From Older Bone Marrow Stromal Cells With miR‐340 Inhibits Myeloma‐Related Angiogenesis,” Blood Adv 1, no. 13 (2017): 812–823, 10.1182/bloodadvances.2016003251. PubMed DOI PMC
Gao X., Zhou J., Wang J., Dong X., Chang Y., and Jin Y., “Mechanism of Exosomal miR‐155 Derived From Bone Marrow Mesenchymal Stem Cells on Stemness Maintenance and Drug Resistance in Myeloma Cells,” Journal of Orthopaedic Surgery and Research 16, no. 1 (2021): 637, 10.1186/s13018-021-02793-9. PubMed DOI PMC
Gu J., Wang M., Wang X., et al., “Exosomal miR‐483‐5p in Bone Marrow Mesenchymal Stem Cells Promotes Malignant Progression of Multiple Myeloma by Targeting TIMP2,” Frontiers in Cell and Developmental Biology 10 (2022): 862524, 10.3389/fcell.2022.862524. PubMed DOI PMC
Raimondo S., Saieva L., Vicario E., et al., “Multiple Myeloma‐Derived Exosomes Are Enriched of Amphiregulin (AREG) and Activate the Epidermal Growth Factor Pathway in the Bone Microenvironment Leading to Osteoclastogenesis,” Journal of Hematology & Oncology 12, no. 1 (2019): 2, 10.1186/s13045-018-0689-y. PubMed DOI PMC
Granell M., Calvo X., Garcia‐Guiñón A., et al., “Prognostic Impact of Circulating Plasma Cells in Patients With Multiple Myeloma: Implications for Plasma Cell Leukemia Definition,” Haematologica 102, no. 6 (2017): 1099–1104, 10.3324/haematol.2016.158303. PubMed DOI PMC
Gundesen M. T., Lund T., Moeller H. E. H., and Abildgaard N., “Plasma Cell Leukemia: Definition, Presentation, and Treatment,” Current Oncology Reports 21, no. 1 (2019): 8, 10.1007/s11912-019-0754-x. PubMed DOI PMC
Besse L., Sedlarikova L., Greslikova H., et al., “Cytogenetics in Multiple Myeloma Patients Progressing into Extramedullary Disease,” European Journal of Haematology 97, no. 1 (2016): 93–100, 10.1111/ejh.12688. PubMed DOI
Ross F. M., Avet‐Loiseau H., Ameye G., et al., “Report From the European Myeloma Network on Interphase FISH in Multiple Myeloma and Related Disorders,” Haematologica 97, no. 8 (2012): 1272–1277, 10.3324/haematol.2011.056176. PubMed DOI PMC
Rawstron A. C., Orfao A., Beksac M., et al., “Report of the European Myeloma Network on Multiparametric Flow Cytometry in Multiple Myeloma and Related Disorders,” Haematologica 93, no. 3 (2008): 431–438, 10.3324/haematol.11080. PubMed DOI
Mateo G., Montalbán M. A., Vidriales M. B., et al., “Prognostic Value of Immunophenotyping in Multiple Myeloma: A Study by the PETHEMA/GEM Cooperative Study Groups on Patients Uniformly Treated With High‐Dose Therapy,” Journal of Clinical Oncology 26, no. 16 (2008): 2737–2744, 10.1200/JCO.2007.15.4120. PubMed DOI
Vyhlídalová Kotrbová A., Gömöryová K., Mikulová A., et al., “Proteomic Analysis of Ascitic Extracellular Vesicles Describes Tumour Microenvironment and Predicts Patient Survival in Ovarian Cancer,” Journal of Extracellular Vesicles 13, no. 3 (2024): e12420, 10.1002/jev2.12420. PubMed DOI PMC
Kubiczkova L., Kryukov F., Slaby O., et al., “Circulating Serum microRNAs as Novel Diagnostic and Prognostic Biomarkers for Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance,” Haematologica 99, no. 3 (2014): 511–518, 10.3324/haematol.2013.093500. PubMed DOI PMC
Robinson M. D., McCarthy D. J., and Smyth G. K., “edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data,” Bioinformatics 26, no. 1 (2010): 139–140, 10.1093/bioinformatics/btp616. PubMed DOI PMC
McCarthy D. J., Chen Y., and Smyth G. K., “Differential Expression Analysis of Multifactor RNA‐Seq Experiments With Respect to Biological Variation,” Nucleic Acids Research 40, no. 10 (2012): 4288–4297, 10.1093/nar/gks042. PubMed DOI PMC
Ritchie M. E., Phipson B., Wu D., et al., “Limma Powers Differential Expression Analyses for RNA‐Sequencing and Microarray Studies,” Nucleic Acids Research 43, no. 7 (2015): e47, 10.1093/nar/gkv007. PubMed DOI PMC
Xie F., Xiao P., Chen D., Xu L., and Zhang B., “miRDeepFinder: A miRNA Analysis Tool for Deep Sequencing of Plant Small RNAs,” Plant Molecular Biology 80, no. 1 (January 31, 2012): 75–84: Published online, 10.1007/s11103-012-9885-2. PubMed DOI
Leng S., Qu H., Lv X., and Liu X., “Role of ncRNA in Multiple Myeloma,” Biomarkers in Medicine 16, no. 16 (2022): 1181–1191, 10.2217/bmm-2022-0349. PubMed DOI
Dong X., Lu G., Su X., et al., “Identification of Key miRNA Signature and Pathways Involved in Multiple Myeloma by Integrated Bioinformatics Analysis,” Hematology 26, no. 1 (2021): 976–984, 10.1080/16078454.2021.2003980. PubMed DOI
Chen D., Yang X., Liu M., Zhang Z., and Xing E., “Roles of miRNA Dysregulation in the Pathogenesis of Multiple Myeloma,” Cancer Gene Therapy 28, no. 12 (2021): 1256–1268, 10.1038/s41417-020-00291-4. PubMed DOI PMC
Lionetti M., Biasiolo M., Agnelli L., et al., “Identification of microRNA Expression Patterns and Definition of a microRNA/mRNA Regulatory Network in Distinct Molecular Groups of Multiple Myeloma,” Blood 114, no. 25 (2009): e20–e26, 10.1182/blood-2009-08-237495. PubMed DOI
Agnelli L., Mosca L., Fabris S., et al., “A SNP Microarray and FISH‐Based Procedure to Detect Allelic Imbalances in Multiple Myeloma: An Integrated Genomics Approach Reveals a Wide Gene Dosage Effect,” Genes Chromosomes & Cancer 48, no. 7 (2009): 603–614, 10.1002/gcc.20668. PubMed DOI
Yuan L., Chan G. C. F., Fung K. L., and Chim C. S., “RANKL Expression in Myeloma Cells is Regulated by a Network Involving RANKL Promoter Methylation, DNMT1, microRNA and TNFα in the Microenvironment,” Biochimica et Biophysica Acta 1843, no. 9 (2014): 1834–1838, 10.1016/j.bbamcr.2014.05.010. PubMed DOI
Raje N. S., Bhatta S., and Terpos E., “Role of the RANK/RANKL Pathway in Multiple Myeloma,” Clinical Cancer Research 25, no. 1 (2019): 12–20, 10.1158/1078-0432.CCR-18-1537. PubMed DOI
Long X., Li J., Wen F., Cao Y., Luo Z., and Luo C., “miR‐140‐3p Attenuated the Tumorigenesis of Multiple Myeloma via Attenuating BZW2,” Hematology 27, no. 1 (2022): 173–180, 10.1080/16078454.2021.2009644. PubMed DOI
Jin Y. P., Hu Y. P., Wu X. S., et al., “miR‐143‐3p Targeting of ITGA6 Suppresses Tumour Growth and Angiogenesis by Downregulating PLGF Expression via the PI3K/AKT Pathway in Gallbladder Carcinoma,” Cell Death & Disease 9, no. 2 (2018): 1–15, 10.1038/s41419-017-0258-2. PubMed DOI PMC
Sun X., Dai G., Yu L., Hu Q., Chen J., and Guo W., “miR‐143‐3p Inhibits the Proliferation, Migration and Invasion in Osteosarcoma by Targeting FOSL2,” Scientific Reports 8, no. 1 (2018): 606, 10.1038/s41598-017-18739-3. PubMed DOI PMC
Chen X. Y., Zhang J., Hou L. D., et al., “Upregulation of PD‐L1 Predicts Poor Prognosis and is Associated With miR‐191‐5p Dysregulation in Colon Adenocarcinoma,” International Journal of Immunopathology & Pharmacology 32 (2018): 2058738418790318, 10.1177/2058738418790318. PubMed DOI PMC
Tamura H., Ishibashi M., Sunakawa‐Kii M., and Inokuchi K., “PD‐L1‐PD‐1 Pathway in the Pathophysiology of Multiple Myeloma,” Cancers 12, no. 4 (2020): 924, 10.3390/cancers12040924. PubMed DOI PMC
Xiang X., Mei H., Qu H., et al., “miRNA‐584‐5p Exerts Tumor Suppressive Functions in Human Neuroblastoma through Repressing Transcription of Matrix Metalloproteinase 14,” Biochimica et Biophysica Acta 1852, no. 9 (2015): 1743–1754, 10.1016/j.bbadis.2015.06.002. PubMed DOI
Guo T., Zheng C., Wang Z., and Zheng X., “miR‐584‐5p Regulates Migration and Invasion in Non‐small Cell Lung Cancer Cell Lines through Regulation of MMP‐14,” Molecular Medicine Reports 19, no. 3 (2019): 1747–1752, 10.3892/mmr.2019.9813. PubMed DOI
Lee S. B., Park Y. S., Sung J. S., Lee J. W., Kim B., and Kim Y. H., “Tumor Suppressor miR‐584‐5p Inhibits Migration and Invasion in Smoking Related Non‐small Cell Lung Cancer Cells by Targeting YKT6,” Cancers 13, no. 5 (2021): 1159, 10.3390/cancers13051159. PubMed DOI PMC
Wei H., Wang J., Xu Z., et al., “miR‐584‐5p Regulates Hepatocellular Carcinoma Cell Migration and Invasion through Targeting KCNE2,” Mol Genet Genomic Med 7, no. 6 (2019): e702, 10.1002/mgg3.702. PubMed DOI PMC
Lu Q., Wang Y., Jiang X., and Huang S.. “miR‐584‐5p Inhibits Osteosarcoma Progression by Targeting Connective Tissue Growth Factor,” Cancer Biotherapy & Radiopharmaceuticals 38, no. 9 (2023): 632–640: Published online, 10.1089/cbr.2021.0349. January 17, 2022. PubMed DOI
Yi C. F., Cai Y. X., Qiu Y. J., et al., “[Expression and Clinical Significance of CTGF in Patients With Multiple Myeloma],” Zhongguo Shi Yan Xue Ye Xue Za Zhi 28, no. 6 (2020): 1952–1956, 10.19746/j.cnki.issn.1009-2137.2020.06.026. PubMed DOI
Manier S., Liu C. J., Avet‐Loiseau H., et al., “Prognostic Role of Circulating Exosomal miRNAs in Multiple Myeloma,” Blood 129, no. 17 (2017): 2429–2436, 10.1182/blood-2016-09-742296. PubMed DOI PMC
Tan Y. L., Bai Z. G., Zou W. L., et al., “miR‐744 is a Potential Prognostic Marker in Patients With Hepatocellular Carcinoma,” Clin Res Hepatol Gastroenterol 39, no. 3 (2015): 359–365, 10.1016/j.clinre.2014.09.010. PubMed DOI
Svachova H., Kryukov F., Kryukova E., et al., “Nestin Expression throughout Multistep Pathogenesis of Multiple Myeloma,” British Journal of Haematology 164, no. 5 (2014): 701–709, 10.1111/bjh.12689. PubMed DOI
Mimmi S., Zimbo A. M., Rotundo S., et al., “SARS CoV‐2 Spike Protein‐Guided Exosome Isolation Facilitates Detection of Potential miRNA Biomarkers in COVID‐19 Infections,” Clinical Chemistry and Laboratory Medicine 61, no. 8 (2023): 1518–1524, 10.1515/cclm-2022-1286. PubMed DOI